Chapter 5 the Petroleum Refining Industry

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5 the Petroleum Refining Industry Chapter 5 The Petroleum Refining Industry Photo credit American Petroleum Institute and Exxon Corp. ———— - -.— —.— . ~. 4 , ‘. - Contents Page Industry Overview . Industry structure........,. 85 Product Mix . .... .... ..... ● ... ...... 86 Economics of Refining .. ....,. ● .... ... 88 imports and Exports ....... 89 Trends and Uncertainties.. ..... 90 Energy and Technology.. 92 Production Processes . 92 Kinds of Refineries . 94 Energy Use . .; . 95 Energy Conservation . 97 Potential for Energy Saving . 98 Technologies for lncreased Energy Efficiency . 99 Proven Technologies for Energy Conservation . 99 New Concepts in Refinery Energy Use . 101 Investment Choices for the Refining industry . ......... 104 Capital Expenditures in the oil lndustry . 104 Other Investment opportunities ● P. 105 impacts of Policy Options on the Petroleum Refining Industry . 107 The Reference Case . 107 Projected Effects of Policy Options . 110 TABLES Table No. 21. Definition of SIC 29-The Petroleum Refining and Related Industries . 85 22. Petroleum Refining Corporations Earning More Than $16 Billion in 1981 . 86 23. Products Manufactured in SIC 29, . 87 24. Process Plant Construction Cost,1972 and 1982. 88 25. Comparison of 1972 and 1981 Energy Consumption in Petroleum Refining Industry. 98 26. Petroleum Refining industry Projects To Be Analyzed for lnternal Rate of Return (lRR) Values . 108 27. Projected Changes in Petroleum Refining Production Between 1985 and 2000.... 110 28. Effects of Policy Options on lRR Values of Petroleum Refining Industry Projects.. 111 29. Effect of Lower interest Rates on lRR Values of Petroleum Refinery Industry Projects . 112 FIGURES Figure No. Page 19. Employment Trends in Petroleum Refining lndustry,1970-82 . 89 20. Topping Refinery Model Configuration . 94 21 Hydroskimming-Refinery Model Configuration . 94 22 Complex Refinery Model Configuration . 96 23 Alliance Refinery Energy Profile . 97 24 Comparison of Petroleum Refining Industry Energy Use and Production Output 1972 and 1981 . 98 25 Diagram of Atmospheric Fluidized-Bed Combustion Boiler/Combustor Arrangements. 103 26 Petroleum Refining Industry Projections of Fuel Use and Energy Savings by Policy Options 1990 and 2000 . 109 27 Petroleum Refining Industry Energy Intensity Projection, 1970X)00. 110 Chapter 5 The Petroleum Refining Industry INDUSTRY OVERVIEW The petroleum refining industry uses the largest Finally, the refining process is becoming more quantity of premium fuels in the industrial sec- complex as demand increases for high octane, tor, amounting to 2,7 Quads in 1981. ’ It is sec- unleaded gasoline. Crude petroleum, as found ond only to the chemicals industry in the total in nature, must be processed (refined) to remove amount of energy it consumes. Classified under impurities and to manufacture such usefuI ma- SIC 29, the petroleum refining industry is defined terials as gasoline, jet fuel (kerosene), and fuel as the group of establishments engaged in refin- oil. In the early days of the petroleum refining ing petroleum, producing paving materials, and industry, simple distillations were used to pro- manufacturing lubricating oils. Its official descrip- duce desired gasoline and kerosene products, tion is shown in table 21. with up to so percent of the crude oil feedstock being discarded. In recent years, this industry has This industry faces a future that bears little re- made a great deal of effort to increase the yield semblance to its past. Previously, the firms that of high octane products, minimize waste, and im- made transportation fuels for the United States prove the overall quality of the product pro- had access to large quantities of high-quality duced. crude oil. Now, they must use less desirable high- suIfur crude oils as feedstocks. The petroleum product market is changing as well. Environmen- Industry Structure tal considerations require production of high- The U.S. petroleum refining industry now con- octane, unleaded gasoline, instead of gasoline sists of approximately 270 refineries owned by with lead added to improve fuel quality. 162 companies.2 Refineries are located in 40 of In addition, the costs of fuel have risen to such the sO States. Refining capacity is located in areas levels that overall demand for refining products known as Petroleum Administration for Defense is projected to decline over the next two decades. (PAD) districts. Major concentrations of refining Thus, the management of firms in SIC 29 finds capacity exist in PAD districts 2 (Great Lakes and itself in the unenviable position of having to make Midwestern States), 3 (Gulf Coast), and 5 (Pacific sizable capital investments in an industry whose Coast). PAD district 1 (East Coast) has less refin- product will be in less demand. ing capacity, a deficiency made up for by pipeline and tanker shipments from the Gulf Coast and by imports, primarily of residual fuel oil, from 1 American Petroleum I nstltute, Energy Et’t’/c/ency /rnpro~’emenl 3 and Recot ered ,W]tcr\al L’tlllzatlon Report to U.S. Department ot foreign Western Hemisphere refineries, . Energ}, June 10, 1982, p 2. As of January 1, 1982, the operating refineries in the United States had a total crude-running capacity* of about 17.7 million barrels per day Table 21 .—Definition of SIC 29—The Petroleum Refining and Related Industries (bpd), representing about 27 percent of the refin- ing capacity of the non-Communist world.4 Proc- This major group includes establishments primarily en- essing from around 1,000 bpd to over 600,000 gaged in refining petroleum, manufacturing of paving and bpd, refineries range from “fully integrated” com- roofing materials, and compounding lubricating oils and greases from purchased materials. This SIC group contains Zlbld., p. 6. the following subcategories: J/nrernatjona/ ~etro/eum Encyclopedia, J. C. McCasli n (cd. ) (Tulsa, SlC Title Okla.: The Petroleum Publishing Co., 1981). 291 . Petroleum refining *The size of a refinery IS normally expressed as Its “crude capaci- 295. , . Paving and roofing materials ty, ” meaning the number of barrels that can be “run” each day 299. Miscellaneous products of petroleum and oil through its atmospheric distillation units. SOURCE Office of Management and Budget, Standard Indusfrlal Classification ‘Amercian Petroleum Institute, Basic Petro/eum Data Book, Jan- Manual, 1972 uary 1983. 85 86 • Industrial Energy Use plex plants, capable of producing a complete plies of crude oil are diminishing as govern- range of petroleum products, to small, simple ments of the producing countries increasing- refineries that can produce only straight-run dis- ly take over responsibility for disposing of tillates, heavy fuel oils, and sometimes asphalt. their crude production. As a consequence, Small (less than 75,000 bpd) refineries make up many of the U.S. multinational oil producers about 60 percent of the total number of refining find that their domestic activities–including units, but their combined capacity is only about refining—are becoming more important to 24 percent of the total throughput. * In terms of their financial health. These companies, with ownership, the four largest companies have their sophisticated high-volume refineries, about 38 percent of the total refining capacity, provide the bulk of the products manufac- and 20 companies have about 77 percent of the tured through complex processing steps. total refining capacity. 5 The top 10 firms are 2. Large- and medium-sized domestic refiners shown in table 22. make up a diverse group of companies. Some are fortunate in being largely self-suf- There is no single, accepted method of catego- ficient in domestic production of crude oil. rizing the structure of the U.S. petroleum refin- Others depend for their crude supply on ing industry that captures the similarities and dif- some combination of long-term contracts ferences in refineries related to processing capa- and “spot” purchases. * They have much bilities, access to feedstock supplies, ability to less total refining capacity than do the ma- market, and the like. One grouping is: jor firms, but a number of them are signifi- 1. Large, integrated, multinational companies cant marketers in their own regions. typically have worldwide production, refin- 3. Independent refiners form the most diverse ing, and marketing operations in addition to group of all. Most independent refiners are their activities in the United States. A number small, domestic companies. Refining is their of these firms are descendants of the Stand- principal operation; most do not produce ard Oil companies created when Rockefel- crude oil and do not market their products ler’s Standard Oil trust was dissolved in under their own names. 1911.6 These major oil producers have typ- ically had access to assured supplies of crude Product Mix oil from the Middle East and other produc- ing areas of the world. Such guaranteed sup- A petroleum refinery is a complex assembly of individual process plants interconnected with pip- ing and tanks. Each plant has a specific function, *Throughput–the total amount of crude oil initially processed. ‘Oil and Gas Journal, “Refining Capacity Dips on Broad Front, ” vol. 81, No. 12, Mar. 21, 1983, p. 84. 6U.S. House of Representatives, Committee on Energy and Com- *Spot purchases are those made by refiners on the open market merce, U.S. Refineries: A Background Study, July 1980. and without benefit of a contract. Table 22.—Petroleum Refining Corporations Earning More Than $16 Billion in 1981 Revenues Corporation (in billions) Employees
Recommended publications
  • Concept Papers for Changes to Rule 9-1 -- Refinery Fuel Gas Sulfur
    Draft: 05‐14‐15 Appendix C: Concept Paper for Changes to Rule 9‐1: Refinery Fuel Gas Sulfur Limits Rules to Be Amended or Drafted Regulation of refinery fuel gas (RFG) requires amendments to Air District Regulation 9, Rule 1, Sulfur Dioxide. Goals The goal of this rulemaking is to achieve technically feasible and cost‐effective sulfur dioxide (SO2) emission reductions from RFG systems at Bay Area refineries. Background The lightest components of crude oil separated by a refinery’s atmospheric fractionator are methane and ethane, which are also the primary components of natural gas. At petroleum refineries, these products are not produced in marketable quantities, but are used as fuel in the numerous onsite steam generators and process heaters. When produced at a refinery, this product is called refinery fuel gas (RFG). Pipeline natural gas may be used as a supplemental fuel when needed to enhance the quality of RFG or when there is not enough RFG available. Unlike, pipeline natural gas, refinery fuel gas often contains significant quantities of sulfur that occur naturally in crude oil. When burned, these sulfur compounds are converted to SO2. Process and Source Description RFG can contain between a few hundred and a few thousand parts per million‐volume (ppmv) sulfur in the form of hydrogen sulfide (H2S), carbonyl sulfide (COS), and organic sulfur compounds, such as mercaptans. During combustion, the sulfur in all of these compounds will oxidize to form SO2, which is a criteria air pollutant and a precursor to particulate matter. Scrubbing with an amine or caustic solution can be effective at removing H2S and some acidic sulfur containing compounds, but is generally ineffective at removing nonacidic sulfur compounds.
    [Show full text]
  • Liquefied Petroleum Gas (LPG)
    Liquefied Petroleum Gas (LPG) Demand, Supply and Future Perspectives for Sudan Synthesis report of a workshop held in Khartoum, 12-13 December 2010 The workshop was funded by UKaid from the Department for International Development Cover image: © UNAMID / Albert Gonzalez Farran This report is available online at: www.unep.org/sudan Disclaimer The material in this report does not necessarily represent the views of any of the organisations involved in the preparation and hosting of the workshop. It must be noted that some time has passed between the workshop and the dissemination of this report, during which some important changes have taken place, not least of which is the independence of South Sudan, a fact which greatly affects the national energy context. Critically, following the independence, the rate of deforestation in the Republic of Sudan has risen from 0.7% per year to 2.2% per year, making many of the discussions within this document all the more relevant. Whilst not directly affecting the production of LPG, which is largely derived from oil supplies north of the border with South Sudan, the wider context of the economics of the energy sector, and the economy as a whole, have changed. These changes are not reflected in this document. This being said, it is strongly asserted that this document still represents a useful contribution to the energy sector, particularly given its contribution to charting the breadth of perspectives on LPG in the Republic of Sudan. Liquefied Petroleum Gas (LPG) Demand, Supply and Future Perspectives for Sudan Synthesis report of a workshop held in Khartoum, 12-13 December 2010 A joint publication by: Ministry of Environment, Forestry and Physical Development – Sudan, Ministry of Petroleum – Sudan, United Kingdom Department for International Development, United Nations Development Programme and United Nations Environment Programme Table of contents Acronyms and abbreviations .
    [Show full text]
  • CCS: Applications and Opportunities for the Oil and Gas Industry
    Brief CCS: Applications and Opportunities for the Oil and Gas Industry Guloren Turan, General Manager, Advocacy and Communications May 2020 Contents 1. Introduction ................................................................................................................................... 2 2. Applications of CCS in the oil and gas industry ............................................................................. 2 3. Conclusion ..................................................................................................................................... 4 Page | 1 1. Introduction Production and consumption of oil and gas currently account for over half of global greenhouse gas emissions associated with energy use1 and so it is imperative that the oil and gas industry reduces its emissions to meet the net-zero ambition. At the same time, the industry has also been the source and catalyst of the leading innovations in clean energy, which includes carbon capture and storage (CCS). Indeed, as oil and gas companies are evolving their business models in the context of the energy transition, CCS has started to feature more prominently in their strategies and investments. CCS is versatile technology that can support the oil and gas industry’s low-carbon transition in several ways. Firstly, CCS is a key enabler of emission reductions in the industries’ operations, whether for compliance reasons, to meet self-imposed performance targets or to benefit from CO2 markets. Secondly, spurred by investor and ESG community sentiment, the industry is looking to reduce the carbon footprint of its products when used in industry, since about 90% of emissions associated with oil and gas come from the ultimate combustion of hydrocarbons – their scope 3 emissions. Finally, CCS can be a driver of new business lines, such as clean power generation and clean hydrogen production. From the perspective of the Paris Agreement, however, the deployment of CCS globally remains off track.
    [Show full text]
  • Facts About Alberta's Oil Sands and Its Industry
    Facts about Alberta’s oil sands and its industry CONTENTS Oil Sands Discovery Centre Facts 1 Oil Sands Overview 3 Alberta’s Vast Resource The biggest known oil reserve in the world! 5 Geology Why does Alberta have oil sands? 7 Oil Sands 8 The Basics of Bitumen 10 Oil Sands Pioneers 12 Mighty Mining Machines 15 Cyrus the Bucketwheel Excavator 1303 20 Surface Mining Extraction 22 Upgrading 25 Pipelines 29 Environmental Protection 32 In situ Technology 36 Glossary 40 Oil Sands Projects in the Athabasca Oil Sands 44 Oil Sands Resources 48 OIL SANDS DISCOVERY CENTRE www.oilsandsdiscovery.com OIL SANDS DISCOVERY CENTRE FACTS Official Name Oil Sands Discovery Centre Vision Sharing the Oil Sands Experience Architects Wayne H. Wright Architects Ltd. Owner Government of Alberta Minister The Honourable Lindsay Blackett Minister of Culture and Community Spirit Location 7 hectares, at the corner of MacKenzie Boulevard and Highway 63 in Fort McMurray, Alberta Building Size Approximately 27,000 square feet, or 2,300 square metres Estimated Cost 9 million dollars Construction December 1983 – December 1984 Opening Date September 6, 1985 Updated Exhibit Gallery opened in September 2002 Facilities Dr. Karl A. Clark Exhibit Hall, administrative area, children’s activity/education centre, Robert Fitzsimmons Theatre, mini theatre, gift shop, meeting rooms, reference room, public washrooms, outdoor J. Howard Pew Industrial Equipment Garden, and Cyrus Bucketwheel Exhibit. Staffing Supervisor, Head of Marketing and Programs, Senior Interpreter, two full-time Interpreters, administrative support, receptionists/ cashiers, seasonal interpreters, and volunteers. Associated Projects Bitumount Historic Site Programs Oil Extraction demonstrations, Quest for Energy movie, Paydirt film, Historic Abasand Walking Tour (summer), special events, self-guided tours of the Exhibit Hall.
    [Show full text]
  • Refining Company Perspective & Approach to High Quality Binders
    June 18, 2019 Refining company perspective & approach to high quality asphalts Pavel Kriz, Ph.D., P.Eng. Americas Asphalt Group & Discipline Technical Leader This communication may contain confidential information for the use of the entity to which it is addressed. If you are not the intended recipient, you are hereby notified that any use, dissemination, distribution, or copying of this communication is prohibited. If you are the intended recipient, information may not be reproduced or further distributed out of your organization without the originator's authorization in writing. 2019 © Imperial Oil Limited. All rights reserved. Imperial & ExxonMobil: Funding Members of Asphalt Institute 2 Global Asphalt Operations In NA Imperial & ExxonMobil manufacture asphalt at Joliet, Billings, Nanticoke & Strathcona Refineries • Produce over 2MTa of premium asphalt • Utilize high quality WestCan crudes • Committed to product quality & integrity Sarnia Technology Applications & Research • Canada’s first & largest petroleum research est. 1924 • 700+ patents • ~40+ PhDs out of ~100 employees • Global Centre of Excellence for Asphalt Asphalt Production • Long heritage & deep expertise in asphalt research Asphalt Technology/R&D 3 Crude Oil • “Crude oil is a naturally occurring, yellowish-black liquid found in geological formations beneath the Earth's surface” • It is a mixture of a large number of different hydrocarbons • Each oil has a unique mix of molecules, which define its properties, like color and viscosity Composition by weight Element Percent range Carbon 83 to 85% Hydrogen 10 to 14% Nitrogen 0.1 to 2% Oxygen 0.05 to 1.5% Sulphur 0.05 to 6.0% Metals < 0.1% 4 Crude Oil Origin 5 Crude Oil Reservoir Saturated porous reservoir rock Impermeable layers (e.g.
    [Show full text]
  • Fire from Ice
    SYSTEM FAILURE CASE STUDY NOVEMBER 2009 VOLUME 3 ISSUE 08 Fire From Ice February 16, 2007: Propane gas leaked from the McKee Refinery’s Propane Deasphalting Unit in Sunray, Texas. As winds carried the vapor cloud, a spark ignited the propane and the entire cloud burst into flames. The fire spread quickly, forcing an evacuation of the refinery as firefighters battled the blaze. Three workers suffered serious burns and the refinery was shut down for two months. Gas prices increased 9 cents per gallon in the west. BACKGROUND Industrial Overview hamrock Oil and Gas built the McKee Refinery outside Sunray, Texas in 1933. The refinery Sunderwent major modifications in the 1950s and 1990s. Valero acquired the refinery in 2001 and further Figure 1: The Refinery Fire upgraded it in 2004. By 2005, Valero was the largest refiner in North America, with eighteen refineries producing 3.3 million barrels per day. The McKee Refinery contributed WHAT HAPPENED? about 170,000 barrels per day to Valero’s overall production. In February 2007, a four-day cold front froze the water in the PROPANE DEASPHALTING (PDA) UNIT dead-leg pipe, causing it to expand, and crack the pipe. Ice One part of the refinery is the Propane Deasphalting (PDA) blocked the crack and prevented any propane from exiting. Unit, where high-pressure propane serves as a solvent to recover fuel and asphalt from crude oil residues. In 1992, February 16, 2007: Freezing water cracked an the refinery shut down a control station in the PDA unit. idle section of pipe causing a propane gas Rather than remove the idle subsection, or isolate it with slip 1 release.
    [Show full text]
  • Refinery Processing of Asphalt Cement
    Transportation Research Record 999 1 Refinery Processing of Asphalt Cement LUKE W. CORBETT ABSTRACT BOSCAN ARABIAN NIGERIA VENEZUELA HEAVY ___h!Qfil_ API Degrees ~ ~ 38.1 SP. Gravity .999 .886 .834 Crude petroleum varies in its makeup of dis­ % Sulfur 6-4 2.8 0.2 tillable fractions as well as in its bitumen content. Initially, it is separated by dis­ tillation with the major volume of asphalt Gasoline cement manufactured today prepared by Keroslne 1--~-<-.... straight reduction to grade. Other process­ Lt. Gas Oil ,___ .,. .,_ ing methods, such as solvent deasphalting, supercritical extraction, blending, and con­ Hv ~ Gas OHS tinuous air-blowing, supply fractions that are usable in asphalt cement within the limitations of specification compliance. Bitumen Crude oils may be arbitrarily classified Residuum according to their API (American Petroleum Institute) gravity, which is shown to relate to composition, physical properties, and the viscosity-penetration relationship of the asphalt cement therefrom. It is also related FIGURE 1 Make-up of crude petroleum. to distillation cut-points and how that crude might best be processed. The viscos­ ity-penetration relationship is shown to distillable overhead fractions with a high percent­ correlate with temperature susceptibility age of bitumen, whereas the high API gravity crudes and may be used directly in determining contain a relatively high percentage of overhead specification compliance. The viscosity fraction with a low percentage of bitumen. The low graded (Table 2) specifications as used in gravity crudes are generally referred to as heavy the United States are more rational than the crudes or as sour crudes if their sulfur content is penetration-softening point control systems high.
    [Show full text]
  • Environmental, Health, and Safety Guidelines for Petroleum Refining
    ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES PETROLEUM REFINING November 17, 2016 ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES FOR PETROLEUM REFINING INTRODUCTION 1. The Environmental, Health, and Safety (EHS) Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP).1 When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These industry sector EHS Guidelines are designed to be used together with the General EHS Guidelines document, which provides guidance to users on common EHS issues potentially applicable to all industry sectors. For complex projects, use of multiple industry sector guidelines may be necessary. A complete list of industry sector guidelines can be found at: www.ifc.org/ehsguidelines. 2. The EHS Guidelines contain the performance levels and measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of the EHS Guidelines to existing facilities may involve the establishment of site-specific targets, with an appropriate timetable for achieving them. 3. The applicability of the EHS Guidelines should be tailored to the hazards and risks established for each project on the basis of the results of an environmental assessment in which site-specific variables— such as host country context, assimilative capacity of the environment, and other project factors—are taken into account. The applicability of specific technical recommendations should be based on the professional opinion of qualified and experienced persons. 4. When host country regulations differ from the levels and measures presented in the EHS Guidelines, projects are expected to achieve whichever is more stringent.
    [Show full text]
  • Table 3. Capacity of Operable Petroleum Refineries by State As of January 1, 2021 (Barrels Per Stream Day, Except Where Noted)
    Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2021 (Barrels per Stream Day, Except Where Noted) Atmospheric Crude Oil Distillation Capacity Downstream Charge Capacity Barrels per Barrels per Thermal Cracking Calendar Day Stream Day Vacuum Delayed Other/Gas State/Refiner/Location Operating Idle Operating Idle Distillation Coking Fluid Coking Visbreaking Oil Alabama......................................................... 139,600 0 145,600 0 54,000 34,000 0 0 0 Goodway Refining LLC ....................................................................................................................................................................................................Atmore 4,100 0 5,000 0 0 0 0 0 0 Hunt Refining Co ....................................................................................................................................................................................................Tuscaloosa 48,000 0 50,000 0 25,000 34,000 0 0 0 Shell Chemical LP ....................................................................................................................................................................................................Saraland 87,500 0 90,600 0 29,000 0 0 0 0 Alaska......................................................... 164,200 0 178,500 0 26,000 0 0 0 0 ConocoPhillips Alaska Inc ....................................................................................................................................................................................................Prudhoe
    [Show full text]
  • 5.1 Petroleum Refining1
    5.1 Petroleum Refining1 5.1.1 General Description The petroleum refining industry converts crude oil into more than 2500 refined products, including liquefied petroleum gas, gasoline, kerosene, aviation fuel, diesel fuel, fuel oils, lubricating oils, and feedstocks for the petrochemical industry. Petroleum refinery activities start with receipt of crude for storage at the refinery, include all petroleum handling and refining operations, and they terminate with storage preparatory to shipping the refined products from the refinery. The petroleum refining industry employs a wide variety of processes. A refinery’s processing flow scheme is largely determined by the composition of the crude oil feedstock and the chosen slate of petroleum products. The example refinery flow scheme presented in Figure 5.1-1 shows the general processing arrangement used by refineries in the United States for major refinery processes. The arrangement of these processes will vary among refineries, and few, if any, employ all of these processes. Petroleum refining processes having direct emission sources are presented on the figure in bold-line boxes. Listed below are 5 categories of general refinery processes and associated operations: 1. Separation processes a. Atmospheric distillation b. Vacuum distillation c. Light ends recovery (gas processing) 2. Petroleum conversion processes a. Cracking (thermal and catalytic) b. Reforming c. Alkylation d. Polymerization e. Isomerization f. Coking g. Visbreaking 3. Petroleum treating processes a. Hydrodesulfurization b. Hydrotreating c. Chemical sweetening d. Acid gas removal e. Deasphalting 4. Feedstock and product handling a. Storage b. Blending c. Loading d. Unloading 5. Auxiliary facilities a. Boilers b. Waste water treatment c. Hydrogen production d.
    [Show full text]
  • Sources of Propane Consumed in California
    ANL-20/73 Sources of Propane Consumed in California Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by U Chicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and Technical Information. Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandria, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected] Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI): U.S. Department of Energy Office of Scientific and Technical Information P. O. B o x 6 2 Oak Ridge, TN 37831-0062 www.osti.gov Phone: (865) 576-8401 Fax: (865) 576-5728 Email: [email protected] Disclaimer This report was prepared as an account of work sponsored by the Western Propane Gas Association. Neither the United States Government nor any agency thereof, nor U Chicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • TSD Petroleum Refinery 01-22-09
    September 8, 2008 TECHNICAL SUPPORT DOCUMENT FOR THE PETROLEUM REFINING SECTOR: PROPOSED RULE FOR MANDATORY REPORTING OF GREENHOUSE GASES Office of Air and Radiation U.S. Environmental Protection Agency September 8, 2008 CONTENTS 1. Industry Description...............................................................................................................3 2. Total Emissions....................................................................................................................11 3. Emission Sources.................................................................................................................12 3.1 Stationary Combustion Sources..................................................................................12 3.2 Flares.........................................................................................................................13 3.3 Catalytic Cracking Units.............................................................................................14 3.4 Catalytic Reforming Units..........................................................................................14 3.5 Fluid Coking Units.....................................................................................................15 3.6 Sulfur Recovery Vents................................................................................................15 3.7 Hydrogen Plants.........................................................................................................15 3.8 Fugitive Emission Sources..........................................................................................15
    [Show full text]