Biological Hydrogen Production from Lignocellulosic Biomass in an Up-Flow Anaerobic Sludge Blanket Reactor Using Mixed Microbial Cultures

Total Page:16

File Type:pdf, Size:1020Kb

Biological Hydrogen Production from Lignocellulosic Biomass in an Up-Flow Anaerobic Sludge Blanket Reactor Using Mixed Microbial Cultures University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2014 Biological hydrogen production from lignocellulosic biomass in an up-flow anaerobic sludge blanket reactor using mixed microbial cultures Sathyanarayanan Sevilimedu Veeravalli University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Sevilimedu Veeravalli, Sathyanarayanan, "Biological hydrogen production from lignocellulosic biomass in an up-flow anaerobic sludge blanket reactor using mixed microbial cultures" (2014). Electronic Theses and Dissertations. 5088. https://scholar.uwindsor.ca/etd/5088 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. BIOLOGICAL HYDROGEN PRODUCTION FROM LIGNOCELLULOSIC BIOMASS IN AN UP-FLOW ANAEROBIC SLUDGE BLANKET REACTOR USING MIXED MICROBIAL CULTURES By Sathyanarayanan Sevilimedu Veeravalli A Dissertation Submitted to the Faculty of Graduate Studies through the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2014 © 2014 Sathyanarayanan Sevilimedu Veeravalli Biological Hydrogen Production From Lignocellulosic Biomass in an Up-flow Anaerobic Sludge Blanket Reactor using Mixed Microbial Cultures by Sathyanarayanan Sevilimedu Veeravalli APPROVED BY: ______________________________________________ B. Liao, External Examiner Lakehead University ______________________________________________ D. Heath The Great Lakes Institute for Environmental Research (GLIER) ______________________________________________ R. Seth Department of Civil & Environmental Engineering ______________________________________________ X. Xu Department of Civil & Environmental Engineering ____________________________________________ J. Lalman, Advisor Department of Civil and Environmental Engineering 8 May 2014 Declaration of Co-Authorship / Previous Publication I. Co-Authorship Declaration I hereby declare that this dissertation incorporates material that is the result of joint research: It incorporates the outcome of laboratory work, which was done by Dr. Subba Rao Chaganti under the supervision of Dr. Daniel D. Heath. The contribution of co-authors is limited to the provision of microbiological results which are included in Chapters 4, 5, 6.2, 6.3, 7 and 8 of the dissertation. In all cases, the experimental design was sent to Dr. Jerald A. Lalman by the author, based on his suggestion and recommendations made, the primary contributions, engineering laboratory work, data analysis and interpretation, were performed by the author. I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly acknowledged the contribution of other researchers to my dissertation, and have obtained written permission from each of the co-author(s) to include the above material(s) in my dissertation. I certify that, with the above qualifications, this dissertation, and the research to which it refers, is the product of my own work. II. Previous Publication: Chapter 6: This chapter was published under title ‘Effect of furans and linoleic acid on hydrogen production’ in Int J Hydrogen Energy , 2013, Volume 28, Issue 18, 12283-1293 (http://dx.doi.org/10.1016/j.ijhydene.2013.07.035 ). The initial draft was written by Mr. Veeravalli, for which Dr. Lalman provided significant changes for publication. The additional recommendations and suggestions given by Dr. Lalman were incorporated in the dissertation Chapter. I would like to thank Dr. Lalman, for his contribution. Chapter 7: This chapter was published under title ‘Optimizing hydrogen production from a switchgrass steam exploded liquor using a mixed anaerobic culture in an upflow iii anaerobic sludge blanket reactor’ in Int J Hydrogen Energy , 2014,Volume 39, Issue 7, 3160-3175 (http://dx.doi.org/10.1016/j.ijhydene.2013.12.057). The initial draft was written by Mr.Veeravalli, which was reviewed by Dr. Lalman and Dr. Chaganti who provided additional recommendations for the improvement. Dr. Lalman provided significant changes for the publication, the additional recommendations and suggestions given by Dr. Lalman were incorporated in the dissertation Chapter. I would like to thank Dr. Lalman and Dr. Chaganti, for their contribution. Chapter 8: This chapter was published under title ‘Fermentative H 2 production from a switchgrass steam exploded liquor fed to mixed anaerobic cultures: Effect of hydraulic retention time, linoleic acid and nitrogen sparging’ in Int J Hydrogen Energy , 2014 (In Press) (http://dx.doi.org/10.1016/j.ijhydene.2014.04.114). The initial draft was written by Mr. Veeravalli, which was reviewed by Dr. Lalman who provided additional recommendations for the improvement. Dr. Lalman provided significant changes for the publication, the additional recommendations and suggestions given by Dr. Lalman were incorporated in the dissertation Chapter. I would like to thank Dr. Lalman, for his contributions. I hereby certify that no other part of this dissertation has been published or submitted for publication. I declare that, to the best of my knowledge, my dissertation does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my dissertation, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. I declare that this is a true copy of my dissertation, including any final revisions, as approved by my dissertation committee and the Graduate Studies office, and that this dissertation has not been submitted for a higher degree to any other University or Institution. iv ABSTRACT The current research investigated hydrogen (H 2) production potential from lignocellulosic biomass via dark-fermentation in upflow sludge blanket reactors (UASBRs) using mixed anaerobic culture. The effects of hydraulic retention time (HRT) and organic loading rate (OLR), on H 2 production were examined under mesophilic conditions using linoleic acid (LA), as a methanogenic inhibitor. The dynamics of the microbial community were explored using terminal restriction fragment length polymorphism analysis. -1 Studies with pure glucose revealed that high H2 yield ≥ 2.1 mol mol glucose was obtained in control cultures operating at HRTs ranging from 12 h to 20 h with OLRs corresponding to 16 g L -1 d-1 and 10 g L -1 d-1, respectively. Species belonging to Clostridia was observed under these conditions. A further decrease with the HRT in -1 control cultures reduced H 2 yields up to 1.3 mol mol glucose, while addition of LA -1 showed improved H 2 yields ≥ 2.0 mol mol glucose at HRTs ranging from 6 to 12 h. -1 A maximum H 2 yield of 303±20 mL g COD was obtained from switchgrass-derived sugars under the optimal conditions (pH 5.0, HRT 10 h and 1.75 g L -1 of LA) determined using response surface methodology. The microbial characterization under optimal conditions showed dominance of Ruminococcaceae and Clostridiaceae with efficient suppression of methanogens. Nitrogen sparging of the UASBRs under the optimal conditions, increased H 2 yield by 15% in comparison to unsparged cultures. Sparging the bioreactors increased the abundance of Clostridium sp. and Bacillus sp. under LA treated conditions. -1 A stable H 2 yield of 274±40 mL g COD was obtained by the control cultures fed corn stover hydrolysate and operating at 18 and 24 g COD L -1 d-1, suggesting furans and phenols could serve as methanogenic inhibitors at low levels. The dominance of Clostridium sp., Flavobacterium sp. and Eubacterium sp., were observed under these H2- producing conditions. v The results from current research suggest that H 2 production from lignocellulosic biomass is feasible and could be applied on a large scale by maintaining proper operational conditions. vi DEDICATION I dedicate this dissertation work to my mother Geetha, other family members and friends. vii ACKNOWLEDGEMENTS First I would like to thank the ALMIGHTY, for imparting moral support towards the completion of my doctoral work at Windsor, Ontario, Canada. With a deep sense of gratitude, I wish to express my sincere thanks to my guide Dr. Jerald A. Lalman for his invaluable guidance at every stage of this research project and helping me get out the publications. I would like to acknowledge my committee member Dr. Rajesh Seth , Dr. Iris Xu and Dr. Daniel Heath for reviewing this dissertation and for their valuable comments and suggestion. In particular, I express my sincere thanks to Dr. Daniel D. Heath , Director, Great Lakes Institute of Environment and Research (GLIER), University of Windsor, for funding
Recommended publications
  • Syntrophism Among Prokaryotes Bernhard Schink1
    Syntrophism Among Prokaryotes Bernhard Schink1 . Alfons J. M. Stams2 1Department of Biology, University of Konstanz, Constance, Germany 2Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands Introduction: Concepts of Cooperation in Microbial Introduction: Concepts of Cooperation in Communities, Terminology . 471 Microbial Communities, Terminology Electron Flow in Methanogenic and Sulfate-Dependent The study of pure cultures in the laboratory has provided an Degradation . 472 amazingly diverse diorama of metabolic capacities among microorganisms and has established the basis for our under Energetic Aspects . 473 standing of key transformation processes in nature. Pure culture studies are also prerequisites for research in microbial biochem Degradation of Amino Acids . 474 istry and molecular biology. However, desire to understand how Influence of Methanogens . 475 microorganisms act in natural systems requires the realization Obligately Syntrophic Amino Acid Deamination . 475 that microorganisms do not usually occur as pure cultures out Syntrophic Arginine, Threonine, and Lysine there but that every single cell has to cooperate or compete with Fermentation . 475 other micro or macroorganisms. The pure culture is, with some Facultatively Syntrophic Growth with Amino Acids . 476 exceptions such as certain microbes in direct cooperation with Stickland Reaction Versus Methanogenesis . 477 higher organisms, a laboratory artifact. Information gained from the study of pure cultures can be transferred only with Syntrophic Degradation of Fermentation great caution to an understanding of the behavior of microbes in Intermediates . 477 natural communities. Rather, a detailed analysis of the abiotic Syntrophic Ethanol Oxidation . 477 and biotic life conditions at the microscale is needed for a correct Syntrophic Butyrate Oxidation . 478 assessment of the metabolic activities and requirements of Syntrophic Propionate Oxidation .
    [Show full text]
  • Microbial Communities Mediating Algal Detritus Turnover Under Anaerobic Conditions
    Microbial communities mediating algal detritus turnover under anaerobic conditions Jessica M. Morrison1,*, Chelsea L. Murphy1,*, Kristina Baker1, Richard M. Zamor2, Steve J. Nikolai2, Shawn Wilder3, Mostafa S. Elshahed1 and Noha H. Youssef1 1 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA 2 Grand River Dam Authority, Vinita, OK, USA 3 Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA * These authors contributed equally to this work. ABSTRACT Background. Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results. Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake
    [Show full text]
  • Gut Bacteria and Their Metabolites: Which One Is the Defendant for Colorectal Cancer?
    microorganisms Review Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer? 1,2, 1,2, 1,2 3 Samira Tarashi y, Seyed Davar Siadat y , Sara Ahmadi Badi , Mohammadreza Zali , Roberto Biassoni 4 , Mirco Ponzoni 5,* and Arfa Moshiri 3,5,* 1 Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; [email protected] (S.T.); [email protected] (S.D.S.); [email protected] (S.A.B.) 2 Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran 3 Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran; [email protected] 4 Laboratory of Molecular Medicine, IRCCS Instituto Giannina Gaslini, 16147 Genova, Italy; [email protected] 5 Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy * Correspondence: [email protected] (M.P.); [email protected] (A.M.) Equal first authors. y Received: 10 July 2019; Accepted: 4 September 2019; Published: 13 November 2019 Abstract: Colorectal cancer (CRC) is a worldwide health concern which requires efficient therapeutic strategies. The mechanisms underlying CRC remain an essential subject of investigations in the cancer biology field. The evaluation of human microbiota can be critical in this regard, since the disruption of the normal community of gut bacteria is an important issue in the development of CRC. However, several studies have already evaluated the different aspects of the association between microbiota and CRC. The current study aimed at reviewing and summarizing most of the studies on the modifications of gut bacteria detected in stool and tissue samples of CRC cases.
    [Show full text]
  • AVIAN GUT FUNCTION in HEALTH and DISEASE Poultry Science Symposium Series Volumes 1–28
    AVIAN GUT FUNCTION IN HEALTH AND DISEASE Poultry Science Symposium Series Volumes 1–28 1 Physiology of the Domestic Fowl* 2 Protein Utilization by Poultry* 3 Environmental Control in Poultry Production* 4 Egg Quality – a Study of the Hen’s Egg* 5 The Fertility and Hatchability of the Hen’s Egg* 6 i. Factors Affecting Egg Grading* ii. Aspects of Poultry Behaviour* 7 Poultry Disease and World Economy 8 Egg Formation and Production 9 Energy Requirements of Poultry* 10 Economic Factors Affecting Egg Production* 11 Digestion in the Fowl* 12 Growth and Poultry Meat Production* 13 Avian Coccidiosis* 14 Food Intake Regulation in Poultry* 15 Meat Quality in Poultry and Game Birds 16 Avian Immunology 17 Reproductive Biology of Poultry 18 Poultry Genetics and Breeding 19 Nutrient Requirements of Poultry and Nutritional Research* 20 Egg Quality – Current Problems and Recent Advances* 21 Recent Advances in Turkey Science 22 Avian Incubation 23 Bone Biology and Skeletal Disorders 24 Poultry Immunology* 25 Poultry Meat Science 26 Poultry Feedstuffs 27 Welfare of the Laying Hen 28 Avian Gut Function in Health and Disease *Out of print Volumes 1–24 were not published by CABI. Those still in print may be ordered from: Carfax Publishing Company PO Box 25, Abingdon, Oxfordshire OX14 3UE, UK Avian Gut Function in Health and Disease Poultry Science Symposium Series Volume Twenty-eight Edited by G.C. Perry Department of Clinical Veterinary Science, University of Bristol, UK CABI is a trading name of CAB International CABI Head Office CABI North American Office Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxon OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CAB International 2006.
    [Show full text]
  • The Effects of the Gut Microbiota on the Host Chromatin Landscape" (2017)
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2017 The ffecE ts of the Gut Microbiota on the Host Chromatin Landscape Nicholas Semenkovich Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biology Commons, Genetics Commons, and the Medicine and Health Sciences Commons Recommended Citation Semenkovich, Nicholas, "The Effects of the Gut Microbiota on the Host Chromatin Landscape" (2017). Arts & Sciences Electronic Theses and Dissertations. 1145. https://openscholarship.wustl.edu/art_sci_etds/1145 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Molecular Genetics and Genomics Dissertation Examination Committee: Jeffrey I. Gordon, Chair Barak Cohen Gautam Dantas Todd Druley Daniel Goldberg Ting Wang The Effects of the Gut Microbiota on the Host Chromatin Landscape by Nicholas Paul Semenkovich A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2017 St. Louis, Missouri © 2017,
    [Show full text]
  • EVALUATION of FACTORS THAT INFLUENCE MICROBIAL COMMUNITIES and METHANE PRODUCTION in COAL MICROCOSMS by Lisa K. Gallagher
    EVALUATION OF FACTORS THAT INFLUENCE MICROBIAL COMMUNITIES AND METHANE PRODUCTION IN COAL MICROCOSMS by Lisa K. Gallagher A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Environmental Science and Engineering) Golden, Colorado Date _____________ Signed: ___________________________________ Lisa K. Gallagher Signed: ___________________________________ Dr. Junko Munakata Marr Thesis Advisor Golden, Colorado Date _____________ Signed: ___________________________________ Dr. John E. McCray Department Head Civil and Environmental Engineering ii ABSTRACT Vast reserves of coal represent a largely untapped resource that can be used to produce methane gas, a cleaner energy alternative compared to burning oil or coal. The methane produced in subsurface coal seams, referred to as coalbed methane, represents an increasingly important source of domestic energy in the United States comprising approximately 10% of natural gas production. Biogenic coalbed methane is formed via the activity of microorganisms and contributes about 40% to the total amount of CBM produced in the world. Enhancement of biogenic coalbed methane has become an area of active research due to its potential impact on energy reserves as well as the positive environmental implications associated with its use. Enrichment cultures from coal were incubated and evaluated by DNA sequencing, qPCR analysis and gas chromatography to determine whether the presence of specific organisms was correlated to methane production and whether microbial community structure differed between productive and unproductive coal microcosms. Additionally, microcosm experiments were designed to assess how prior exposure of coal to oxygen might influence methane production and microbial community structure and dynamics.
    [Show full text]
  • Gut Microbiome Analysis in Adult Tropical Gars
    bioRxiv preprint doi: https://doi.org/10.1101/557629; this version posted February 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 GUT MICROBIOME ANALYSIS IN ADULT 2 TROPICAL GARS (Atractosteus tropicus) 3 Roberto Méndez-Pérez1†, Rodrigo García-López3,4†, J. Santiago Bautista-López1, Jorge F. Vázquez- 4 Castellanos3,4, Emyr S. Peña-Marín5, Rafael Martínez-García5, Verónica I. Domínguez-Rodríguez2, 5 Randy H. Adams-Schroeder2, Eduardo Baltierra-Trejo2,6, Carolina Melgar Valdés7, Andrés Moya3,4,, 6 Carlos A. Alvarez-González5, Rodolfo Gómez-Cruz1, 7 † Equal contribution 8 1 Biotech & Environmental Genomics and 2Biorremedation Laboratories. Academic Body Environmental 9 Sciences (CACIAM). Research Center for Conservation and Sustainable Use of Tropical Resources (CICART). 10 Biological Sciences Academic Division (DACBiol). Juárez Autonomous University of Tabasco State (UJAT), 11 Villahermosa, Tabasco, Mexico. 3 Department of Genomics and Health. Valencian Region Foundation for the 12 Promotion of Health and Biomedical Research (FISABIO), Valencia, Spain. 4 Integrative Systems Biology 13 Institute (I2Sysbio), University of Valencia, Valencia, Spain. 5 Tropical Aquaculture Laboratory. CICART- 14 DACBiol-UJAT, Villahermosa, Tabasco, Mexico. 6 CONACyT-UJAT. 7General Aquaculture Laboratory. 15 Multidisciplinary Academic Division of the Rivers (DAMRios)-UJAT. Tenosique, Tabasco, Mexico. 16 Corresponding authors: Rodolfo Gómez – [email protected], Andrés Moya – [email protected] 17 Abstract. Tropical gar (Atractosteus tropicus), is freshwater and estuarine fish that has inhabited 18 the Earth since the Mesozoic era, undergoing limited physiological variation ever since. This 19 omnivorous fish is endemic to southern Mexico and part of Central America.
    [Show full text]
  • Core Fecal Microbiota of Domesticated Herbivorous Ruminant, Hindgut Fermenters, and Monogastric Animals
    Received: 13 February 2017 | Revised: 22 May 2017 | Accepted: 25 May 2017 DOI: 10.1002/mbo3.509 ORIGINAL RESEARCH Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals Michelle M. O’ Donnell1,2 | Hugh M. B. Harris2 | R. Paul Ross1,2 | Paul W. O’Toole2 1Food Biosciences Department, Teagasc Food Research Centre, Cork, Ireland Abstract 2Department of Microbiology, University In this pilot study, we determined the core fecal microbiota composition and overall College Cork, Cork, Ireland microbiota diversity of domesticated herbivorous animals of three digestion types: Correspondence hindgut fermenters, ruminants, and monogastrics. The 42 animals representing 10 ani- Paul W. O’Toole, Department of Microbiology, mal species were housed on a single farm in Ireland and all the large herbivores con- University College Cork, Cork, Ireland Email: [email protected] sumed similar feed, harmonizing two of the environmental factors that influence the microbiota. Similar to other mammals, the fecal microbiota of all these animals was Funding information Science Foundation Ireland, Grant/Award dominated by the Firmicutes and Bacteroidetes phyla. The fecal microbiota spanning all Number: Principal Investigator Award 07/ digestion types comprised 42% of the genera identified. Host phylogeny and, to a IN.1/B1780 lesser extent, digestion type determined the microbiota diversity in these domesti- cated herbivores. This pilot study forms a platform for future studies into the micro- biota of nonbovine and nonequine domesticated herbivorous animals. KEYWORDS diet, herbivore, hindgut, microbiota, monogastric, ruminant 1 | INTRODUCTION Ley, Lozupone, Hamady, Knight, and Gordon (2008) compared the gut microbiota of over 100 animals to that of humans to assess the com- Animal digestion types are classified as herbivores (ruminants and position of the vertebrate microbiota.
    [Show full text]
  • Diet and Exercise Orthogonally Alter the Gut Microbiome and Reveal Independent Associations with Anxiety and Cognition
    Kang et al. Molecular Neurodegeneration 2014, 9:36 http://www.molecularneurodegeneration.com/content/9/1/36 RESEARCH ARTICLE Open Access Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition Silvia S Kang1, Patricio R Jeraldo2, Aishe Kurti1, Margret E Berg Miller3,4, Marc D Cook3,4, Keith Whitlock3,4, Nigel Goldenfeld5,6, Jeffrey A Woods3,4, Bryan A White5, Nicholas Chia2* and John D Fryer1,7,8* Abstract Background: The ingestion of a high-fat diet (HFD) and the resulting obese state can exert a multitude of stressors on the individual including anxiety and cognitive dysfunction. Though many studies have shown that exercise can alleviate the negative consequences of a HFD using metabolic readouts such as insulin and glucose, a paucity of well-controlled rodent studies have been published on HFD and exercise interactions with regard to behavioral outcomes. This is a critical issue since some individuals assume that HFD-induced behavioral problems such as anxiety and cognitive dysfunction can simply be exercised away. To investigate this, we analyzed mice fed a normal diet (ND), ND with exercise, HFD diet, or HFD with exercise. Results: We found that mice on a HFD had robust anxiety phenotypes but this was not rescued by exercise. Conversely, exercise increased cognitive abilities but this was not impacted by the HFD. Given the importance of the gut microbiome in shaping the host state, we used 16S rRNA hypervariable tag sequencing to profile our cohorts and found that HFD massively reshaped the gut microbial community in agreement with numerous published studies.
    [Show full text]
  • An Integrated Investigation of the Microbial Communities Underpinning Biogas Production in Anaerobic Digestion Systems DISSERTAT
    An Integrated Investigation of the Microbial Communities Underpinning Biogas Production in Anaerobic Digestion Systems DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Michael Christopher Nelson Graduate Program in Environmental Science The Ohio State University 2011 Dissertation Committee: Dr. Mark Morrison, Advisor Dr. Zhongtang Yu, Co-Advisor Dr. Olli Tuovinen Copyrighted by Michael Christopher Nelson 2011 ABSTRACT Anaerobic digestion (AD) has been used for decades as a waste processing technology, however its ability to serve as a potential renewable energy resource has spurred increased attention into how the microbial communities in AD systems carryout the digestion process and what factors influence their activity. Previous analyses of the microbial diversity in AD were generally based on community analysis techniques such as DGGE or small sequencing libraries. Additionally, conflicting results have been reported regarding the diversity and abundance of Bacteria and Archaea in AD systems. The overall objective of my research was to further describe the microbial consortia that participate in the AD process as well as to investigate the patterns of their diversity. In the first study an initial baseline of the microbial diversity participating in the AD process is established using a meta-analysis approach. This removed the bias inherent in individual studies, allowing the global diversity of microbes in AD systems to be determined. The major bacterial groups were identified as the phyla Chloroflexi, Proteobacteria, Firmicutes, and Bacteroidetes, while the largest archaeal groups were the genus Methanosaeta and an as yet uncultured clade known as WSA2/ArcI.
    [Show full text]
  • Sheflin Colostate 0053A 13800.Pdf (2.156Mb)
    DISSERTATION SUPPLEMENTING POWDERED HIGH-FIBER FOODS TO ALTER GUT MICROBIAL METABOLISM FOR COLORECTAL CANCER PREVENTION Submitted by Amy Marie Sheflin Department of Food Science and Human Nutrition In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2016 Doctoral Committee: Advisor: Tiffany Weir Corey Broeckling Chris Melby Michael Pagliassotti Copyright by Amy Marie Sheflin 2016 All Rights Reserved ABSTRACT SUPPLEMENTING POWDERED HIGH-FIBER FOODS TO ALTER GUT MICROBIAL METABOLISM FOR COLORECTAL CANCER PREVENTION Trillions of microorganisms populate the human digestive tract and enhance immunity, improve digestion and inhibit pathogens when in healthy balance. However, a disruption of gut community balance is associated with a number of diseases including colorectal cancer (CRC). The purpose of this research was to investigate supplementation with two high-fiber foods, heat stabilized rice bran (SRB) and cooked navy bean powder (NBP), for potential to favorably alter the intestinal environment for CRC prevention. Study 1 aimed to assess differences in stool microbiota and associated metabolites in healthy individuals versus those diagnosed with CRC. Next, two pilot dietary interventions were undertaken (Study 2 and 3), one in healthy individuals and another in CRC survivors. Both pilot studies provided diets supplemented with SRB or NBP or macronutrient matched control foods and changes in stool microbiota and associated metabolites were assessed at baseline and after 2 and 4 weeks. The collective body of this research supports the hypothesis that gut microbiota and their metabolites differ with respect to CRC and that intervention with SRB or NBP can alter this profile.
    [Show full text]