Sheflin Colostate 0053A 13800.Pdf (2.156Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Sheflin Colostate 0053A 13800.Pdf (2.156Mb) DISSERTATION SUPPLEMENTING POWDERED HIGH-FIBER FOODS TO ALTER GUT MICROBIAL METABOLISM FOR COLORECTAL CANCER PREVENTION Submitted by Amy Marie Sheflin Department of Food Science and Human Nutrition In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2016 Doctoral Committee: Advisor: Tiffany Weir Corey Broeckling Chris Melby Michael Pagliassotti Copyright by Amy Marie Sheflin 2016 All Rights Reserved ABSTRACT SUPPLEMENTING POWDERED HIGH-FIBER FOODS TO ALTER GUT MICROBIAL METABOLISM FOR COLORECTAL CANCER PREVENTION Trillions of microorganisms populate the human digestive tract and enhance immunity, improve digestion and inhibit pathogens when in healthy balance. However, a disruption of gut community balance is associated with a number of diseases including colorectal cancer (CRC). The purpose of this research was to investigate supplementation with two high-fiber foods, heat stabilized rice bran (SRB) and cooked navy bean powder (NBP), for potential to favorably alter the intestinal environment for CRC prevention. Study 1 aimed to assess differences in stool microbiota and associated metabolites in healthy individuals versus those diagnosed with CRC. Next, two pilot dietary interventions were undertaken (Study 2 and 3), one in healthy individuals and another in CRC survivors. Both pilot studies provided diets supplemented with SRB or NBP or macronutrient matched control foods and changes in stool microbiota and associated metabolites were assessed at baseline and after 2 and 4 weeks. The collective body of this research supports the hypothesis that gut microbiota and their metabolites differ with respect to CRC and that intervention with SRB or NBP can alter this profile. Despite similar increases in dietary fiber intake, SRB induced more significant change to gut microbiota and metabolites possibly due to differing chemical composition of plant fibers. Relative to NBP, SRB is rich in arabinoxylans, which structurally mimic the protective mucins lining the intestinal surface. Changes in both microbiota and metabolites observed with SRB supplementation are consistent with enrichment of glycan-foraging bacteria able to switch ii between dietary glycans (arabinoxylans in this case) and host glycans for energy. Acetate and propionate, potentially beneficial byproducts of microbial fermentation of glycans and other fiber components, increased at 2 weeks in CRC survivors. However, some of the observed changes did not persist at 4 weeks and further research is necessary to determine if more lasting changes are possible with these dietary interventions, as well as whether these altered microbial/metabolite profiles are associated with reduced risk of CRC incidence and recurrence. iii ACKNOWLEDGEMENTS In the middle of our campus at Colorado State University is a larger-than-life metal sculpture complete with a stone bench that is engraved with this quote from Sir Isaac Newton, “If I have seen further than others, it is by standing upon the shoulders of giants.” I have been fortunate to have many giants to lead the way for me during my graduate education. First, I would like to thank my advisor, Dr. Tiffany Weir. I truly had a Most Excellent Advisor in Dr. Weir, because she has provided the perfect balance of sage-like advice and freedom to explore my own ideas and hunches. I will dearly miss our many exciting brainstorming sessions, troubleshooting huddles, and a-ha! moments that have been part of my being on her research team. I am also grateful for my ‘Dream Team’ Graduate Committee: Drs. Corey Broeckling, Chris Melby, and Mike Pagliassotti. Each of them saw greatness in me at times that I could not see it in myself and through their vision I kept moving forward in spite of my own doubts. Each of these individuals also provided resources and guidance indispensible to my finishing this PhD program, I will be forever grateful to each of them for all they have given to me. If there is one person that I am impossibly more grateful for than even these amazing advisors it is my one-of-a-kind, beyond-compassionate husband, John. John has tolerated more than any husband should have to tolerate in the name of science including long-winded conversations about the world-saving superpowers of bacteria and tear-filled grievances of science gone wrong. He is my emotional rock, my best friend, and my soul mate. John, thank you for making it possible for me to chase my unicorns. You earned this PhD every bit as much as I did and if I could give it to you, in honor, I would. iv Johnny and Elwood, I know having a mother in graduate school for many of your formative years has not been easy. There were events that were missed, details overlooked, and long days waiting at the lab for Mom to finish her work. You both truly know about balancing needs in a family even when yours aren’t at the top and you learned it at a young age. I am so proud of both of you and if you learn anything from my graduate school experience I hope it is to believe in your own potential and to stretch yourself to contribute to the world in the way that you love the most. To my parents, I know you haven’t always understood what drives my wild wanderings and I’m sure it was hard for you to see me under so much stress as I’ve challenged myself over many years. You are the largest giants of all, because you loved me and encouraged me and valued me before anyone else did. It’s because of you that I am not afraid of anything and think I can do all the exciting things in this wide world that I might want to try. It’s a rare gift you gave me and I thank you for it. I am incredibly blessed with a wide support net of incredibly inspiring and talented family and friends that are too many to list by name (but I think you know who you are). Some live near and others farther away, some are older than me and some much, much younger, and some I see often, some only rarely. Yet, each of you has given me something unique to fuel me along this journey that it’s impossible to put into words. To all of you dear kindred spirits - thank you. I also have some more formal thanks to make. This research was supported with funding from National Institutes of Health (NIHR21CA161472), the Colorado Agriculture Experiment Station, and International Life Sciences Institute. I would also like to thank CSU Proteomics and Metabolomics Facility for their support for this work and time spent educating me in v understanding metabolomics data. I also appreciate the CSU nutrition science group, Daniel K. Manter (USDA-ARS), and fellow students in the Weir lab for camaraderie and helpful comments on data interpretation/analysis. vi TABLE OF CONTENTS ABSTRACT ................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................... iv CHAPTER 1: LITERATURE REVIEW ......................................................................................... 1 Importance of whole grains and legumes in food security and human health ............................. 1 Health benefits of fiber consumption ........................................................................................... 2 Selection of two high-fiber foods to be used for the current research ......................................... 4 Nutrient and phytochemical composition of stabilized rice bran (SRB) ..................................... 5 Heat stabilization of rice bran ...................................................................................................... 7 Nutrient and phytochemical composition of cooked navy bean powder (NBP) .......................... 8 Gut microbiota, diet and disease ................................................................................................ 10 Research Objectives ................................................................................................................... 11 Figures ........................................................................................................................................ 14 CHAPTER 2: SPECIFIC TOPIC REVIEW CANCER-PROMOTING EFFECTS OF MICROBIAL DYSBIOSIS ............................................................................................... 15 Summary .................................................................................................................................... 15 Introduction ................................................................................................................................ 16 Proposed mechanisms for microbiome involvement in colorectal cancer ................................. 17 Microorganisms associated with tumor occurrence and formation in CRC .............................. 20 Microbiome Involvement in Gastric and Esophageal Cancers .................................................. 22 Microbiome Involvement in Other Forms of Cancer ................................................................. 24 Role of microbial metabolites in cancer development and progression .................................... 26 Conclusion .................................................................................................................................. 28 Figures ........................................................................................................................................ 30 vii CHAPTER 3: STOOL
Recommended publications
  • Microbes from Sequencing 16S Ribosomal DNA and Internal Transcribed Spacer 2 Cancan Cheng†, Jingjing Sun†, Fen Zheng, Kuihai Wu and Yongyu Rui*
    Cheng et al. Annals of Clinical Microbiology and Antimicrobials 2014, 13:1 http://www.ann-clinmicrob.com/content/13/1/1 RESEARCH Open Access Molecular identification of clinical “difficult-to-identify” microbes from sequencing 16S ribosomal DNA and internal transcribed spacer 2 Cancan Cheng†, Jingjing Sun†, Fen Zheng, Kuihai Wu and Yongyu Rui* Abstract Background: Clinical microbiology laboratories have to accurately identify clinical microbes. However, some isolates are difficult to identify by the automated biochemical text platforms, which are called “difficult-to-identify” microbes in this study. Therefore, the ability of 16S ribosomal DNA (16S rDNA) and internal transcribed spacer 2 (ITS2) sequencing to identify these “difficult-to-identify” bacteria and fungi was assessed in this study. Methods: Samples obtained from a teaching hospital over the past three years were examined. The 16S rDNA of four standard strains, 18 clinical common isolates, and 47 “difficult-to-identify” clinical bacteria were amplified by PCR and sequenced. The ITS2 of eight standard strains and 31 “difficult-to-identify” clinical fungi were also amplified by PCR and sequenced. The sequences of 16S rDNA and ITS2 were compared to reference data available in GenBank by using the BLASTN program. These microbes were identified according to the percentage of similarity to reference sequences of strains in GenBank. Results: The results from molecular sequencing methods correlated well with automated microbiological identification systems for common clinical isolates. Sequencing results of the standard strains were consistent with their known phenotype. Overall, 47 “difficult-to-identify” clinical bacteria were identified as 35 genera or species by sequence analysis (with 10 of these identified isolates first reported in clinical specimens in China and two first identified in the international literature).
    [Show full text]
  • Integrating Taxonomic, Functional, and Strain-Level Profiling of Diverse
    TOOLS AND RESOURCES Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 Francesco Beghini1†, Lauren J McIver2†, Aitor Blanco-Mı´guez1, Leonard Dubois1, Francesco Asnicar1, Sagun Maharjan2,3, Ana Mailyan2,3, Paolo Manghi1, Matthias Scholz4, Andrew Maltez Thomas1, Mireia Valles-Colomer1, George Weingart2,3, Yancong Zhang2,3, Moreno Zolfo1, Curtis Huttenhower2,3*, Eric A Franzosa2,3*, Nicola Segata1,5* 1Department CIBIO, University of Trento, Trento, Italy; 2Harvard T.H. Chan School of Public Health, Boston, United States; 3The Broad Institute of MIT and Harvard, Cambridge, United States; 4Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all’Adige, Italy; 5IEO, European Institute of Oncology IRCCS, Milan, Italy Abstract Culture-independent analyses of microbial communities have progressed dramatically in the last decade, particularly due to advances in methods for biological profiling via shotgun metagenomics. Opportunities for improvement continue to accelerate, with greater access to multi-omics, microbial reference genomes, and strain-level diversity. To leverage these, we present bioBakery 3, a set of integrated, improved methods for taxonomic, strain-level, functional, and *For correspondence: phylogenetic profiling of metagenomes newly developed to build on the largest set of reference [email protected] (CH); sequences now available. Compared to current alternatives, MetaPhlAn 3 increases the accuracy of [email protected] (EAF); taxonomic profiling, and HUMAnN 3 improves that of functional potential and activity. These [email protected] (NS) methods detected novel disease-microbiome links in applications to CRC (1262 metagenomes) and †These authors contributed IBD (1635 metagenomes and 817 metatranscriptomes).
    [Show full text]
  • Supplementary Figure Legends for Rands Et Al. 2019
    Supplementary Figure legends for Rands et al. 2019 Figure S1: Display of all 485 prophage genome maps predicted from Gram-Negative Firmicutes. Each horizontal line corresponds to an individual prophage shown to scale and color-coded for annotated phage genes according to the key displayed in the right- side Box. The left vertical Bar indicates the Bacterial host in a colour code. Figure S2: Projection of virome sequences from 183 human stool samples on A. Acidaminococcus intestini RYC-MR95, and B. Veillonella parvula UTDB1-3. The first panel shows the read coverage (Y-axis) across the complete Bacterial genome sequence (X-axis; with bp coordinates). Predicted prophage regions are marked with red triangles and magnified in the suBsequent panels. Virome reads projected outside of prophage prediction are listed in Table S4. Figure S3: The same display of virome sequences projected onto Bacterial genomes as in Figure S2, But for two different Negativicute species: A. Dialister Marseille, and B. Negativicoccus massiliensis. For non-phage peak annotations, see Table S4. Figure S4: Gene flanking analysis for the lysis module from all prophages predicted in all the different Bacterial clades (Table S2), a total of 3,462 prophages. The lysis module is generally located next to the tail module in Firmicute prophages, But adjacent to the packaging (terminase) module in Escherichia phages. 1 Figure S5: Candidate Mu-like prophage in the Negativicute Propionispora vibrioides. Phage-related genes (arrows indicate transcription direction) are coloured and show characteristics of Mu-like genome organization. Figure S6: The genome maps of Negativicute prophages harbouring candidate antiBiotic resistance genes MBL (top three Veillonella prophages) and tet(32) (bottom Selenomonas prophage remnant); excludes the ACI-1 prophage harbouring example characterised previously (Rands et al., 2018).
    [Show full text]
  • Syntrophism Among Prokaryotes Bernhard Schink1
    Syntrophism Among Prokaryotes Bernhard Schink1 . Alfons J. M. Stams2 1Department of Biology, University of Konstanz, Constance, Germany 2Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands Introduction: Concepts of Cooperation in Microbial Introduction: Concepts of Cooperation in Communities, Terminology . 471 Microbial Communities, Terminology Electron Flow in Methanogenic and Sulfate-Dependent The study of pure cultures in the laboratory has provided an Degradation . 472 amazingly diverse diorama of metabolic capacities among microorganisms and has established the basis for our under Energetic Aspects . 473 standing of key transformation processes in nature. Pure culture studies are also prerequisites for research in microbial biochem Degradation of Amino Acids . 474 istry and molecular biology. However, desire to understand how Influence of Methanogens . 475 microorganisms act in natural systems requires the realization Obligately Syntrophic Amino Acid Deamination . 475 that microorganisms do not usually occur as pure cultures out Syntrophic Arginine, Threonine, and Lysine there but that every single cell has to cooperate or compete with Fermentation . 475 other micro or macroorganisms. The pure culture is, with some Facultatively Syntrophic Growth with Amino Acids . 476 exceptions such as certain microbes in direct cooperation with Stickland Reaction Versus Methanogenesis . 477 higher organisms, a laboratory artifact. Information gained from the study of pure cultures can be transferred only with Syntrophic Degradation of Fermentation great caution to an understanding of the behavior of microbes in Intermediates . 477 natural communities. Rather, a detailed analysis of the abiotic Syntrophic Ethanol Oxidation . 477 and biotic life conditions at the microscale is needed for a correct Syntrophic Butyrate Oxidation . 478 assessment of the metabolic activities and requirements of Syntrophic Propionate Oxidation .
    [Show full text]
  • Impact of the Post-Transplant Period and Lifestyle Diseases on Human Gut Microbiota in Kidney Graft Recipients
    microorganisms Article Impact of the Post-Transplant Period and Lifestyle Diseases on Human Gut Microbiota in Kidney Graft Recipients Nessrine Souai 1,2 , Oumaima Zidi 1,2 , Amor Mosbah 1, Imen Kosai 3, Jameleddine El Manaa 3, Naima Bel Mokhtar 4, Elias Asimakis 4 , Panagiota Stathopoulou 4 , Ameur Cherif 1 , George Tsiamis 4 and Soumaya Kouidhi 1,* 1 Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana 2020, Tunisia; [email protected] (N.S.); [email protected] (O.Z.); [email protected] (A.M.); [email protected] (A.C.) 2 Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Farhat Hachad Universitary Campus, Rommana 1068, Tunis, Tunisia 3 Unit of Organ Transplant Military Training Hospital, Mont Fleury 1008, Tunis, Tunisia; [email protected] (I.K.); [email protected] (J.E.M.) 4 Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece; [email protected] (N.B.M.); [email protected] (E.A.); [email protected] (P.S.); [email protected] (G.T.) * Correspondence: [email protected]; Tel.: +216-95-694-135 Received: 8 September 2020; Accepted: 30 October 2020; Published: 4 November 2020 Abstract: Gaining long-term graft function and patient life quality remain critical challenges following kidney transplantation. Advances in immunology, gnotobiotics, and culture-independent molecular techniques have provided growing insights into the complex relationship of the microbiome and the host. However, little is known about the over time-shift of the gut microbiota in the context of kidney transplantation and its impact on both graft and health stability.
    [Show full text]
  • Modulation of the Intestinal Microbiota and the Metabolites Produced by the Administration of Ice Cream and a Dietary Supplement Containing the Same Probiotics
    Downloaded from British Journal of Nutrition (2020), 124, 57–68 doi:10.1017/S0007114520000896 https://www.cambridge.org/core © The Authors 2020 Modulation of the intestinal microbiota and the metabolites produced by the administration of ice cream and a dietary supplement containing the same probiotics . IP address: 170.106.202.58 Vivian Cristina da Cruz Rodrigues1, Ana Luiza Rocha Faria Duque2, Luciana de Carvalho Fino1, Fernando Moreira Simabuco1, Adilson Sartoratto3, Lucélia Cabral4, Melline Fontes Noronha5, Katia Sivieri2 and Adriane Elisabete Costa Antunes1* , on 1 School of Applied Sciences (FCA), State University of Campinas, Limeira, SP 13484-350, Brazil 28 Sep 2021 at 07:32:53 2Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil 3Division of Organic and Pharmaceutical Chemistry, Pluridisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), State University of Campinas, Paulínia, SP 13148-218, Brazil 4Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970, Brazil , subject to the Cambridge Core terms of use, available at 5Genome Research Division, Research Informatics Core, Research Resource Center, University of Illinois at Chicago, Chicago, IL 60612, USA (Submitted 7 November 2019 – Final revision received 13 January 2020 – Accepted 21 February 2020 – First published online 6 March 2020) Abstract The aim of the present work was to compare the capacity to modulate the intestinal microbiota and the production of metabolites after 14 d administration of a commercial dietary supplement and a manufactured ice cream, both containing the same quantity of inulin and the same viable counts of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12, using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) model.
    [Show full text]
  • Heritability of Oral Microbiota and Immune Responses to Oral Bacteria Microorganisms, 8(8): 1126
    http://www.diva-portal.org This is the published version of a paper published in . Citation for the original published paper (version of record): Esberg, A., Haworth, S., Kuja-Halkola, R., Magnusson, P K., Johansson, I. (2020) Heritability of Oral Microbiota and Immune Responses to Oral Bacteria Microorganisms, 8(8): 1126 https://doi.org/10.3390/microorganisms8081126 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-175379 microorganisms Article Heritability of Oral Microbiota and Immune Responses to Oral Bacteria Anders Esberg 1,* , Simon Haworth 2,3 , Ralf Kuja-Halkola 4 , Patrik K.E. Magnusson 4 and Ingegerd Johansson 1 1 Department of Odontology, Umeå University, 901 87 Umeå, Sweden; [email protected] 2 Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; [email protected] 3 Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK 4 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; [email protected] (R.K.-H.); [email protected] (P.K.M.) * Correspondence: [email protected] Received: 2 July 2020; Accepted: 25 July 2020; Published: 27 July 2020 Abstract: Maintaining a symbiotic oral microbiota is essential for oral and dental health, and host genetic factors may affect the composition or function of the oral microbiota through a range of possible mechanisms, including immune pathways. The study included 836 Swedish twins divided into separate groups of adolescents (n = 418) and unrelated adults (n = 418).
    [Show full text]
  • Microbial Communities Mediating Algal Detritus Turnover Under Anaerobic Conditions
    Microbial communities mediating algal detritus turnover under anaerobic conditions Jessica M. Morrison1,*, Chelsea L. Murphy1,*, Kristina Baker1, Richard M. Zamor2, Steve J. Nikolai2, Shawn Wilder3, Mostafa S. Elshahed1 and Noha H. Youssef1 1 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA 2 Grand River Dam Authority, Vinita, OK, USA 3 Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA * These authors contributed equally to this work. ABSTRACT Background. Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results. Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake
    [Show full text]
  • Effect of Oral Consumption of Capsules Containing Lactobacillus Paracasei
    FEMS Microbiology Ecology, 96, 2020, fiaa084 doi: 10.1093/femsec/fiaa084 Advance Access Publication Date: 8 May 2020 Research Article RESEARCH ARTICLE Effect of oral consumption of capsules containing Lactobacillus paracasei LPC-S01 on the vaginal microbiota of healthy adult women: a randomized, placebo-controlled, double-blind crossover study Ranjan Koirala1,†, Giorgio Gargari1,†, Stefania Arioli1, Valentina Taverniti1, Walter Fiore1,2,ElenaGrossi3, Gaia Maria Anelli3, Irene Cetin3 and Simone Guglielmetti1,*,‡ 1Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Luigi Mangiagalli 25, 20133, Milan, Italy, 2Sofar S.p.A., Via Firenze 40, 20060, Trezzano Rosa (MI), Trezzano Rosa, Italy and 3Department of Biomedical and Clinical Sciences, Unit of Obstetrics and Gynecology, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milan, Italy ∗Corresponding author: Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Luigi Mangiagalli 25, 20133 Milan, Italy. Tel: +39 0250319136; E-mail: [email protected] One sentence summary: This study aims to assess whether a lactobacillus of vaginal origin can benefit the eubosis of the vaginal mucosa of childbearing age woman upon oral intake. †Both authors contributed equally to this work. Editor: Leluo Guan ‡Simone Guglielmetti, http://orcid.org/0000-0002-8673-8190 ABSTRACT Oral consumption of probiotics is practical and can be an effective solution to preserve vaginal eubiosis. Here, we studied the ability of orally administered Lactobacillus paracasei LPC-S01 (DSM 26760) to affect the composition of the vaginal microbiota and colonize the vaginal mucosa in nondiseased adult women.
    [Show full text]
  • Exploring Bacterial Diversity of Endodontic Microbiota by Cloning and Sequencing 16S Rrna Adriana C
    Clinical Research Exploring Bacterial Diversity of Endodontic Microbiota by Cloning and Sequencing 16S rRNA Adriana C. Ribeiro, PhD, * Fl avia Matarazzo, PhD, * Marcelo Faveri, PhD, † Denise M. Zezell, PhD, ‡ and Marcia P.A. Mayer, PhD * Abstract Introduction: The characterization of microbial commu- lthough the bacterial community in the oral cavity may comprise over 700 species nities infecting the endodontic system in each clinical Aor taxa (1) , only a limited number of species find proper conditions to colonize the condition may help on the establishment of a correct root canal system (2) . Most data on the endodontic microbiota were obtained by prognosis and distinct strategies of treatment. The culture approaches (3–5) , but culture-dependent methods grossly underestimate purpose of this study was to determine the bacterial the extent of bacterial diversity in polymicrobial infections (6) . Furthermore, pheno- diversity in primary endodontic infections by 16S typic profiles variations and methodological bias also limit the conclusions drawn ribosomal-RNA (rRNA) sequence analysis. Methods: from culture studies (7) . Samples from root canals of untreated asymptomatic In the last decade, 16S rRNA analysis became a powerful phylogenetic framework teeth (n = 12) exhibiting periapical lesions were obtained, for the identification of fastidious, slow-growing, or not-yet-cultivable bacteria, which 16S rRNA bacterial genomic libraries were constructed makes a high proportion of the microorganisms in the oral cavity (8–10) . Therefore, and sequenced, and bacterial diversity was estimated. it is likely that currently unknown species are present in disease infections, emerging Results: A total of 489 clones were analyzed (mean, new concepts in the pathogenesis of several human infections and redirecting 40.7 Æ 8.0 clones per sample).
    [Show full text]
  • Epidemics and Pandemics, Disinfectants and Antiseptics Photo by Kari Shea on Unsplash More! SIMB Enews Banner Advertisement
    SIMB News News Magazine of the Society for Industrial Microbiology and Biotechnology July/August/September 2020 V.69 N.3 • www.simbhq.org Epidemics and Pandemics, Disinfectants and Antiseptics Photo by Kari Shea on Unsplash SIMB eNEWS ADVERTISING OPPORTUNITY Online advertising is an effective way to reach your target audience and should be part of your marketing strategy. Get in front of the customers you want to reach with a SIMB eNews banner advertisement. Contact SIMB to learn more! contents news 80 NEWSWORTHY SIMB News Melanie Mormile | Editor-in-Chief feature Elisabeth Elder | Associate Editor Stephanie Gleason | Associate Editor 84 EPIDEMICS AND PANDEMICS, DISINFECTANTS AND ANTISEPTICS: Kristien Mortelmans | Associate Editor FROM ANTIQUITY UNTIL THE PRESENT CORONAVIRUS SARS- Vanessa Nepomuceno | Associate Editor COV-2 PANDEMIC DESIGN & PRODUCTION members Katherine Devins | Production Manager 78 LETTER FROM SIMB PAST PRESIDENT BOARD OF DIRECTORS 99 SIMB RESOLUTIONS President Steve Decker 101 2020–2021 SIMB BOARD OF DIRECTORS President-elect Noel Fong 107 ETHICS COMMITTEE Past President Jan Westpheling 109 SIMB COMMITTEE LISTING Secretary Elisabeth Elder Treasurer Laura Jarboe book review Directors Katy Kao 102 MICROBIOTA CURRENT RESEARCH AND EMERGING TRENDS Priti Pharkya Tiffany Rau in every issue Rob Donofrio 74 CORPORATE MEMBERS HEADQUARTERS STAFF 75 LETTER FROM THE EDITOR-IN-CHIEF Christine Lowe | Executive Director Jennifer Johnson | Director of Member Services 77 SIMB STRATEGIC PLAN Tina Hockaday | Meeting Coordinator 104 SIMB MEETING CALENDAR Suzannah Citrenbaum | Web Manager Esperanza Montesa | Accountant 111 SIMB CORPORATE MEMBERSHIP APPLICATION EDITORIAL CORRESPONDENCE Melanie R. Mormile Email: [email protected] ADVERTISING For information regarding rates, contact SIMB News On the cover 3929 Old Lee Highway, Suite 92A With masks over their faces, members of Fairfax, VA 22030-2421 the American Red Cross remove a victim P: 703-691-3357 ext 30 F:703-691-7991 of the 1918 Spanish Flu from a house at Email: [email protected] Etzel and Page Avenues, St.
    [Show full text]
  • Gut Bacteria and Their Metabolites: Which One Is the Defendant for Colorectal Cancer?
    microorganisms Review Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer? 1,2, 1,2, 1,2 3 Samira Tarashi y, Seyed Davar Siadat y , Sara Ahmadi Badi , Mohammadreza Zali , Roberto Biassoni 4 , Mirco Ponzoni 5,* and Arfa Moshiri 3,5,* 1 Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; [email protected] (S.T.); [email protected] (S.D.S.); [email protected] (S.A.B.) 2 Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran 3 Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran; [email protected] 4 Laboratory of Molecular Medicine, IRCCS Instituto Giannina Gaslini, 16147 Genova, Italy; [email protected] 5 Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy * Correspondence: [email protected] (M.P.); [email protected] (A.M.) Equal first authors. y Received: 10 July 2019; Accepted: 4 September 2019; Published: 13 November 2019 Abstract: Colorectal cancer (CRC) is a worldwide health concern which requires efficient therapeutic strategies. The mechanisms underlying CRC remain an essential subject of investigations in the cancer biology field. The evaluation of human microbiota can be critical in this regard, since the disruption of the normal community of gut bacteria is an important issue in the development of CRC. However, several studies have already evaluated the different aspects of the association between microbiota and CRC. The current study aimed at reviewing and summarizing most of the studies on the modifications of gut bacteria detected in stool and tissue samples of CRC cases.
    [Show full text]