Study of Launcher Recovery Systems
Total Page:16
File Type:pdf, Size:1020Kb
Study of Launcher Recovery Systems Mauro Rojas Sigala Space Engineering, master's level (120 credits) 2020 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering MASTER’S THESIS A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN CYBERNETICS AND ROBOTICS AT CZECH TECHNICAL UNIVERSITY (CVUT) AND FOR THE DEGREE OF JOINT MASTER PROGRAM IN SPACE SCIENCE AND TECHNOLOGY - SPACEMASTER (LTU). STUDY OF LAUNCHER RECOVERY SYSTEMS AUTHOR Mauro Eusebio Rojas Sigala Czech Technical University MSc in Cybernetics & Robotics Lulea University of Technology Joint MSc in Space Science & Technology SUPERVISOR Élcio Jeronimo de Oliveira EXAMINERS Martin Hlinovsky Kristian Hengster Movric Anita Enmark August 14, 2020 MASTER‘S THESIS ASSIGNMENT I. Personal and study details Student's name: Rojas Sigala Mauro Eusebio Personal ID number: 492129 Faculty / Institute: Faculty of Electrical Engineering Department / Institute: Department of Control Engineering Study program: Cybernetics and Robotics Branch of study: Cybernetics and Robotics II. Master’s thesis details Master’s thesis title in English: Study of launcher recovery systems Master’s thesis title in Czech: Studie systémů obnovy nosných raket Guidelines: The objective of this work will be gathering relevant information on recovery technology of launchers and how this technology can be applied for cubesats and the impact this development can have in the space sector. 1) Research and compare various existing launcher recovery technologies. 2) Study compatibility of launcher recovery vehicles with cubesats 3) Develop an example draft for prototype propulsion with recovery system 4) Study the impact and importance of developed concepts in the space sector. Bibliography / sources: [1] Patrick Gallais, “Atmospheric Re-Entry Vehicle Mechanics,” Springer-Verlag Berlin Heidelberg 2007 [2] Mohammad Sadraey, "Unmanned Aircraft Design: A Review of Fundamentals," in Unmanned Aircraft Design: A Review of Fundamentals, Morgan & Claypool, 2017 Name and workplace of master’s thesis supervisor: Dr. Élcio Jeronimo de Oliveira, Lulea University of Technology -E10- Spacecampus Kiruna, Sweden Name and workplace of second master’s thesis supervisor or consultant: doc. Kristian Hengster-Movric, Ph.D., Department of Control Engineering, FEE Date of master’s thesis assignment: 14.02.2020 Deadline for master's thesis submission: 14.08.2020 Assignment valid until: by the end of winter semester 2021/2022 ___________________________ ___________________________ ___________________________ Dr. Élcio Jeronimo de Oliveira prof. Ing. Michael Šebek, DrSc. prof. Mgr. Petr Páta, Ph.D. Supervisor’s signature Head of department’s signature Dean’s signature III. Assignment receipt The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others, with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references. Date of assignment receipt Student’s signature CVUT-CZ-ZDP-2015.1 © ČVUT v Praze, Design: ČVUT v Praze, VIC Table of Contents FIGURE LIST .......................................................................................................................................................... 4 DECLARATION ...................................................................................................................................................... 5 ACKNOWLEDGMENT ............................................................................................................................................ 6 ABSTRACT ............................................................................................................................................................ 7 1. INTRODUCTION ........................................................................................................................................... 8 2. LITERATURE REVIEW ........................................................................................................................................ 9 2.1 RECOVERY AND REUSE TECHNIQUES ............................................................................................................................ 9 Retro-Propulsion .................................................................................................................................................. 9 Return Flight of Orbital or Suborbital Vehicles ................................................................................................... 10 Recovery of Launch Vehicle Components ........................................................................................................... 10 Landing Impact Attenuation .............................................................................................................................. 10 Mid-Air Recovery ................................................................................................................................................ 10 2.2 REUSABLE LAUNCHER VEHICLES FROM COMPANIES ...................................................................................................... 11 DLR CALLISTO ..................................................................................................................................................... 11 SPACE X .............................................................................................................................................................. 11 BLUE ORIGIN ...................................................................................................................................................... 11 RLV PROTOYPES ................................................................................................................................................. 12 2.3 SELECTION OF REUSABILITY METHOD ......................................................................................................................... 13 Proposed Engines ............................................................................................................................................... 13 2.4 PROPULSION THEORY ............................................................................................................................................. 14 Steps for designing a Launch System ................................................................................................................. 15 3.0 METHODOLOGY ........................................................................................................................................... 17 3.1 FIRST ITERATION OF PROTOTYPE DESIGN .................................................................................................................... 17 Change of Velocity Calculation ........................................................................................................................... 17 Design of Rocket first iteration ........................................................................................................................... 18 Propellant ........................................................................................................................................................... 18 Dimensions ......................................................................................................................................................... 21 Results ................................................................................................................................................................ 24 Chamber Length Second Correction ................................................................................................................... 26 Design stage 2 .................................................................................................................................................... 26 Design Stage 1 .................................................................................................................................................... 27 3.2 REUSABILITY SYSTEMS CONCEPTS, AND PARAMETRIZATION FOR PROTOTYPE ..................................................................... 29 Nitrogen Cold Gas Attitude Control System ....................................................................................................... 29 Deployable legs .................................................................................................................................................. 30 Approximation of Cost Deployable Landing Legs ............................................................................................... 30 Hypersonic Grid Fins ........................................................................................................................................... 31 Approximation of cost for the Hypersonic Grid Fins ........................................................................................... 33 Reentry Burn ...................................................................................................................................................... 33 Re-entry Burn Time of First Landing ................................................................................................................... 34 3.3 STAGE MASS OPTMIZATION .............................................................................................................................