Mild Dehydration, Vasopressin and the Kidney: Animal and Human Studies

Total Page:16

File Type:pdf, Size:1020Kb

Mild Dehydration, Vasopressin and the Kidney: Animal and Human Studies European Journal of Clinical Nutrition (2003) 57, Suppl 2, S39–S46 & 2003 Nature Publishing Group All rights reserved 0954-3007/03 $25.00 www.nature.com/ejcn ORIGINAL COMMUNICATION Mild dehydration, vasopressin and the kidney: animal and human studies N Bouby1* and S Fernandes1 1INSERM U 367, Paris, France Water balance depends essentially on fluid intake and urine excretion. Mild dehydration and the consequent hypertonicity of the extracellular fluid induce an increase in vasopressin secretion, thus stimulating urine concentrating processes and the feeling of thirst. The osmotic threshold for the release of vasopressin is lower than that for thirst and also shows appreciable individual variation. Sustained high levels of vasopressin and low hydration induce morphological and functional changes in the kidney. However, they could also be risk factors in several renal disorders, such as chronic renal failure, diabetic nephropathy and salt- sensitive hypertension. European Journal of Clinical Nutrition (2003) 57, Suppl 2, S39–S46. doi:10.1038/sj.ejcn.1601900 Keywords: water intake; dehydration; vasopressin; kidney Introduction temperature, angiotensin (Berl & Robertson, 2000). Increase Water balance depends essentially on two parameters: thirst in plasma osmolality is also the main stimulus for thirst. that influences input, and urine excretion that determines However, the desire to drink is triggered by an osmotic level output. In humans and most other mammals, the rate at considerably higher than that leading to the secretion of which the kidneys excrete free water is regulated primarily vasopressin (Robertson, 1984). AVP release begins at an by antidiuretic hormone or vasopressin. Vasopressin is the average plasma osmolality of about 280 mosm/kg H2O, first hormone to be secreted during dehydration. Changes in whereas thirst is not perceived until plasma osmolality the plasma level of other hormones are also observed reaches about 290 mosm/kg H2O. Thus, during normal living (increases in atrial natriuretic peptide and catecholamines, conditions, vasopressin is constantly present in the blood, fall in aldosterone), but they occur later and in response to whereas the perception of thirst is intermittent. The severe dehydration. sensitivity and threshold of the osmoregulatory systems Vasopressin is synthesized in specific neurons in the show wide inter-individual variability in both humans and supraoptic and paraventricular nuclei and stored in the rats (Zerbe et al, 1991; Bankir, 2001). These individual neurohypophysis. Under physiological conditions, the most differences are constant over prolonged periods and appear important stimulus of vasopressin secretion is the effective to be determined mainly by genetic factors (Zerbe et al, osmotic pressure of the plasma. Increase in plasma osmol- 1991). Since the osmoregulatory mechanisms are not equally ality is related physiologically to dehydration and a change sensitive in all healthy individuals, one could expect some in water balance, and can be induced experimentally by subjects to tend to be continuously in a state of slight infusing hypertonic solutions. Vasopressin secretion is also dehydration, and to have a high level of vasopressin to influenced by hemodynamic factors (reduction of blood compensate. pressure or blood volume), emetic factors (nausea, drugs Three vasopressin receptors have been identified and such as nicotine or morphine) and factors such as stress, cloned, V2 with cAMP as second messenger, and V1a and V1b with calcium as second messenger. The antidiuretic *Correspondence: N Bouby, INSERM U 367, 17 rue du Fer a` Moulin, 75005 action of vasopressin depends mainly on V2 receptor- Paris, France. E-mail: [email protected] mediated effects in the renal collecting duct. This minire- Guarantor: N Bouby view addresses the functional impact on the kidney of mild Contributors: NB was primarily responsible for the writing of the dehydration and activation of V2 receptor of vasopressin, in paper. SF took part in the acquisition of some experimental data and preparation of the paper. health and disease. Animal and human studies N Bouby and S Fernandes S40 Renal consequences of a high level of vasopressin a in a healthy subject 2.0 In healthy subjects, high vasopressin levels induce morpho- Cortex Medulla logical and functional changes in the kidney resulting in greater urine-concentrating activity. Urine concentration 1.5 depends on the water permeability of the collecting duct and on the presence of a corticomedullary osmotic gradient. 1.0 Vasopressin contributes to the urine-concentrating mechan- ism by influencing the permeability to water and urea, and AQP2 mRNA sodium transport in the distal part of the tubule. 0.5 At least six types of water channel proteins (aquaporins, AQP) are known to be expressed in the kidney. Among these, AQP2, localized in the luminal membrane of the principal 0 cells of the collecting duct, is the chief target for the short- term regulation of the collecting duct permeability by b vasopressin. AQP2, and also AQP3 and AQP4 (basolateral 7 ) n water channels of the collecting duct), are regulated via the i 6 m / long-term effects of chronic dehydration that change the g 5 n total abundance of these three channels in collecting duct ( e cells (Figure 1a) (Yamamoto et al, 1995; Ishibashi et al, 1997; t 4 a Murillo-Carretero et al, 1999; Kwon et al, 2001) (the effect on r 2 3 AQP3 is only partially mediated by stimulating vasopressin P Q 2 V2 receptors). As urinary AQP2 excretion is very low A - r=0.67, p<0.006 compared to the total AQP2 in the kidney (E3%), it may u 1 ∆ not reflect intrarenal changes in the protein. Nevertheless, a 0 positive correlation has been found recently between the 0 12345 6 maximum changes in the urinary excretion of AQP2 and the ∆ AVP (pmol/l) maximum changes in plasma vasopressin in healthy subjects Figure 1 Influence of water intake on the expression of aquaporin et al (Pedersen , 2001) (Figure 1b). 2. (a) Relative mRNA levels of AQP2 in the renal cortex and medulla The driving force behind the water flux and urine of rats maintained for 2.5 days on different water intake levels concentration is an osmotic corticomedullary gradient that resulting in urine osmolality values of 906, 3140 and 380 mosm/kg is built-up as a result of the reabsorption of sodium in the H2O in control (open bars), thirsty (solid bars) and highly hydrated (hatched bars) rats, respectively, adapted from Murillo-Carretero et al thick ascending limb and the accumulation of urea in the (1999). (b) Correlation between the maximum changes in plasma inner medulla. An increase in the abundance of the vasopressin (DAVP) and maximum changes in urinary AQP2 (Du- bumetamide-sensitive Na–K–2Cl cotransporter protein in AQP2) rate in healthy subject during water deprivation for 24 h, the thick ascending limb has been observed in the rat kidney reproduced from Pedersen et al (2001). in response to either chronic water restriction or chronic infusion of a vasopressin V2 receptor agonist (Kim et al, 1999). However, this direct effect of vasopressin on the In addition to its effects on water and urea permeability, reabsorption of sodium in the thick ascending limb occurs vasopressin also improves urine concentration by stimulat- only in some rodents. In humans, this nephron segment is ing the reabsorption of sodium from the connecting tubule devoid of vasopressin-sensitive adenylate cyclase activity and the collecting duct, which promotes additional iso- (Morel et al, 1987). Facilitated urea transporters are respon- osmotic water reabsorption. This effect involves the activa- sible for accumulation of urea in the renal inner medulla. tion of the amiloride-sensitive epithelial sodium channel Three major urea transporters have been cloned and located (ENaC). It has been shown recently that vasopressin not only in different structures of the kidney: UT-A1, UT-A2 and UT- has an acute impact on ENaC-dependent sodium transport B1 (Figure 2a). In rats and human beings, UT-A1 is located in (Tomita et al, 1985; Verrey, 1994; Blot-Chabaud et al, 1996; the terminal part of the inner medullary collecting duct and Djelidi et al, 1997) but also has a delayed effect on the accounts for the vasopressin-dependent increase in the urea expression of b and gENaC subunits, in the kidney, by permeability of this segment (Knepper & Star, 1990; activating the V2 receptors (Ecelbarger et al, 2000; Nicco et al, Bagnasco et al, 2001). Like the aquaporins, chronic vaso- 2001) (Figure 3). This effect is accompanied by a significant pressin infusion affects not only UT-A1 but also another urea increase in sodium and water transport (Nicco et al, 2001) transporter, UT-A2, located in the thin descending limb of (Figure 4), suggesting associated changes in functional ENaC Henle’s loop (Bankir & Trinh-Trang-Tan, 2000) (Figure 2b). membrane proteins. Interestingly, an increase in the mRNA This effect on UT-A2 must be indirect because there are no expression of b and gENaC subunits has also been observed vasopressin receptors in the thin descending limb. in the lung of rats with either chronic water restriction or European Journal of Clinical Nutrition Animal and human studies N Bouby and S Fernandes S41 a a *** 4 3 2 ** ENaC/ GAPDH 1 A 0 α β γ b 2.5 ** 2.0 *** *** * 1.5 b 1.0 Urine osmolality (mosm/kg H20) ENaC/ GAPDH 440 918 2800 3300 0.5 0.0 α β γ UT-A2 IS Figure 3 Influence of vasopressin on the mRNA level of the three subunits (a, b, g) of the epithelial sodium channel (ENaC) in the renal cortex. (a) Brattleboro rats chronically treated with a V2 agonist of vasopressin (n¼6, solid bars) or untreated (n¼5, open bars). (b) Sprague–Dawley rats chronically treated with a V2 agonist of UT-A1 vasopressin (n¼6, solid bars), with restricted drinking water (n¼6, UT-A2 hatched bars) or untreated (n¼6, open bars).
Recommended publications
  • Renal Effects of Atrial Natriuretic Peptide Infusion in Young and Adult ~Ats'
    003 1-3998/88/2403-0333$02.00/0 PEDIATRIC RESEARCH Vol. 24, No. 3, 1988 Copyright O 1988 International Pediatric Research Foundation, Inc. Printed in U.S.A. Renal Effects of Atrial Natriuretic Peptide Infusion in Young and Adult ~ats' ROBERT L. CHEVALIER, R. ARIEL GOMEZ, ROBERT M. CAREY, MICHAEL J. PEACH, AND JOEL M. LINDEN WITH THE TECHNICAL ASSISTANCE OF CATHERINE E. JONES, NANCY V. RAGSDALE, AND BARBARA THORNHILL Departments of Pediatrics [R.L.C., A.R.G., C.E.J., B. T.], Internal Medicine [R.M.C., J.M. L., N. V.R.], Pharmacology [M.J.P.], and Physiology [J.M.L.], University of Virginia, School of Medicine, Charlottesville, Virginia 22908 ABSTRAm. The immature kidney appears to be less GFR, glomerular filtration rate responsive to atrial natriuretic peptide (ANP) than the MAP, mean arterial pressure mature kidney. It has been proposed that this difference UeC~pV,urinary cGMP excretion accounts for the limited ability of the young animal to UN,V, urinary sodium excretion excrete a sodium load. To delineate the effects of age on the renal response to exogenous ANP, Sprague-Dawley rats were anesthetized for study at 31-32 days of age, 35- 41 days of age, and adulthod. Synthetic rat A* was infused intravenously for 20 min at increasing doses rang- By comparison to the adult kidney, the immature kidney ing from 0.1 to 0.8 pg/kg/min, and mean arterial pressure, responds to volume expansion with a more limited diuresis and glomerular filtration rate, plasma ANP concentration, natriuresis (I). A number of factors have been implicated to urine flow rate, and urine sodium excretion were measured explain this phenomenon in the neonatal kidney, including a at each dose.
    [Show full text]
  • Urate-2- C Transport in the Rat Nephron
    Urate-2-14C transport in the rat nephron Ronald A. Kramp, … , William E. Lassiter, Carl W. Gottschalk J Clin Invest. 1971;50(1):35-48. https://doi.org/10.1172/JCI106482. Research Article Intrarenal transport of urate-2-14C was studied in anesthetized rats using the microinjection technic. During saline diuresis, small volumes of urate-2-14C (0.24-0.48 mM) and inulin-3H were injected into surface proximal and distal convoluted tubules, and ureteral urine was collected serially. Total (74-96%) and direct (57-84%) urate recovery increased significantly the more distal the puncture site. Delayed recovery (±20%) remained approximately the same regardless of localization of the microinjection. After proximal injections, total and direct recoveries of urate-2-14C were significantly higher in rats treated with probenecid, pyrazinoate, or PAH than during saline diuresis alone, while the excretion rates were comparable after distal injection. Delayed recovery was not altered by drug administration. The decreased proximal reabsorption of urate is presumably due to an effect of the drugs on the luminal membrane of the nephron. For perfusion at high urate concentrations, nonradioactive urate was added to the injectate (0.89-1.78 mM). Urate-2-14C recovery was almost complete and there was no delayed excretion, demonstrating saturation kinetics. These findings are compatible with a carrier-mediated mechanism for urate transport probably located at the luminal border of the proximal tubular epithelium. No definitive evidence for urate secretion was found in these studies. Find the latest version: https://jci.me/106482/pdf Urate-2-14C Transport in the Rat Nephron RONALD A.
    [Show full text]
  • Atrial Natriuretic Peptide and Blood Volume During Red Cell Transfusion
    Archives ofDisease in Childhood 1991; 66: 395-397 395 Atrial natriuretic peptide and blood volume during Arch Dis Child: first published as 10.1136/adc.66.4_Spec_No.395 on 1 April 1991. Downloaded from red cell transfusion in preterm infants W Rascher, N Lingens, M Bald, 0 Linderkamp Abstract 1710 g (range 650-2660). All infants were in Because raised plasma concentrations of good clinical condition. Four were mechanically atrial natriuretic peptide indicate volume ventilated through an intratracheal tube. None expansion, we studied the effect of red cell had renal disease, shock, sepsis or were being transfusion on plasma atrial natriuretic pep- treated with diuretics. The volume of trans- tide concentration, packed cell volume, and fused red cells was calculated to raise the packed intravascular volume in eight preterm infants. cell volume to 0-45 (haemoglobin to 155 g/l). Red cell transfusion increased red cell mass, The transfusion rate averaged 0-05 (0 01) packed cell volume and erythrocyte count, ml/min/kg. but decreased plasma volume. Total blood Before and one hour after red cell transfusion volume, plasma atrial natriuretic peptide con- blood was drawn in EDTA coated tubes (1 5-2 centration, urine flow rate, and urinary ml) for determination of plasma atrial natriur- sodium excretion did not change. etic peptide and haemoglobin concentrations We conclude that a slow transfusion of packed cell volume, haemoglobin F concentra- less than 10 ml red cells/kg body weight does tion, and plasma osmolality. In addition 0 5 ml not cause volume expansion with subsequent blood was drawn in plastic tubes for measure- atrial natriuretic peptide release thereby ment of serum sodium, potassium and creati- affecting the cardiovascular system.
    [Show full text]
  • Hypernatremia Due to Urea-Induced Osmotic Diuresis: Physiology at The
    Educational Forum Hypernatremia due to Urea-Induced Osmotic Diuresis: Physiology at the Bedside Sonali Vadi, Kenneth Yim1 Private Practitioner, Mumbai, Maharashtra, India, 1Director of Inpatient Hemodialysis‑Davita Dialysis, University of Maryland Midtown Campus, Maryland, USA Abstract Hypernatremia secondary to urea‑induced solute diuresis is due to the renal excretion of electrolyte‑free water. This concept is explained here step‑wise physiologically with the help of a clinical vignette. Keywords: Electrolyte‑free water clearance, hypernatremia, hypertonicity, osmotic diuresis, urea BACKGROUND Her initial laboratory data are presented in Table 1 and electrolyte trends during the hospital stay are summarized in Equation between solutes and water determines serum sodium Table 2. levels. Increased urinary solute load in the form of urea nitrogen leads to urea‑induced osmotic diuresis with increased Acute issues at hand free water loss and ensued hypernatremia. Diagnostic 1. What is the cause of her renal dysfunction? CLINICAL VIGNETTE 2. Why is she hypernatremic? A 70‑year‑old woman was found unconscious at home. As Treatment per her family members, she complained of abdominal pain 1. Should she be urgently dialyzed? and diarrhea for 1 week’s duration. Her baseline mental 2. How should her hypernatremia be managed? status was noted to be alert and oriented three days prior to presentation. Her medical history was significant for DISCUSSION hypertension and osteoarthritis. There was no prior history of renal dysfunction. She has been a heavy alcohol drinker. This complex pathological situation has been de‑coded Her medications included ibuprofen and cyclobenzaprine step‑wise in a question format, with answers to each in two for osteoarthritis; lisinopril and felodipine for hypertension; parts.
    [Show full text]
  • The Use of Selected Urine Chemistries in the Diagnosis of Kidney Disorders
    CJASN ePress. Published on January 9, 2019 as doi: 10.2215/CJN.10330818 The Use of Selected Urine Chemistries in the Diagnosis of Kidney Disorders Biff F. Palmer1 and Deborah Joy Clegg2 Abstract Urinary chemistries vary widely in both health and disease and are affected by diet, volume status, medications, and disease states. When properly examined, these tests provide important insight into the mechanism and therapy of 1Division of various clinical disorders that are first detected by abnormalities in plasma chemistries. These tests cannot be Nephrology, interpreted in isolation, but instead require knowledge of key clinical information, such as medications, physical Department of examination, and plasma chemistries, to include kidney function. When used appropriately and with knowledge of Medicine, University of Texas Southwestern limitations, urine chemistries can provide important insight into the pathophysiology and treatment of a wide Medical Center, variety of disorders. Dallas, Texas; and Clin J Am Soc Nephrol 14: ccc–ccc, 2019. doi: https://doi.org/10.2215/CJN.10330818 2Department of Internal Medicine, University of California, Los Introduction values ,15 mEq/L. On the other hand, volume Angeles School of Urine chemistries can provide valuable insight into a expansion suppresses effector mechanisms and stimu- Medicine, Los wide range of clinical conditions. These tests are often lates release of atrial natriuretic peptide, leading to a Angeles, California underutilized because of the difficulty many physi- reduction in sodium reabsorption, causing urinary so- Correspondence: cians find in their interpretation. Whereas a basic dium concentration to be high. Thus, the urine sodium fi Dr. Biff F. Palmer, metabolic pro le obtained from a blood sample has concentrationisanindirectmeasureofvolumestatusand Department of Internal well defined normal values, there are no such values reflects the integrity of the kidney to regulate that status.
    [Show full text]
  • Atrial Natriuretic Peptide and Furosemide Effects on Hydraulic Pressure in the Renal Papilla
    Kidney International, Vol. 34 (1988), pp. 36—42 Atrial natriuretic peptide and furosemide effects on hydraulic pressure in the renal papilla RAMON E. MENDEZ, B. RENTZ DUNN, JULIA L. TROY, and BARRY M. BRENNER The Harvard Center for the Study of Kidney Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA Atrial natriuretic peptide and furosemide effects on hydraulic pressure pre-renal arterial clamping prior to, or during, ANP administra- in the renal papilla. Atrial peptides (ANP) have been shown to prefer- tion has been shown to markedly blunt or abolish the natriuresis entially increase blood flow tojuxtamedullary nephrons and to augment vasa recta blood flow. To determine the effect of this alteration in[1,9,4]. Since clamping also prevented an ANP-induced rise in intrarenal blood flow distribution on pressure relationships in innerGFR, the enhancement of GFR by ANP was felt to be a primary medullary structures and their significance as a determinant of ANP- factor responsible for its natriuretic effect [11. However, several induced natriuresis, we measured hydraulic pressures in vascular and studies have demonstrated increases in renal sodium excretion tubule elements of the renal papilla exposed in Munich-Wistar rats in in the absence of discernable changes in whole kidney hemo- vivo during an euvolemic baseline period and again during an experi- mental period. Rats in Group 1 received intravenous infusion of rANP dynamics [6, 7, 10]. On the other hand, an additional hemody- [4-27], administered as a 4 sg/kg prime and 0.5 gIkg/min continuous namic mechanism which might be operative lies in the renal infusion, and were maintained euvolemic by plasma replacement.vasodilatory properties of ANP, in particular its ability to Infusion of ANP resulted in significant natriuresis, diuresis and increase increase vasa recta blood flow [11, 10].
    [Show full text]
  • Effect of Flow Rate and the Extracellular Fluid Volume on Proximal Urate and Water Absorption
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. /7(1980), pp. 155 -16/ Effect of flow rate and the extracellular fluid volume on proximal urate and water absorption HARRY 0. SENEKJIAN, THOMAS F. KNIGHT, STEVEN C. SANSOM, and EDWARD J. WEINMAN Rena! Section, Department of Internal Medicine, Veterans Ad,ninist ration Medical Center and Baylor College of Medicine, Houston, Texas Effect of flow rate and the extracellular fluid volume on proximal laboratory. It has been demonstrated previously urate and water absorption. The in vivo microperfusion tech- nique was used to examine the effect of variations in tubular flow that the state of hydration of the extracellular fluid rate and the extracellular fluid volume on [2-14C]-urate and water volume (ECV) affects urate transport [1—4]. Spe- absorption in the proximal tubule of the rat. In nondiuretic ani- cifically, expansion of the ECV with isotonic saline mals, fractional urate absorption was highest at the lowest per- fusion rate examined and decreased as the rate of perfusion was resulted in an increase in urate excretion and an in- increased. Increasing the initial concentration of urate in the per- creased recovery of radioactive urate microinjected fusion solution had no effect on the fractional absorption of directly into the proximal tubule [1]. By analogy to urate. Fractional water absorption was also inversely related to the rate of perfusion. Expansion of the extracellular fluid volume the known changes in sodium reabsorption induced with isotonic saline resulted in rates of urate absorption similar by expansion of the ECV, we suggested a possible to control values at any given microperfusion rate.
    [Show full text]
  • Management of Severe Hyponatremia: Infusion of Hypertonic Saline and Desmopressin Or Infusion of Vasopressin Inhibitors? Antonios H
    Marshall University Marshall Digital Scholar Biochemistry and Microbiology Faculty Research 2014 Management of Severe Hyponatremia: Infusion of Hypertonic Saline and Desmopressin or Infusion of Vasopressin Inhibitors? Antonios H. Tzamaloukas MD Joseph I. Shapiro MD Marshall University, [email protected] Dominic S. Raj MD Glen H. Murata MD Deepak Malhotra MD, PhD See next page for additional authors Follow this and additional works at: http://mds.marshall.edu/sm_bm Part of the Medical Sciences Commons, and the Medical Specialties Commons Recommended Citation Tzamaloukas AH, Shapiro JI, Raj DS, Murata GH, Glew RH, Malhotra D. Management of severe hyponatremia: infusion of hypertonic saline and desmopressin or infusion of vasopressin inhibitors? The American Journal of the Medical Sciences, 2014;348(5):432-9. This Article is brought to you for free and open access by the Faculty Research at Marshall Digital Scholar. It has been accepted for inclusion in Biochemistry and Microbiology by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Authors Antonios H. Tzamaloukas MD; Joseph I. Shapiro MD; Dominic S. Raj MD; Glen H. Murata MD; Deepak Malhotra MD, PhD; and Robert H. Glew PhD This article is available at Marshall Digital Scholar: http://mds.marshall.edu/sm_bm/214 REVIEW ARTICLE Management of Severe Hyponatremia: Infusion of Hypertonic Saline and Desmopressin or Infusion of Vasopressin Inhibitors? Antonios H. Tzamaloukas, MD, Joseph I. Shapiro, MD, Dominic S. Raj, MD, Glen H. Murata, MD, Robert H. Glew, PhD and Deepak Malhotra, MD, PhD 7 Abstract: Rapid correction of severe hyponatremia carries the risk of of osmotic demyelination syndrome is high.
    [Show full text]
  • 00-Mcqs from Books.Pdf
    Physiology Team 436 Renal Block MCQs File 1 (from books) ُ ُ ُ (وﻗ ِﻞ ا ْﻋ َﻤﻠﻮا َﻓ َﺴﯿَ َﺮى ا ﱠ 0ُ َﻋ َﻤﻠَﻜ ْﻢ ُ ْ َو َر ُﺳﻮﻟ ُﻪ َواﻟ ُﻤ ْﺆ ِﻣ ُﻨﻮ َن ) ﺻﺪق ﷲ اﻟﻌﻈﯿﻢ Done by: Reviewed by: Laila Mathkour Lulwah Alshiha دﻋﻮاﺗﻜﻢ ﻟﻨﺎ ﺑﺎﻟﺘﻮﻓﯿﻖ 1 This work was done by students, so if there are any mistakes please inform us. MCQ’S for renal block (include all lecture) Questions 1 and 2 Use the following clinical laboratory test results for questions 1 and 2: Urine flow rate = 1 ml/min Urine inulin concentration = 100 mg/ml Plasma inulin concentration = 2 mg/ml Urine urea concentration = 50 mg/ml Plasma urea concentration = 2.5 mg/ml 1. What is the glomerular filtration rate (GFR)? A. 25ml/min B. 50 ml/min C. 100 ml/min D. 125ml/min E. None of the above 2. What is the net urea reabsorption rate? A. 0 mg/min B. 25 mg/min C. 50 mg/min D. 75 mg/min E. 100 mg/min 3. Which of the following solutions when infused intravenously would result in an increase in extracellular fluid volume, a decrease in intracellular fluid volume, and an increase in total body water after osmotic equilibrium? A. 1 L of 0.9% sodium chloride solution B. 1 L of 0.45% sodium chloride solution 3=C C. 1 L of 3% sodium chloride solution 2=D D. 1 L of 5% dextrose solution 1=B E. 1 L of pure water Answer: 2 The Explanation of the answers will be in slide 19 Cont.
    [Show full text]
  • Effect of Expansion of Extracellular Fluid Volume on Renal Phosphate Handling
    Effect of expansion of extracellular fluid volume on renal phosphate handling Wadi N. Suki, … , Diane Rouse, Arthur Terry J Clin Invest. 1969;48(10):1888-1894. https://doi.org/10.1172/JCI106155. Research Article To examine the specific effect of extracellular fluid (ECF) volume expansion on phosphate excretion studies were performed in thyroparathyroidectomized dogs receiving saline solution intravenously. The natriuresis resulting from ECF volume expansion was consistently accompanied by an increase in phosphate excretion. The possible role of increased filtered load of phosphate was eliminated in experiments in which the filtered load of phosphate was reduced by acute reduction in the glomerular filtration rate. Despite considerable reductions in filtered phosphate, ECF volume expansion resulted in a consistent increase in phosphate excretion. Furthermore, the possible contribution of alteration in blood composition was investigated in experiments in which saline was infused during thoracic inferior vena cava constriction. In these experiments saline infusion failed to increase sodium or phosphate excretion. Cessation of saline infusion and release of caval constriction resulted in a prompt natriuresis and increased phosphate excretion. It is concluded from these studies that extracellular fluid volume expansion results in an increased phosphate excretion in the parathyroidectomized dog. This effect is the specific consequence of ECF volume expansion and is not due to increase in the filtered load of phosphate or alterations in blood
    [Show full text]
  • Renal Clearance
    Faculty version with model answers Clearance Bruce M. Koeppen, M.D., Ph.D. University of Connecticut Health Center 1. Inulin is used in an experiment to measure the glomerular filtration rate (GFR). Inulin is continuously infused to achieve a steady-state concentration in the plasma of 1.0 mg/dL. Urine is collected over a 10 hour period. The total volume of urine is 1.5 L, and the urinary concentration of inulin is 440 mg/L. What is the GFR, as determined from the inulin clearance? Inulin Clearance = GFR = _____110____ ml/min Calculations: Urine flow rate = 1,500 ml/600 min = 2.5 ml/min Urine [inulin] = 440 mg/L = 0.44 mg/ml Plasma [inulin] = 1.0 mg/dL = 0.01 mg/ml Inulin clearance = GFR = (2.5 ml/min x 0.44 mg/ml)/0.01 mg/ml = 110 ml/min 2. In clinical situations the GFR of a patient is usually determined by measuring the clearance of creatinine. Like inulin, creatinine is freely filtered at the glomerulus. However, in contrast to inulin, a small amount is also secreted (approximately 10% of all creatinine excreted in the urine reflects this secretory component). Therefore creatinine is not an ideal marker for GFR. Despite this error, creatinine is used to measure GFR because it is produced endogenously by skeletal muscle, and does not require an infusion. Therefore it is easy to do a creatinine clearance, because the patient can do it at home by simply collecting their urine (usually over a 24 hr period), and having a single blood sample obtained to measure the plasma [creatinine].
    [Show full text]
  • L3-Renal Clearance [PDF]
    At the end of this session, the students should be able to: Describe the concept of renal plasma clearance Use the formula for measuring renal clearance Use clearance principles for inulin, creatinine etc. for determination of GFR Explain why it is easier for a physician to use creatinine clearance Instead of Inulin for the estimation of GFR Describe glucose and urea clearance Explain why we use of PAH clearance for measuring renal blood flow Mind map Concept of clearance rate of glomerular filtration Clearance is the volume of plasma that is completely Assess severity of renal cleared of a substance each damage minute. Tubular secretion&reabsorption of renal clearance renal different substances. The important of important The Clearance Equation Clearance tests CX = (UX X V)/ PX endogenous where creatinine Urea Uric acid CX = Renal clearance (ml/min) UX X V = excretion rate of substance X exogenous U = Concentration of X in urine X Inulin Para amino Diodrast (di-iodo V = urine flow rate in ml/min hippuric acid pyridone acetic acid) Px= concentration of substance X in the plasma Measurement of glomerular Measurement of renal Measurement of renal filtration rate (GFR) plasma flow (RPF) blood flow (RBF) GFR is measured by the RPF can be estimated from RBF is calculated from clearance of a glomerular maker the clearance of an organic the RPF and hematocrit like Creatinine & Inulin . acid Para-aminohippuric acid (PAH) The formula used to calculate GFR or RPF is CX = (UX X V)/ PX X could be PAH , creatinine and inulin The formula used to calculate RBF is RBF= RPF \ 1-Hct Or RBF=RPF% \ 100-Hct Hematocrit is the fraction of blood volume that is occupied by red blood cells and 1-Hct or 100-Hct is the fraction of blood volume that is occupied only by plasma Criteria of a substance used Criteria of a substance used for for GFR measurement renal plasma flow measurement 1.freely filtered 1.freely filtered 2.not secreted by the tubular cells 2.rapidly and completely secreted by the renal tubular cells 3.not reabsorbed by the tubular cells.
    [Show full text]