GSTZ1 Deficiency Promotes Hepatocellular Carcinoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Immobilization of Firefly Luciferase on PVA-Co-PE Nanofibers Membrane
Research Article www.acsami.org Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP † † Wenwen Wang, Qinghua Zhao, Mengying Luo, Mufang Li, Dong Wang,* Yuedan Wang, and Qiongzhen Liu School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, China ABSTRACT: The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co- PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized -
Crystal Structure of Firefly Luciferase Throws Light on a Superfamily of Adenylate-Forming Enzymes Elena Conti, Nick P Franks and Peter Brick*
Research Article 287 Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes Elena Conti, Nick P Franks and Peter Brick* Background: Firefly luciferase is a 62 kDa protein that catalyzes the production Address: Biophysics Section, Blackett Laboratory, of light. In the presence of MgATP and molecular oxygen, the enzyme oxidizes its Imperial College, London SW7 2BZ, UK. substrate, firefly luciferin, emitting yellow-green light. The reaction proceeds *Corresponding author. through activation of the substrate to form an adenylate intermediate. Firefly luciferase shows extensive sequence homology with a number of enzymes that Key words: acyl-coenzyme A ligase, adenylate, utilize ATP in adenylation reactions. firefly luciferase, peptide synthetase, X-ray crystallography Results: We have determined the crystal structure of firefly luciferase at 2.0 Å Received: 30 Nov 1995 resolution. The protein is folded into two compact domains. The large N-terminal Revisions requested: 21 Dec 1995 domain consists of a b-barrel and two b-sheets. The sheets are flanked by Revisions received: 15 Jan 1996 a-helices to form an ababa five-layered structure. The C-terminal portion of the Accepted: 31 Jan 1996 molecule forms a distinct domain, which is separated from the N-terminal domain Structure 15 March 1996, 4:287–298 by a wide cleft. © Current Biology Ltd ISSN 0969-2126 Conclusions: Firefly luciferase is the first member of a superfamily of homologous enzymes, which includes acyl-coenzyme A ligases and peptide synthetases, to have its structure characterized. The residues conserved within the superfamily are located on the surfaces of the two domains on either side of the cleft, but are too far apart to interact simultaneously with the substrates. -
Bioluminescence Is Produced by a Firefly-Like Luciferase but an Entirely
www.nature.com/scientificreports OPEN New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a Received: 8 November 2017 Accepted: 1 February 2018 frefy-like luciferase but an entirely Published: xx xx xxxx new luciferin Oliver C. Watkins1,2, Miriam L. Sharpe 1, Nigel B. Perry 2 & Kurt L. Krause 1 The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the frefy. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and 1H NMR spectroscopy. The purifed luciferase enzyme is in the same protein family as frefy luciferase (31% sequence identity). However, the luciferin substrate of this enzyme is produced from xanthurenic acid and tyrosine, and is entirely diferent to that of the frefy and known luciferins of other glowing creatures. A candidate luciferin structure is proposed, which needs to be confrmed by chemical synthesis and bioluminescence assays. These fndings show that luciferases can evolve independently from the same family of enzymes to produce light using structurally diferent luciferins. Glowworms are found in New Zealand and Australia, and are a major tourist attraction at sites located across both countries. In contrast to luminescent beetles such as the frefy (Coleoptera), whose bioluminescence has been well characterised (reviewed by ref.1), the molecular details of glowworm bioluminescence have remained elusive. Tese glowworms are the larvae of fungus gnats of the genus Arachnocampa, with eight species endemic to Australia and a single species found only in New Zealand2. -
Food Derived from Herbicide-Tolerant Soybean Line SYHT0H2 Summary
Supporting document 1 Safety assessment – Application A1081 Food derived from Herbicide-tolerant Soybean Line SYHT0H2 Summary and Conclusions Background A genetically modified (GM) soybean line with OECD Unique Identifier SYN-0000H2-5, hereafter referred to as soybean SYHT0H2, has been developed to be tolerant to two herbicides with different modes of action, namely glufosinate-ammonium and mesotrione. Tolerance to glufosinate ammonium is achieved through expression of the enzyme phosphinothricin acetyltransferase (PAT). PAT is encoded by a pat gene obtained from the soil bacterium Streptomyces viridochromogenes. Tolerance to mesotrione is achieved through expression of the AvHPPD-03 protein encoded by the avhppd-03 gene from oat (Avena sativa). In conducting a safety assessment of food derived from soybean line SYHT0H2, a number of criteria have been addressed including: a characterisation of the transferred gene and its origin, function and stability in the soybean genome; the changes at the level of DNA, protein and in the whole food; compositional analyses; evaluation of intended and unintended changes; and the potential for the newly expressed proteins to be either allergenic or toxic in humans. This safety assessment report addresses only food safety and nutritional issues. It therefore does not address: environmental risks related to the environmental release of GM plants used in food production the safety of animal feed or animals fed with feed derived from GM plants the safety of food derived from the non-GM (conventional) plant. History of Use Soybean (Glycine max) is grown as a commercial crop in over 35 countries worldwide. Soybean-derived products have a range of food and feed as well as industrial uses and have a long history of safe use for both humans and livestock. -
The Colors of Firefly Bioluminescence: Enzyme Configuration and Species Specificity by H
THE COLORS OF FIREFLY BIOLUMINESCENCE: ENZYME CONFIGURATION AND SPECIES SPECIFICITY BY H. H. SELIGER AND W. D. MCELROY MCCOLLUM-PRATT INSTITUTE, JOHNS HOPKINS UNIVERSITY Communicated May 25, 1964 We have previously reported on an unusual stereospecificity of firefly luciferase for a D(-) isomer of firefly luciferin.' While both the D(-) and the L(+) form will react with ATP to liberate pyrophosphate in the reaction E + LH2 + ATP =- E. LH2AMP + PP, (1) only D(-) LH2AMP will react further, in the presence of oxygen, to produce bio- luminescence and an oxidized product. There is also a strong pH dependence of the color of the emitted light;2 in acidic buffer solutions, pH < 6.5, the intensity of the normal yellow-green emission, peaking at 562 ml,, decreases markedly and a low intensity red emission is observed, peaking at 616 miu. This is evidence that enzyme configuration is important in determining the resonance energy levels of the excited state responsible for light emission. Further Evidence for Configurational Changes.-Except for the partial denatura- tion of the enzyme in acidic buffer, the pH effect on the emission spectrum shift is completely reversible. We have been able to observe these same reversible red shifts in emission spectra by increasing the temperature of the reaction, by carrying out the reaction in 0.2 M urea and at normal pH values (7.6) in glycyl glycine buffer, by adding small concentrations of Zn++, Cd++, and Hg++ cations, as chlorides. The normalized emission spectra of the in vitro bioluminescence of purified Photinus pyralis luciferase for various Zn++ concentrations are shown in Figure 1. -
Mir-19A-3P and Mir-125B-5P 5-Lipoxygenase Is a Direct Target Of
5-Lipoxygenase Is a Direct Target of miR-19a-3p and miR-125b-5p Saskia Busch, Eileen Auth, Friederike Scholl, Sabine Huenecke, Ulrike Koehl, Beatrix Suess and Dieter This information is current as Steinhilber of October 2, 2021. J Immunol published online 14 January 2015 http://www.jimmunol.org/content/early/2015/01/14/jimmun ol.1402163 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/01/14/jimmunol.140216 Material 3.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 14, 2015, doi:10.4049/jimmunol.1402163 The Journal of Immunology 5-Lipoxygenase Is a Direct Target of miR-19a-3p and miR-125b-5p Saskia Busch,* Eileen Auth,† Friederike Scholl,* Sabine Huenecke,† Ulrike Koehl,‡ Beatrix Suess,x and Dieter Steinhilber* 5-Lipoxygenase (5-LO) is the key enzyme in leukotriene biosynthesis. -
Age-Related Changes in Mirna Expression Influence GSTZ1 and Other Drug Metabolizing Enzymes S
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2020/04/30/dmd.120.090639.DC1 1521-009X/48/7/563–569$35.00 https://doi.org/10.1124/dmd.120.090639 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 48:563–569, July 2020 Copyright ª 2020 by The American Society for Pharmacology and Experimental Therapeutics Age-Related Changes in miRNA Expression Influence GSTZ1 and Other Drug Metabolizing Enzymes s Stephan C. Jahn, Lauren A. Gay, Claire J. Weaver, Rolf Renne, Taimour Y. Langaee,Department of Pharmacotherapy and Translational Research. Peter W. Stacpoole, and Margaret O. James Departments of Medicinal Chemistry (S.C.J., C.J.W., M.O.J.), Pharmacotherapy and Translational Research (T.Y.L.), Medicine (P.W.S.), Biochemistry and Molecular Biology (P.W.S.), and Molecular Genetics and Microbiology (L.A.G., R.R.), University of Florida, Gainesville, Florida Received January 1, 2020; accepted April 7, 2020 ABSTRACT Previous work has shown that hepatic levels of human glutathione miR-376c-3p could downregulate GSTZ1 protein expression. Our Downloaded from transferase zeta 1 (GSTZ1) protein, involved in tyrosine catabolism findings suggest that miR-376c-3p prevents production of GSTZ1 and responsible for metabolism of the investigational drug dichlor- through inhibition of translation. These experiments further our oacetate, increase in cytosol after birth before reaching a plateau understanding of GSTZ1 regulation. Furthermore, our array results around age 7. However, the mechanism regulating this change of provide a database resource for future studies on mechanisms expression is still unknown, and previous studies showed that regulating human hepatic developmental expression. -
9 Glutathione S-Transferases
Enzyme Systems that Metabolise Drugs and Other Xenobiotics. Edited by Costas Ioannides Copyright # 2001 John Wiley & Sons Ltd ISBNs: 0-471-894-66-4 %Hardback); 0-470-84630-5 %Electronic) 9 Glutathione S-transferases Philip J. Sherratt and John D. Hayes University of Dundee, UK Introduction Glutathione S-transferase GST; EC 2.5.1.18) isoenzymes are ubiquitously distributed in nature, being found in organisms as diverse as microbes, insects, plants, ®sh, birds andmammals Hayes andPulford1995). The transferases possess various activities andparticipate in several differenttypes of reaction. Most of these enzymes can catalyse the conjugation of reduced glutathione GSH) with compounds that contain an electrophilic centre through the formation of a thioether bondbetween the sulphur atom of GSH and the substrate Chasseaud 1979; Mannervik 1985). In addition to conjugation reactions, a number of GST isoenzymes exhibit other GSH-dependent catalytic activities including the reduction of organic hydroperoxides Ketterer et al. 1990) andisomerisation of various unsaturatedcompoundsBenson et al. 1977; Jakoby andHabig 1980). These enzymes also have several non-catalytic functions that relate to the sequestering of carcinogens, intracellular transport of a wide spectrum of hydrophobic ligands, and modulation of signal transduction pathways Listowsky 1993; Adler et al. 1999; Cho et al. 2001). Glutathione S-transferases represent a complex grouping of proteins. Two entirely distinct superfamilies of enzyme have evolved that possess transferase activity Hayes andStrange 2000). The ®rst enzymes to be characterisedwere the cytosolic, or soluble, GSTs BoylandandChasseaud1969; Mannervik 1985). To dateat least 16 members of this superfamily have been identi®ed in humans Board et al. 1997, 2000; Hayes and Strange 2000). -
Dmd.120.000143.Full.Pdf
DMD Fast Forward. Published on September 1, 2020 as DOI: 10.1124/dmd.120.000143 This article has not been copyedited and formatted. The final version may differ from this version. Drug Metabolism and Disposition Exposure of Rats to Multiple Oral Doses of Dichloroacetate Results in Upregulation of Hepatic GSTs and NQO1 Edwin J. Squirewell, Ricky Mareus, Lloyd P. Horne, Peter W. Stacpoole, and Margaret O. James Downloaded from Department of Medicinal Chemistry (E.J.S., R.M., M.O.J.), Department of Medicine (L.P.H., P.W.S.), and Department of Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville FL dmd.aspetjournals.org at ASPET Journals on October 1, 2021 1 DMD Fast Forward. Published on September 1, 2020 as DOI: 10.1124/dmd.120.000143 This article has not been copyedited and formatted. The final version may differ from this version. Running title: Repeated DCA dosing in Rats Increases Hepatic GSTs and NQO1 Address correspondence to: Dr. Margaret O. James, Department of Medicinal Chemistry, University of Florida College of Pharmacy, 1345 Center Drive, Gainesville, FL 32610. Tel: 352-273-7707. Email: [email protected] Downloaded from Number of text pages: 16 Number of tables: 3 Number of figures: 3 dmd.aspetjournals.org Number of references: 77 Number of words in the Abstract: 250 Number of words in Introduction: 657 at ASPET Journals on October 1, 2021 Number of words in Discussion: 1512 Abbreviations: DCA, dichloroacetate; DCPIP, 2,6-dichlorophenolindophenol; DCNB, 1,2-dichloro-4- nitrobenzene; CDNB, 1-chloro-2,4-dinitrobenzene, NQO1, NAD(P)H dehydrogenase [quinone] 1; NBD-Cl, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole; GCLC, glutamylcysteine ligase complex; GSS, glutathione synthetase; GSH, glutathione; GSTZ1, glutathione transferase zeta 1; MAAI, maleylacetoacetate isomerase; PDK, pyruvate dehydrogenase kinase; PDC, pyruvate dehydrogenase complex; ROS, reactive oxygen species; S.D., standard deviation. -
Disruption of GSTZ1 Gene by Large Genetic Alteration in Oryza Glaberrima
Breeding Science 54 : 67-73 (2004) Disruption of GSTZ1 Gene by Large Genetic Alteration in Oryza glaberrima Tokuji Tsuchiya and Ikuo Nakamura* Graduate School of Science and Technology, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan After the completion of the genome sequencing project Introduction of common rice (Oryza sativa L.), comparative genomic studies between rice and related species became impor- Glutathione S-transferases (GSTs; EC 2.5.1.18) are tant to reveal the function of each gene. The rice ge- ubiquitous and abundant detoxifying enzymes in all the organ- nome contains two copies of the gene encoding zeta class isms, such as bacteria, fungi, animals and plants. Recently, glutathione S-transferase (GSTZ) that is reported to be plant GSTs have been classified into four different classes, the enzyme in the catabolic pathway of tyrosine and phi, tau, theta and zeta, based on amino acid sequence simi- phenylalanine. Two GSTZ genes of O. sativa, OsGSTZ1 larity and gene structure (Dixon et al. 1998, Edward et al. and OsGSTZ2, display a tandem arrangement. Up- 2000). The phi and tau GST genes are plant-specific and com- stream OsGSTZ1 gene is constitutively expressed, pose large multi-gene families, whereas the theta and zeta whereas the downstream OsGSTZ2 gene is inducible by GST genes have a few copies. The zeta class GST (GSTZ) stresses. We analyzed the expression of the GSTZ gene genes are present as one or two copies in every plant genome in the African cultivated species O. glaberrima and wild studied, such as A. thaliana, maize, soybean, carnation and species O. -
Characterization of the Human 5-Lipoxygenase Gene
Proc. Nadl. Acad. Sci. USA Vol. 87, pp. 9073-9077, December 1990 Biochemistry Characterization of the human 5-lipoxygenase gene promoter (leukotrienes/transcriptional regulation/nuclear protein) SHIGERU HoSHIKO*, OLOF RADMARK, AND BENGT SAMUELSSON Department of Physiological Chemistry, Karolinska Institutet, S-104 01 Stockholm, Sweden Contributed by Bengt Samuelsson, July 5, 1990 ABSTRACT Nucleotide sequences that direct transcrip- RBL1 cells were maintained in Eagle's medium and Dulbec- tion of the human 5-lipoxygenase gene have been examined by co's modified Eagle's medium, respectively, supplemented ligation to the chloramphenicol acetyltransferase gene and with 10% (vol/vol) fetal calf serum. Plasmids for DNA determination of chloramphenicol acetyltransferase activity in transfection were prepared by alkaline lysis and purified by transfected HeLa and HL-60 cells. Various lengths of 5'- CsCI centrifugation. For transfections the following methods flanking sequences up to 5.9 kilobase pairs 5' of the transcrip- were used: HeLa and HepG2, calcium phosphate precipita- tional initiation sites were tested. Two positive and two negative tion followed by 15% (vol/vol) glycerol shock (2 min) (6); apparent regulatory regions were seen. Part of the promoter HL-60 and RBL1, DEAE-dextran (250 ,ug/ml) followed by sequence (-179 to -56 from ATG), which includes five chloroquine (0.1 or 0.2 mM, 60 min) (7); and K-562, electro- repeated GC boxes (the putative Spl binding sequence) was poration [230 V, 960 ,uF, in phosphate-buffered saline (PBS)] essential for transcription in both HeLa and HL-60 cells. (8). Cells were harvested within 48 hr after transfection, Gel-shift assays (using the DNA fragment -212 to -88) washed with PBS, and suspended in 100 p.1 of 0.25 M revealed that the transcriptional factor Spl could bind to this Tris HCl, pH 7.8, for sonication. -
Nitric Oxide Prevents a Pathogen-Permissive Granulocytic Inflammation During Tuberculosis
ARTICLES PUBLISHED: 15 MAY 2017 | VOLUME: 2 | ARTICLE NUMBER: 17072 Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis Bibhuti B. Mishra1, Rustin R. Lovewell1,AndrewJ.Olive1, Guoliang Zhang2, Wenfei Wang2, Eliseo Eugenin3, Clare M. Smith1,JiaYaoPhuah1, Jarukit E. Long1, Michelle L. Dubuke4, Samantha G. Palace1, Jon D. Goguen1,RichardE.Baker1, Subhalaxmi Nambi1, Rabinarayan Mishra5, Matthew G. Booty1,ChristinaE.Baer1, Scott A. Shaffer4, Veronique Dartois3,BethA.McCormick1, Xinchun Chen2,6* and Christopher M. Sassetti1* Nitric oxide contributes to protection from tuberculosis. It is generally assumed that this protection is due to direct inhibition of Mycobacterium tuberculosis growth, which prevents subsequent pathological inflammation. In contrast, we report that nitric oxide primarily protects mice by repressing an interleukin-1- and 12/15-lipoxygenase-dependent neutrophil recruitment cascade that promotes bacterial replication. Using M. tuberculosis mutants as indicators of the pathogen’s environment, we inferred that granulocytic inflammation generates a nutrient-replete niche that supports M. tuberculosis growth. Parallel clinical studies indicate that a similar inflammatory pathway promotes tuberculosis in patients. The human 12/15-lipoxygenase orthologue, ALOX12, is expressed in cavitary tuberculosis lesions; the abundance of its products correlates with the number of airway neutrophils and bacterial burden and a genetic polymorphism that increases ALOX12 expression is associated with tuberculosis