Handout 2: Casting 1

Total Page:16

File Type:pdf, Size:1020Kb

Handout 2: Casting 1 ENGINEERING TRIPOS PART IIA, 2012-13 MODULE 3C1: Materials Processing and Design MANUFACTURING ENGINEERING TRIPOS PART IIA, 2012-13 PAPER 3P1: Materials into products HANDOUT 2: CASTING 1. Processes, selection and design 1.1 Casting processes 1.2 Process selection 1.3 Design of castings 2. Solidification theory 2.1 Revision of nucleation theory 2.2 Solidification mechanisms 2.3 Solidification of alloys 3. Microstructure of castings 3.1 Grain structure 3.2 Chemical inhomogeneity 3.3 Porosity 3.4 Casting alloys Essential Revision: Phase diagrams, phase transformations, shaping processes IB Materials notes + Teach Yourself Phase Diagrams (www-materials.eng.cam.ac.uk/typd) Ashby, Shercliff & Cebon: Materials: engineering, science, processing and design (Ch. 18, 19) Ashby & Jones: Engineering Materials II Other References for Casting: Edwards L and Endean M. Manufacturing with Materials (CUED JA146) Waters, TF. Manufacturing for Engineers (CUED BN204) Campbell, J. Castings (Lots of technical detail) (CUED JO41) H.R Shercliff (C.Y. Barlow) October 2012 1 1. PROCESSES, SELECTION AND DESIGN 1.1 Casting processes Typical casting process and terminology: Sand Casting 1. A solid re-usable pattern (often wooden) is made of the component. 2. Sand with a small amount of resin binder is packed around the pattern in a box called a drag. 3. The drag is inverted and the pattern is lifted out, leaving a cavity. In-gates and runners may be carved or moulded into the sand. 4. Interior detail may be produced by inserting a core (also moulded out of sand) into the cavity. The upper part of the mould (the cope) is formed from sand, incorporating a pouring basin, a sprue, vents, risers/feeder heads (either moulded from patterns – e.g. runner pin and riser pin shown – or which may be carved in. 5. Mould bolted together, metal poured in. Once the casting has solidified, the mould is removed and the sand mould and any cores broken up and brushed out. The casting is fettled: cutting off the runner, ingate, sprue, risers and feeder head. The parting line of the mould may also leave a ridge which must be ground off. 2 Overview of Casting Processes Melt Transfer into mould Remove from mould Refractory (ceramic) crucible Pour under gravity Permanent mould (e.g. ingot casting, “Clean” heat sources: or continuous casting, Electric furnace, or RF Force under high pressure die casting): induction into mould open mould, remove (can be under vacuum or in an or inert gas atmosphere) part, clean mould and Use inert gas pressure re-use or (controlled atmosphere) to Oil/gas-fuelled furnace force metal into mould Permanent pattern (e.g. sand casting): one-off moulds, destroy on removal Check composition Solidify: a few before casting; additives seconds for small to refine grain size or parts; days for large modify structures Classification of casting processes Ingot or Continuous Shaped Casting Casting (i.e. solidify to near net-shape) Permanent mould casting Permanent pattern casting Simple shapes: no re-entrant More intricate shapes: mould surfaces (need to be able to for each individual casting is Continuous casting remove parts from mould). created around a pattern and for most high-volume Moulds expensive (tool steel; mould is destroyed as the steel; “direct chill” may make 103 – 106 castings), casting is removed. (DC) casting for production rates high. Low setup costs and wrought aluminium production rates. alloys. Typically used for large numbers of small parts. Used for larger parts, or Ingot casting when small production runs. (permanent mould) Examples: Examples: used for lower Gravity die casting Sand casting volume alloys. Pressure die casting Investment casting Centrifugal casting Evaporative mould casting Post-processing: Post-processing: Homogenisation “Fettling” (trim solidified feeder channels) + Thermomechanical Machine/grind critical areas (improve tolerances and surface processing, e.g. finish around joints, seals, contact surfaces) hot/cold rolling, Machine/drill features, holes etc. forging, extrusion Some castings heat-treated to improve properties. + heat treatment 3 Examples of permanent pattern (expendable mould) casting Sand Casting (details above) Advantages: Versatile, low material and equipment costs, OK for large simple parts; internal detail possible. Disadvantages: Poor dimensional accuracy and surface finish; not good for thin sections; relatively high labour costs; “dirty” process; can’t be used for refractory metals because sand undergoes phase change. Investment casting Something of a hybrid process: by “permanent pattern” we mean that a permanent mould is made to make an expendable pattern. This pattern is covered in a disposable ceramic/ refractory shell in which the casting itself is produced. Advantages: Excellent accuracy and surface finish Disadvantages: Limited to small parts; much more expensive. 4 Full / evaporative mould casting Closely related variant, using a polystyrene foam pattern. Advantages: High accuracy and surface finish (especially with small-bead polystyrene); lighter patterns than wax, so suitable for large parts. Disadvantages: Labour still quite high Examples of permanent mould casting Pressure die casting Externally applied pressure permits use of higher viscosity fluid, thinner sections, and minimises waste from runners, risers etc). Susceptible to entrapped bubbles due to turbulence, which can be detrimental to properties – see later. A common, important process – often just called ‘die casting’. Limited to low-melting point alloys (because the dies must not distort or wear whilst making many thousands of castings). Common example: zinc die-casting alloy (a low-melting point alloy, Zn + 4Al, 1Cu, 0.05Mg), chosen for ease of processing and cheapness, rather than for good mechanical properties, e.g. toy models. (Note equivalent polymer process: injection moulding, the commonest polymer process. It uses a rotating screw to plasticise the polymer, but the whole screw is translated along the feeder tube to force the polymer rapidly into the mould.) Gravity die casting Variant process using gravity feed (as in sand casting) but with permanent mould in separable parts, as in pressure die casting. 5 Centrifugal casting Used for axisymmetric hollow parts (e.g. pipes) (A related process for polymers is Rotational Moulding) 1.2 Process selection The choice of process depends on a range of factors including: material size, shape complexity, section thickness These are covered by CES (below) dimensional accuracy, surface finish number of parts required mechanical (and other) properties Properties sensitive to the combination of material, process and design parameters Technical attributes 6 Quality attributes Economic attribute Process attribute charts from CES, for metal shaping processes. The same factors influence the choice of process class (cast vs. deformation vs. powder) and the choice of process variant within a class (e.g. sand cast Observations (both comparing process classes, and on variants within casting): - considerable overlap between process classes on mass and section thickness; - wide variation in precision and surface finish; - competition between process classes largely driven by economics – but remember that it may be cheaper to use an inexpensive process (e.g. sand casting) followed by a local machining), rather than a more expensive process. Casting Alloys versus Wrought Alloys Casting and thermomechanical (wrought) processes use different, dedicated alloys, as casting alloys must satisfy separate requirements relating to fluidity, lower melting point, and solidification microstructure. For example: - carbon steels (Fe + 0.1-0.8wt% C): hot/cold formed; cast iron (Fe + 4wt% C): only cast. - wrought Al alloys: Al + Mg + (Cu, Zn or Si) ( 1-5wt%): hot/cold rolled, extruded; cast Al alloys: Al +Si (typically 12%) (+ Cu, Mg): only cast. Castings have historically had poorer mechanical properties than their forged counterparts, largely because of a tendency to contain porosity, and a high second phase content. Casting (plus heat treatment) can be the route to high-quality property-critical components (e.g. internal Al alloy frame of Airbus doors, jet engine nickel alloy turbine blades). Remember that the properties achieved in a casting are dependent on the coupling between material, process and design parameters. 7 1.3 Design of castings Solidification rate Solidification time is important in casting because it affects: - production rate, and hence process economics - the resulting microstructure, and hence properties Chvorinov’s rule states that: solidification time of a section is proportional to [Volume/Surface area]2 Physical basis: One application of this is in the design of the feeder heads for (e.g.) sand castings. Most metals shrink on cooling and solidifying, so moulds are designed to hold a reserve of molten metal to allow metal to be fed in during solidification. Hence the metal in the feeder head must solidify last, otherwise parts of the casting may be starved, leading to porosity: Solidification rate also affects the scale of the microstructure, which may have implications for mechanical properties. What matters physically is not the total time for solidification, but the local velocity of the solidification interface. The length-scale of the microstructure (e.g. the spacing of the plates in eutectics) is inversely proportional to this velocity. Casting Defects Defects include cavities, and internal or surface cracks. Non-destructive testing (NDT) of component integrity is routine
Recommended publications
  • Channel Structures Formed in Copper Ingots Upon Melting and Evaporation by a High-Power Electron Beam
    Metals 2015, 5, 428-438; doi:10.3390/met5010428 OPEN ACCESS metals ISSN 2075-4701 www.mdpi.com/journal/metals/ Communication Channel Structures Formed in Copper Ingots upon Melting and Evaporation by a High-Power Electron Beam Sergey Bardakhanov 1,2,5, Andrey Nomoev 2,3,*, Makoto Schreiber 2, Alexander Radnaev 2, Rustam Salimov 4, Konstantin Zobov 1,5, Alexey Zavjalov 1,5 and Erzhena Khartaeva 2,3 1 Khristianovich Institute of Applied and Theoretical Mechanics, Siberian Branch of the Russian Academy of Sciences, Institutskaya str., 4/1, Novosibirsk 630090, Russia; E-Mails: [email protected] (S.B.); [email protected] (K.Z.); [email protected] (A.Z.) 2 Department of Physics and Engineering, Buryat State University, Smolina str., 24a, Ulan-Ude 670000, Russia; E-Mails: [email protected] (M.S.); [email protected] (A.R.); [email protected] (E.K.) 3 Institute of Physical Materials, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoy str., 6, Ulan-Ude 670047, Russia 4 Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Lavrenteva str., 11, Novosibirsk 630090, Russia; E-Mail: [email protected] 5 Department of Physics, Novosibirsk State University, Pirogova str., 20, Novosibirsk 630090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +8-902-564-24-62. Academic Editor: Hugo F. Lopez Received: 5 November 2014 / Accepted: 5 March 2015 / Published: 12 March 2015 Abstract: A new phenomenon is described in this paper: the formation of macroscopic channel structures on the bottom of copper ingots which were used as the target for the synthesis of copper nanoparticles by high-power electron beam evaporation and condensation.
    [Show full text]
  • Conventional Steel Making Vs Powder Metallurgy
    Conventional Steelmaking vs. Powder Metallurgy Steelmaking Conventional steelmaking begins by melting steel in a large electric arc furnace. The initial melting of the steel is usually followed by a secondary ladle refining process such as Argon Oxygen Decarburization (AOD) or Vacuum Oxygen Decarburization (VOD). After refining, the molten metal is cast into ingots. Ladle Refining Cast Ingots Conventional Steelmaking - Ingot Structure Cast steel is very homogeneous in the molten state but as it slowly solidifies in the ingot molds, the alloying elements segregate producing a non-uniform as-cast structure. In high speed steels and high alloy steels, carbides precipitate and form coarse networks that must be broken up by hot working of the ingots. The hot processing will improve the structure but the segregation effects are never fully eliminated. Cast Ingot And Internal Structure Powder Metallurgy Steelmaking using Hot Isostatic Pressing (HIP) Making tool steels using Hot Isostatic Pressing begins with an initial melt furnace similar to a conventional melting process but on a much smaller scale. Instead of pouring and casting the melt, the molten metal is poured through a small nozzle where high pressure gas atomizes the liquid stream. The droplets fall and rapidly solidify into powder which is collected in the atomization chamber. Each powder particle is essentially a micro ingot with minimal segregation and fine carbides. The fine carbide size is retained through the mill processing. After atomization the powder is collected, screened to specific mesh requirements, and blended. The powder is loaded into steel containers, evacuated of air, then sealed. The steel containers full of powder are then loaded into an autoclave and Hot Isostatically Pressed at pressures and temperatures approximately the same as used for forging.
    [Show full text]
  • Crystalline Silicon Photovoltaic Module Manufacturing
    Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map Michael Woodhouse, Brittany Smith, Ashwin Ramdas, and Robert Margolis National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-72134 Operated by the Alliance for Sustainable Energy, LLC Revised February 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map Michael Woodhouse, Brittany Smith, Ashwin Ramdas, and Robert Margolis National Renewable Energy Laboratory Suggested Citation Woodhouse, Michael. Brittany Smith, Ashwin Ramdas, and Robert Margolis. 2019. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Roadmap. Golden, CO: National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy19osti/72134.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-72134 Operated by the Alliance for Sustainable Energy, LLC Revised February 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No.
    [Show full text]
  • Copper Oxhide Ingot Marks
    COPPER OXHIDE INGOT MARKS: A DATABASE AND COMPARATIVE ANALYSIS A Thesis Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Archaeology by Alaina M. Kaiser May 2013 © 2013 Alaina M. Kaiser All Rights Reserved. ABSTRACT COPPER OXHIDE INGOT MARKS: A CATALOGUE AND COMPARATIVE ANALYSIS Alaina Kaiser, M.A. Cornell University, 2013 Many objects of international trade from the Late Bronze Age eastern Mediterranean are marked with symbols of undetermined meaning. Of these, copper oxhide ingots have been of particular interest to archaeologists for decades. As the meaning of these marks is currently unknown, my work attempts to analyze patterns of them that are distinguishable through a study of the marked ingots’ contextual and geographic distribution. My research resulted in a database composed of all retrievable information regarding the discovery, contextual information, and physical characteristics of all copper oxhide ingot remains and marks. The purpose of this database and distribution analysis is to contribute to the ongoing efforts to understand these artifacts so ubiquitous in Late Bronze Age settlements in the eastern Mediterranean. ii BIOGRAPHICAL SKETCH Alaina Kaiser was graduated from Boston University in 2009 with a Bachelors of Arts degree in Archaeology and a minor in Classical Civilizations. After obtaining her degree, Ms. Kaiser held a research assistant position at the Massachusetts Board of Underwater Archaeological Resources and worked as a field technician in CRM at Public Archaeology Laboratory. While interning with the National Park Service at the Historic Kingsley Plantation in 2010, Ms. Kaiser volunteered with the University of Florida’s archaeological field school led by Dr.
    [Show full text]
  • Defects Introduced Into Metals During Fabrication and Service - A.J.Wilby and D.P
    MATERIALS SCIENCE AND ENGINEERING – Vol. III – Defects Introduced into Metals During Fabrication and Service - A.J.Wilby and D.P. Neale DEFECTS INTRODUCED INTO METALS DURING FABRICATION AND SERVICE A.J.Wilby and D.P. Neale British Energy Ltd., Gloucester, UK Keywords: Defects, metals, service, failure, casting, cracks, forging, fabrication, welding, metallurgical, heat-treatment, embrittlement, fatigue, creep, oxidation, wear, cavitation, tribosystem Contents 1. Introduction 2. Primary Production Defects 2.1. Casting Defects 2.1.1. Pipe and Shrinkage 2.1.2. Inclusions 2.1.3. Segregation 2.1.4. Porosity 2.1.5. Surface Defects 2.1.6. Other Defects 2.2. Forming Defects 2.2.1. Cracks, Laps and Seams 2.2.2. Surface Defects 3. Defects Introduced During Fabrication 3.1. Defects Resulting From Cutting 3.2. Joining Methods 3.2.1. Design Related Defects 3.2.2. Procedure and Process Defects 3.2.3. Metallurgical Factors 3.3. Heat Treatment 3.3.1. Stress relief of machined or welded components 3.3.2. Hardening and quench cracking 3.3.3. Embrittlement 4. Defects IntroducedUNESCO in Service – EOLSS 4.1. Fatigue 4.2. High Temperature Defects 4.2.1. Mechanical property degradation and creep 4.2.2. EnvironmentalSAMPLE interaction CHAPTERS 4.2.3. Microstructural Changes 4.3. Wear 4.3.1. Abrasive Wear 4.3.2. Adhesive Wear 4.3.3. Fretting 4.3.4. Erosion 4.3.5. Rolling Contact Wear 4.4. Embrittlement 5. The significance of defects entering service ©Encyclopedia of Life Support Systems (EOLSS) MATERIALS SCIENCE AND ENGINEERING – Vol. III – Defects Introduced into Metals During Fabrication and Service - A.J.Wilby and D.P.
    [Show full text]
  • SILICON INGOT PRODUCTION PROCESS for WAFERS the Element Silicon Has Been the Leading Semiconductor Material for Microelectronic Circuits for Decades
    Basics of Microstructuring 01 Chapter MicroChemicals® – Fundamentals of Microstructuring www.microchemicals.com/downloads/application_notes.html SILICON INGOT PRODUCTION PROCESS FOR WAFERS The element silicon has been the leading semiconductor material for microelectronic circuits for decades. It can be produced in an extremely pure mono-crystalline form and doped with foreign materials in a targeted manner allowing for the modulation of the electrical conductivity over approx. six orders of magnitude. A great advantage of silicon compared to other semiconductor materials such as germanium or gallium arsenide is the possibility of generating a chemically stable electrical insulator with high breakdown fi eld strength from the substrate itself using selective thermal oxidation to SiO2. As a substrate for microelectronic circuits, silicon must be mono-crystalline in its purest form as described in this chapter. From Quartz to High-Purity Silicon Origin and Occurrence of Silicon Universe: 0.1 % Si Silicon fuses in the interior of massive suns at temperatures above 109 K from oxygen cores and is fl ung into the uni- Nuclear Fusion: Crust: 28 % Si verse at the end of the star’s life during 2 16O 28Si + 4He supernova explosions. Hydrogen and Earth: 17 % Si helium dominate the visible matter of the universe; silicon makes up less than 0.1% of the total mass (Fig. 1). Core: 7 % Si In our solar system formed from the "ashes" of earlier star explosions, silicon has been enriched, especially in the in- ner planets which have lost most of the volatile elements due to their proxim- ity to the central sun. The entire plan- et Earth contains approx.
    [Show full text]
  • Aluminum Foundry Products
    ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials Copyright © 1990 ASM International® ASM Handbook Committee, p 123-151 All rights reserved. DOI: 10.1361/asmhba0001061 www.asminternational.org Aluminum Foundry Products Revised by A. Kearney, Avery Kearney & Company Elwin L. Rooy, Aluminum Company of America ALUMINUM CASTING ALLOYS are wrought alloys. Aluminum casting alloys cast aluminum alloys are grouped according the most versatile of all common foundry must contain, in addition to strengthening to composition limits registered with the alloys and generally have the highest cast- elements, sufficient amounts of eutectic- Aluminum Association (see Table 3 in the ability ratings. As casting materials, alumi- forming elements (usually silicon) in order article "Alloy and Temper Designation Sys- num alloys have the following favorable to have adequate fluidity to feed the shrink- tems for Aluminum and Aluminum Al- characteristics: age that occurs in all but the simplest cast- loys"). Comprehensive listings are also • Good fluidity for filling thin sections ings. maintained by general procurement specifi- The phase behavior of aluminum-silicon • Low melting point relative to those re- cations issued through government agencies compositions (Fig. 1) provides a simple quired for many other metals (federal, military, and so on) and by techni- • Rapid heat transfer from the molten alu- eutectic-forming system, which makes pos- cal societies such as the American Society sible the commercial viability of most high- minum to the mold, providing shorter for Testing and Materials and the Society of casting cycles volume aluminum casting. Silicon contents, Automotive Engineers (see Table 1 for ex- • Hydrogen is the only gas with apprecia- ranging from about 4% to the eutectic level amples).
    [Show full text]
  • Metal Forming Process
    METAL FORMING PROCESS Unit 1:Introduction and concepts Manufacturing Processes can be classified as i) Casting ii) Welding iii) Machining iv)Mechanical working v) Powder Metallurgy vi)Plastic Technology etc., In Mechanical working Process the raw material is converted to a given shape by the application of external force. The metal is subjected to stress.It is a process of changing the shape and size of the material under the influence of external force or stress.Plastic Deformation occurs. Classification of Metal Working Processes 1. General classification i. Rolling ii. Forging iii. Extrusion iv. Wire Drawing v. Sheet Metal Forming 2. Based on Temperature of Working i. Hot Working ii. Cold Working iii. Warm Working 3. Based on the applied stress i. Direct Compressive Stress ii. Indirect Compressive Stress iii. Tensile Stress iv. Bending Stress v. Shear Stress Classification of Metal Working based on temperature. Hot working: It is defined as the mechanical working of metal at an elevated (higher) temperature above a particular temperature. This temperature is referred to RCT(Re Crystallization Temperature). Cold Working: It is defined as the mechanical working of metal below RCT. Warm Working: It is defined as the mechanical working of metal at a temperature between that of Hot working and Cold Working. Ingot is the starting raw metal for all metal working process. Molten metal from the furnace is taken and poured into metallic moulds and allowed to cool or solidify. The cooled solid metal mass is then taken out of the mould. This solid metal is referred to as Ingot.This Ingot is later on converted to other forms by mechanical working.
    [Show full text]
  • Control in Semiconductor Wafer Manufacturing
    Control in Semiconductor Wafer Manufacturing Abbas Emami-Naeini and Dick de Roover have turned to single-wafer processes which require precise Abstract: A semiconductor wafer undergoes a wide range of processes before it is transformed from a bare silicon wafer to one control. Interestingly, the processes that make the chip are populated with millions of transistor circuits. Such processes now beginning to use controllers which require the include Physical or Chemical Vapor Deposition, (PVD, CVD), computational power of the chips being fabricated. Another Chemical-Mechanical Planarization (CMP), Plasma Etch, Rapid trend is to conduct several related steps in a “cluster” Thermal Processing (RTP), and photolithography. As feature sizes comprising of several chambers integrated into a single keep shrinking, process control plays an increasingly important machine. role in each of these processes. A model-based control approach is an effective means of designing commercial controllers for The processes that deal with producing the integrated advanced semiconductor equipment. We will give an overview of circuit (IC) on the wafer are commonly referred to as “front- the applications of advanced control in the semiconductor industry. end” processes, whereas “back-end” processes deal with It is our experience that the best models for control design borrow wire bonding and packaging the IC. In this paper, we will heavily from the physics of the process. The manner in which focus on the “front-end” processes that produce the IC on these models are used for a specific control application depends on the silicon wafer, and the increasingly important role of the performance goals. In some cases such as RTP and lithography, the closed-loop control depends entirely on having control.
    [Show full text]
  • Optimization of Mixed Casting Processes Considering Discrete
    Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology 23 (2009) 1899~1910 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-009-0428-y Optimization of mixed casting processes considering discrete ingot sizes† Yong Kuk Park1,* and Jung-Min Yang2 1School of Mechanical and Automotive Engineering, Catholic University of Daegu, Hayang-Eup, Gyeongsan-si, Gyeongbuk, 712-702, Korea 2Department of Electrical Engineering, Catholic University of Daegu, Hayang-Eup, Gyeongsan-si, Gyeongbuk, 712-702, Korea (Manuscript Received September 18, 2008; Revised March 23, 2009; Accepted March 26, 2009) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Abstract Using linear programming (LP), this research devises a simple and comprehensive scheduling methodology for a complicated, yet typical, production situation in real foundries: a combination of expendable-mold casting, permanent- mold casting and automated casting for large-quantity castings. This scheduling technique to determine an optimal casting sequence is successfully applied to the most general case, in which various types of castings with different al- loys and masses are simultaneously produced by dissimilar casting processes within a predetermined period. The methodology proves to generate accurate scheduling results that maximize furnace or ingot efficiency.
    [Show full text]
  • GAG Guidance Document 001
    Global Advisory Group GAG - Guidance GAG Guidance Document 001 Terms and Definitions Edition 2009-01 March 2009 Global Advisory Group GAG – Guidance "Terms and Definitions" – 2009-01 Contents Introduction..................................................................................................................................................3 1. Scope .................................................................................................................................................3 2. Aluminium products.........................................................................................................................4 2.1. Aluminium ...........................................................................................................................................4 2.2. Alloys, alloying elements and impurities.............................................................................................4 2.3. Materials and products .......................................................................................................................5 2.4. Unwrought products, excepting castings............................................................................................6 2.5. Castings..............................................................................................................................................6 2.6. Sheet and plate...................................................................................................................................7 2.7. Foil ......................................................................................................................................................9
    [Show full text]
  • Environmentally Benign Silicon Solar Cell Manufacturing
    July 1998 ! NREL/CP-590-23902 Environmentally Benign Silicon Solar Cell Manufacturing Y.S. Tsuo, J.M. Gee, P. Menna, D.S. Strebkov, A. Pinov, and V. Zadde Presented at the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion; 6-10 July 1998; Vienna, Austria National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by the Midwest Research Institute For the U.S. Department of Energy Under Contract No. DE-AC36-83CH10093 ENVIRONMENTALLY BENIGN SILICON SOLAR CELL MANUFACTURING Y.S. Tsuo National Renewable Energy Laboratory, Golden, CO 80401, USA Phone: 303-384-6433, Fax: 303-384-6531, E-mail: [email protected] J.M. Gee Sandia National Laboratories, Albuquerque, NM 87185, USA Phone: 505-844-7812, Fax: 505-844-6541, E-mail: [email protected] P. Menna National Agency for New Technologies Energy & Environment, I-80055 Portici, Italy Phone: 39-81-772-3205, Fax: 772-3299, E-mail: [email protected] D.S. Strebkov, A. Pinov, and V. Zadde Intersolarcenter, Moscow 109456, Russia Phone: 7-095-171-1920, Fax: 7-095-170-5101, E-mail: [email protected] ABSTRACT: The manufacturing of silicon devices - from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation - requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy.
    [Show full text]