A Polarization-Dependent Frequency-Selective Metamaterial Absorber with Multiple Absorption Peaks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polarization Optics Polarized Light Propagation Partially Polarized Light
The physics of polarization optics Polarized light propagation Partially polarized light Polarization Optics N. Fressengeas Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes Unit´ede Recherche commune `al’Universit´ede Lorraine et `aSup´elec Download this document from http://arche.univ-lorraine.fr/ N. Fressengeas Polarization Optics, version 2.0, frame 1 The physics of polarization optics Polarized light propagation Partially polarized light Further reading [Hua94, GB94] A. Gerrard and J.M. Burch. Introduction to matrix methods in optics. Dover, 1994. S. Huard. Polarisation de la lumi`ere. Masson, 1994. N. Fressengeas Polarization Optics, version 2.0, frame 2 The physics of polarization optics Polarized light propagation Partially polarized light Course Outline 1 The physics of polarization optics Polarization states Jones Calculus Stokes parameters and the Poincare Sphere 2 Polarized light propagation Jones Matrices Examples Matrix, basis & eigen polarizations Jones Matrices Composition 3 Partially polarized light Formalisms used Propagation through optical devices N. Fressengeas Polarization Optics, version 2.0, frame 3 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The vector nature of light Optical wave can be polarized, sound waves cannot The scalar monochromatic plane wave The electric field reads: A cos (ωt kz ϕ) − − A vector monochromatic plane wave Electric field is orthogonal to wave and Poynting vectors -
Plasmonic and Metamaterial Structures As Electromagnetic Absorbers
Plasmonic and Metamaterial Structures as Electromagnetic Absorbers Yanxia Cui 1,2, Yingran He1, Yi Jin1, Fei Ding1, Liu Yang1, Yuqian Ye3, Shoumin Zhong1, Yinyue Lin2, Sailing He1,* 1 State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China 2 Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024, China 3 Department of Physics, Hangzhou Normal University, Hangzhou 310012, China Corresponding author: e-mail [email protected] Abstract: Electromagnetic absorbers have drawn increasing attention in many areas. A series of plasmonic and metamaterial structures can work as efficient narrow band absorbers due to the excitation of plasmonic or photonic resonances, providing a great potential for applications in designing selective thermal emitters, bio-sensing, etc. In other applications such as solar energy harvesting and photonic detection, the bandwidth of light absorbers is required to be quite broad. Under such a background, a variety of mechanisms of broadband/multiband absorption have been proposed, such as mixing multiple resonances together, exciting phase resonances, slowing down light by anisotropic metamaterials, employing high loss materials and so on. 1. Introduction physical phenomena associated with planar or localized SPPs [13,14]. Electromagnetic (EM) wave absorbers are devices in Metamaterials are artificial assemblies of structured which the incident radiation at the operating wavelengths elements of subwavelength size (i.e., much smaller than can be efficiently absorbed, and then transformed into the wavelength of the incident waves) [15]. They are often ohmic heat or other forms of energy. -
Lab 8: Polarization of Light
Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states. -
All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance
hv photonics Communication All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance Jing Yu, Tingting Lang * and Huateng Chen Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China; [email protected] (J.Y.); [email protected] (H.C.) * Correspondence: [email protected] Abstract: This paper presents a terahertz (THz) metamaterial absorber made of stainless steel. We found that the absorption rate of electromagnetic waves reached 99.95% at 1.563 THz. Later, we ana- lyzed the effect of structural parameter changes on absorption. Finally, we explored the application of the absorber in refractive index sensing. We numerically demonstrated that when the refractive index (n) is changing from 1 to 1.05, our absorber can yield a sensitivity of 74.18 µm/refractive index unit (RIU), and the quality factor (Q-factor) of this sensor is 36.35. Compared with metal–dielectric–metal sandwiched structure, the absorber designed in this paper is made of stainless steel materials with no sandwiched structure, which greatly simplifies the manufacturing process and reduces costs. Keywords: metamaterial absorber; stainless steel; refractive index sensing; sensitivity 1. Introduction Metamaterials are new artificial materials that are periodically arranged according to certain subwavelength dimensions [1,2]. Owing to their unique properties of perfect absorption, perfect transmission, and stealth, metamaterials show promising applications Citation: Yu, J.; Lang, T.; Chen, H. in sensors [3–11], absorbers [12,13], imaging [14,15], etc. Among them, in biomolecular All-Metal Terahertz Metamaterial sensing, metamaterial devices are spurring unprecedented interest as a diagnostic protocol Absorber and Refractive Index for cancer and infectious diseases [10,11]. -
A Metamaterial Frequency-Selective Super-Absorber That Has Absorbing Cross Section Significantly Bigger Than the Geometric Cross Section
A metamaterial frequency-selective super-absorber that has absorbing cross section significantly bigger than the geometric cross section Jack Ng*, Huanyang Chen*,†, and C. T. Chan Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China Abstract Using the idea of transformation optics, we propose a metamaterial device that serves as a frequency-selective super-absorber, which consists of an absorbing core material coated with a shell of isotropic double negative metamaterial. For a fixed volume, the absorption cross section of the super-absorber can be made arbitrarily large at one frequency. The double negative shell serves to amplify the evanescent tail of the high order incident cylindrical waves, which induces strong scattering and absorption. Our conclusion is supported by both analytical Mie theory and numerical finite element simulation. Interesting applications of such a device are discussed. I. Introduction It is possible for a particle to absorb more than the light incident on it. Bohren gave explicit examples in which a small particle can absorb better than a perfect black body of the same size. Examples of such type include a silver particle excited at its surface plasmon resonance and a silicon carbide particle at its surface phonon polariton resonance.1 However, such mechanism is typically limited to very small particles, and for a fixed particle volume, the absorption cross section cannot increase without bound. We shall show in this article that it is possible to design, within the framework of transformation optics,2,3 a device whose absorption efficiency can be arbitrarily large, at least in principle. -
Polarization of EM Waves
Light in different media A short review • Reflection of light: Angle of incidence = Angle of reflection • Refraction of light: Snell’s law Refraction of light • Total internal reflection For some critical angle light beam will be reflected: 1 n2 c sin n1 For some critical angle light beam will be reflected: Optical fibers Optical elements Mirrors i = p flat concave convex 1 1 1 p i f Summary • Real image can be projected on a screen • Virtual image exists only for observer • Plane mirror is a flat reflecting surface Plane Mirror: ip • Convex mirrors make objects smaller • Concave mirrors make objects larger 1 Spherical Mirror: fr 2 Geometrical Optics • “Geometrical” optics (rough approximation): light rays (“particles”) that travel in straight lines. • “Physical” Classical optics (good approximation): electromagnetic waves which have amplitude and phase that can change. • Quantum Optics (exact): Light is BOTH a particle (photon) and a wave: wave-particle duality. Refraction For y = 0 the same for all x, t Refraction Polarization Polarization By Reflection Different polarization of light get reflected and refracted with different amplitudes (“birefringence”). At one particular angle, the parallel polarization is NOT reflected at all! o This is the “Brewster angle” B, and B + r = 90 . (Absorption) o n1 sin n2 sin(90 ) n2 cos n2 tan Polarizing Sunglasses n1 Polarized Sunglasses B Linear polarization Ey Asin(2x / t) Vertically (y axis) polarized wave having an amplitude A, a wavelength of and an angular velocity (frequency * 2) of , propagating along the x axis. Linear polarization Vertical Ey Asin(2x / t) Horizontal Ez Asin(2x / t) Linear polarization • superposition of two waves that have the same amplitude and wavelength, • are polarized in two perpendicular planes and oscillate in the same phase. -
Polarization (Waves)
Polarization (waves) Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations.[1][2][3][4][5] In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave.[4] A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic [6] waves such as light and radio waves, gravitational waves, and transverse Circular polarization on rubber sound waves (shear waves) in solids. thread, converted to linear polarization An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization. -
Lecture 14: Polarization
Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light. -
Polarization of Light Demonstration This Demonstration Explains Transverse Waves and Some Surprising Properties of Polarizers
Polarization of Light Demonstration This demonstration explains transverse waves and some surprising properties of polarizers. Number of Participants: Unlimited Audience: Middle (ages 11-13) and up Duration: 5-10 min Microbehunter Difficulty: Level 1 Materials Required: • 3 sheets of polarizing film – at least (20mm)2 • Long spring or Slinky Setup: 1. If necessary, prepare polarizing sheets by cutting a larger sheet into smaller pieces. While larger pieces of polarizing material are preferred, the demonstration works with smaller pieces. Presenter Brief: Light is a transverse wave because its two components, electric and magnetic fields, oscillate perpendicular to the direction of propagation. In general, a beam of light will consist of many photons traveling in the same direction but with arbitrary alignment of their electric and magnetic fields. Specifically, for an unpolarized light beam the electromagnetic components of each photon, while confined to a plane, are not aligned. If light is polarized, photons have aligned electromagnetic components and travel in the same direction. Polarization of Light Vocabulary: • Light – Electromagnetic radiation, which can be in the visible range. • Electromagnetic – A transverse wave consisting of oscillating electric and magnetic components. • Transverse wave – A wave consisting of oscillations perpendicular to the direction of propagation. • Polarized light – A beam of photons propagating with aligned oscillating components.Polarizer – A material which filters homogenous light along a singular axis and thus blocks arbitrary orientations and allows a specific orientation of oscillations. Physics & Explanation: Middle (ages 11-13) and general public: Light, or an electromagnetic wave, is a transverse wave with oscillating electric and magnetic components. Recall that in a transverse wave, the vibrations,” or oscillations, are perpendicular to the direction of propagation. -
Tunable Infrared Metamaterial Emitter for Gas Sensing Application
nanomaterials Article Tunable Infrared Metamaterial Emitter for Gas Sensing Application Ruijia Xu and Yu-Sheng Lin * State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; [email protected] * Correspondence: [email protected] Received: 17 June 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: We present an on-chip tunable infrared (IR) metamaterial emitter for gas sensing applications. The proposed emitter exhibits high electrical-thermal-optical efficiency, which can be realized by the integration of microelectromechanical system (MEMS) microheaters and IR metamaterials. According to the blackbody radiation law, high-efficiency IR radiation can be generated by driving a Direct Current (DC) bias voltage on a microheater. The MEMS microheater has a Peano-shaped microstructure, which exhibits great heating uniformity and high energy conversion efficiency. The implantation of a top metamaterial layer can narrow the bandwidth of the radiation spectrum from the microheater to perform wavelength-selective and narrow-band IR emission. A linear relationship between emission wavelengths and deformation ratios provides an effective approach to meet the requirement at different IR wavelengths by tailoring the suitable metamaterial pattern. The maximum radiated power of the proposed IR emitter is 85.0 µW. Furthermore, a tunable emission is achieved at a wavelength around 2.44 µm with a full-width at half-maximum of 0.38 µm, which is suitable for high-sensitivity gas sensing applications. This work provides a strategy for electro-thermal-optical devices to be used as sensors, emitters, and switches in the IR wavelength range. -
Glossary of Terms Used in Photochemistry, 3Rd Edition (IUPAC
Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007. doi:10.1351/pac200779030293 © 2007 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION* SUBCOMMITTEE ON PHOTOCHEMISTRY GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY 3rd EDITION (IUPAC Recommendations 2006) Prepared for publication by S. E. BRASLAVSKY‡ Max-Planck-Institut für Bioanorganische Chemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany *Membership of the Organic and Biomolecular Chemistry Division Committee during the preparation of this re- port (2003–2006) was as follows: President: T. T. Tidwell (1998–2003), M. Isobe (2002–2005); Vice President: D. StC. Black (1996–2003), V. T. Ivanov (1996–2005); Secretary: G. M. Blackburn (2002–2005); Past President: T. Norin (1996–2003), T. T. Tidwell (1998–2005) (initial date indicates first time elected as Division member). The list of the other Division members can be found in <http://www.iupac.org/divisions/III/members.html>. Membership of the Subcommittee on Photochemistry (2003–2005) was as follows: S. E. Braslavsky (Germany, Chairperson), A. U. Acuña (Spain), T. D. Z. Atvars (Brazil), C. Bohne (Canada), R. Bonneau (France), A. M. Braun (Germany), A. Chibisov (Russia), K. Ghiggino (Australia), A. Kutateladze (USA), H. Lemmetyinen (Finland), M. Litter (Argentina), H. Miyasaka (Japan), M. Olivucci (Italy), D. Phillips (UK), R. O. Rahn (USA), E. San Román (Argentina), N. Serpone (Canada), M. Terazima (Japan). Contributors to the 3rd edition were: A. U. Acuña, W. Adam, F. Amat, D. Armesto, T. D. Z. Atvars, A. Bard, E. Bill, L. O. Björn, C. Bohne, J. Bolton, R. Bonneau, H. -
Chapter 9 Refraction and Polarization of Light
Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di↵erent indexes of refraction for light. Refraction, total internal reflection and the polarization of light reflecting from a nonmetallic surface will be investigated 9.2 Introduction Light can travel through many transparent media such as water, glass and air. When this happens the speed of light is no longer c =3 108 m/s (the speed in vacuum), but is less. This reduction in the speed depends on the material.⇥ This change in speed and direction is called refraction and is governed by Snell’s Law of Refraction. n1sin✓1 = n2sin✓2 (9.1) The ratio of the speed of light in vacuum to that in the medium is called the index of refraction (n). The index of refraction is a number greater than or equal to one. The angles (✓1 and ✓2)aremeasuredwithrespecttothenormal(perpendicular)totheinterfacebetween the two media (See Figure 9.1). When light passes from a medium of higher index of refraction to a medium with a lower index of refraction, the light ray can be refracted at 900.Thisphenomenoniscalledtotal internal reflection.Forincidentanglesgreaterthan✓c,thereisnorefractedbeam.The transmission of light by fiber-optic cable uses this e↵ect. The critical angle of incidence where total internal reflection occurs is given by: n2 sin✓c = n1 >n2 (9.2) n1 If this angle and the index of refraction of one of the two media is known, the index of refraction of the other medium can be found.