Bisonalveus Gracilis N. Sp. (Pentacodontidae, Cimolesta): Novel Dental Adaptations and Their Paleobiological Implications in a Small Paleocene Mammal by Richard C

Total Page:16

File Type:pdf, Size:1020Kb

Bisonalveus Gracilis N. Sp. (Pentacodontidae, Cimolesta): Novel Dental Adaptations and Their Paleobiological Implications in a Small Paleocene Mammal by Richard C Palaeontographica, Abt. A: Palaeozoology – Stratigraphy Article Vol. 315, Issues 1 – 4: 67–119 E Stuttgart, January 2020 Bisonalveus gracilis n. sp. (Pentacodontidae, Cimolesta): novel dental adaptations and their paleobiological implications in a small Paleocene mammal by Richard C. Fox1, * and Craig S. Scott2, ** With 7 plates, 1 text-figure, and 2 tables The LSID for the publication is: zoobank.org:pub:9F9E7BDE-9183-4077-9BC5-A28DDAAF2203 LSID for the species is: zoobank.org:act:70548CEF-C1FD-4817-A-20B23798CD5E44F Abstract A new species of shrew-sized late Paleocene (middle Tiffanian) eutherian mammal, Bisonalveus gracilis (Pentacodontidae, Ci- molesta), is described from the DW-2 locality and correlative sites in the Paskapoo Formation, central Alberta, Canada. B. grac- ilis differs from the genotypic species, B. browni Gazin, in having a less robust cheek dentition and a reduced, single-rooted p2, and from B. holtzmani Gingerich in having substantially smaller molars. Previously published evidence implies that B. gracilis possessed a venomous bite, indicated by vertically emplaced, dagger-like upper canines (C) containing a well-defined channel for conveying venomous saliva, a Venom Delivery System (VDS) analogous to that of the extant Caribbean eulipotyphlan mammal Solenodon Brandt. Further research has revealed that the third upper incisor (I3) of B. gracilis closely resembles the upper canine in these novel features, strengthening the hypothesis that parts of the dentition of the species were adapted for this specialized function. Moreover, the molars of B. gracilis exhibit sharply pointed major cusps and well-developed, vertical shearing crests, some of which are neomorphic, while aspects of M2 are convergent on the shearing M1 of Carnivora. Collec- tively, the unique dental features of B. gracilis appear to be adaptations for consuming animal tissue and imply that B. gracilis was a tiny predator, employing a venomous bite in securing its energy requirements from animal protein. Recent alternatives to this interpretation of the paleobiology of B. gracilis are discussed but are shown to be lacking in their factual support, from either the fossil evidence or from modern analogues. Keywords: Bisonalveus; Eutheria; faunivore; Paleocene; venom Contents Abstract ������������������������������������������������������������������������������������������� 67 6. Discussion ��������������������������������������������������������������������������������� 90 1. Introduction ����������������������������������������������������������������������������� 68 6.1 Criticisms of the evidence . 90 2. Geological setting and localities ������������������������������������������� 68 6.2 Alternative functions . 94 2.1 General geology . 68 6.3 Paleobiology of Bisonalveus gracilis ����������������������������� 97 2.2 Locality information ������������������������������������������������������� 68 7. Conclusions ������������������������������������������������������������������������������� 99 3. Material and methods ������������������������������������������������������������� 70 Acknowledgments . 100 4. Systematic paleontology . 70 References ��������������������������������������������������������������������������������������� 100 5. Function of molariform teeth in Bisonalveus gracilis ������� 87 Plates 1–7 and explanation of plates ����������������������������������������� 106 Author’s addresses: 1 Laboratory for Vertebrate Paleontology, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9 * [email protected] 2 Royal Tyrrell Museum of Palaeontology, P. O. Box 7500, Drumheller, AB, Canada T0J 0Y0 ** Corresponding author: [email protected] © 2020 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de DOI: 10.1127/pala/2020/0087 0375-0442/2020/0087 $ 23.85.
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Paleocene Mammalian Faunas of the Bison Basin in South-Central Wyoming
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 131, NUMBER 6 Cftarlesi ©, anb JHarp ^aux SKHalcott 3Res!earcf) Jf unb PALEOCENE MAMMALIAN FAUNAS OF THE BISON BASIN IN SOUTH-CENTRAL WYOMING (With 16 Plates) By C. LEWIS GAZIN Curator, Division of Vertebrate Paleontology United States National Museum Smithsonian Institution (Publication 4229) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION FEBRUARY 28, 1956 THE LORD BALTIMORE PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Introduction i Acknowledgments 2 History of investigation 2 Occurrence and preservation of material 3 The Bison basin faunas 4 Environment and relationships between the Bison basin faunas 7 Age and correlation of the faunas lo Systematic description of vertebrate remains I2 Reptilia 12 Sauria 12 Anguidae 12 Mammalia 12 Multitubcrculata 12 Ptilodontidae 12 Marsupialia 14 Didelphidae 14 Insectivora 15 Leptictidae 15 Pantolestidae 17 Primates 19 Plesiadapidae 19 Carnivora 25 Arctocyonidae 25 Mesonychidae 35 Miacidae 35 Condylarthra 36 Hyopsodontidae 36 Phenacodontidae 42 Pantodonta 47 Coryphodontidae 47 References 51 Explanation of plates 54 ILLUSTRATIONS Plates (All plates following page 58.) 1. Mullituberculates and insectivores from the Bison basin Paleocene. 2. Primates and marsupials from the Bison basin Paleocene. 3. Pronothodcctes from the Bison basin Paleocene. 4. Plcsiadapis from the Bison basin Paleocene. 5. Triccntcs and Chriacus from the Bison basin Paleocene. 6. Thryptacodon from the Bison basin Paleocene. 7. Clacnodon from the Bison basin Paleocene. 8. Litomylus and Protoselcnc? from the Bison basin Paleocene. 9. Haplaletes and Gidleyina from the Bison basin Paleocene. 10. Phcnacodusl from the Bison basin Paleocene. 11. Condylarths and Titanoidcs from the Bison basin Paleocene. 12. Caenolambda from the Bison basin Paleocene.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
    Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor.
    [Show full text]
  • Resolving the Relationships of Paleocene Placental Mammals
    Biol. Rev. (2015), pp. 000–000. 1 doi: 10.1111/brv.12242 Resolving the relationships of Paleocene placental mammals Thomas J. D. Halliday1,2,∗, Paul Upchurch1 and Anjali Goswami1,2 1Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K. 2Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, U.K. ABSTRACT The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic.
    [Show full text]
  • Late Paleocene) of the Eastern Crazy Mountain Basin, Montana
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL. 26, NO. 9, p. 157-196 December 3 1, 1983 MAMMALIAN FAUNA FROM DOUGLASS QUARRY, EARLIEST TIFFANIAN (LATE PALEOCENE) OF THE EASTERN CRAZY MOUNTAIN BASIN, MONTANA BY DAVID W. KRAUSE AND PHILIP D. GINGERICH MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Philip D. Gingerich, Director Gerald R. Smith, Editor This series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan, 48 109. VOLS. 11-XXVI. Parts of volumes may be obtained if available. Price lists available upon inquiry. MAMMALIAN FAUNA FROM DOUGLASS QUARRY, EARLIEST TIFFANIAN (LATE PALEOCENE) OF THE EASTERN CRAZY MOUNTAIN BASIN, MONTANA BY David W. ~rause'and Philip D. ~in~erich' Abstract.-Douglass Quarry is the fourth major locality to yield fossil mammals in the eastern Crazy Mountain Basin of south-central Montana. It is stratigraphically intermediate between Gidley and Silberling quarries below, which are late Torrejonian (middle Paleocene) in age, and Scarritt Quarry above, which is early Tiffanian (late Paleocene) in age. The stratigraphic position of Douglass Quarry and the presence of primitive species of Plesiadapis, Nannodectes, Phenacodus, and Ectocion (genera first appearing at the Torrejonian-Tiffanian boundary) combine to indicate an earliest Tiffanian age.
    [Show full text]
  • Mammalia, Xenarthra)
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (4): 651-664. Buenos Aires, 30-12-2004 ISSN 0002-7014 Functional and phylogenetic assessment of the masticatory adaptations in Cingulata (Mammalia, Xenarthra) Sergio F. VIZCAÍNO1, Richard A. FARIÑA2, M. Susana BARGO1 and Gerardo DE IULIIS3 Abstract. Cingulata -armadillos, pampatheres and glyptodonts- are among the most representative of South American Cenozoic mammalian groups. Their dental anatomy is characterised by homodonty, hypselodonty, and the absence of enamel in almost all known species. It has been proposed that these peculiarities are related to a primitive adaptation to insectivory and that they represent a strong phylogenetic constraint that restricted, or at least conditioned, adaptations toward other ali- mentary habits. However, the great diversity of forms recorded suggests a number of adaptive possibilities that range from specialised myrmecophagous species to carrion-eaters or predators among the animalivorous, and from selective browsers to bulk grazers among herbivores, as well as omnivores. Whereas armadillos (Dasypodidae) developed varied habits, mostly an- imalivorous but also including omnivores and herbivores, pampatheres (Pampatheriidae) and glyptodonts (Glyptodontidae) were herbivores. Morphofunctional and biomechanical studies have permitted a review of previous hypotheses based solely on comparative morphology. While in some cases these were refuted (carnivory in peltephiline armadillos), they were corrob- orated (carnivory in armadillos of the genus Macroeuphractus;
    [Show full text]
  • Sept 2005 APS Bulletin
    Palæontological S o c i e t y Bulletin VOLUMEAlberta 20 • NUMBER 3 www.albertapaleo.org SEPTEMBER 2005 ALBERTA PALÆONTOLOGICAL SOCIETY OFFICERS c. Provide information and expertise to other collectors. President Dan Quinsey 247-3022 d. Work with professionals at museums and universities Vice-President Ron Fortier 285-8041 to add to the palaeontological collections of the Treasurer Mona Marsovsky 547-0182 province (preserve Alberta’s heritage). Secretary Wendy Morrison 646-3186 Past-President Vaclav Marsovsky 547-0182 MEMBERSHIP: Any person with a sincere interest in palaeontology is eligible to present their application DIRECTORS for membership in the Society. (Please enclose mem- Editor Howard Allen 274-1858 bership dues with your request for application.) Membership Howard Allen 274-1858 Program Coordinator Philip Benham 280-6283 Single membership $20.00 annually Field Trip Coordinator Wayne Braunberger 278-5154 Family or Institution $25.00 annually COMMITTEES THE BULLETIN WILL BE PUBLISHED QUARTERLY: APAC† Howard Allen 274-1858 March, June, September and December. Deadline for sub- APS 20th Anniversary Dan Quinsey 247-3022 mitting material for publication is the 15th of the month Wayne Braunberger 278-5154 prior to publication. CRLC Show Dan Quinsey 247-3022 Wayne Braunberger 278-5154 Society Mailing Address: Education Dan Quinsey 247-3022 Alberta Palaeontological Society Fossil Collections Ron Fortier 285-8041 P.O. Box 35111, Sarcee Postal Outlet Fund Raising Dan Quinsey 247-3022 Calgary, Alberta, Canada T3E 7C7 Library Mona Marsovsky 547-0182 (Web: www.albertapaleo.org) Paleo Rangers Dan Quinsey 247-3022 Ron Fortier 285-8041 Material for the Bulletin: Social (position unfilled) Howard Allen, Editor, APS Website Vaclav Marsovsky 547-0182 7828 Hunterslea Crescent, N.W.
    [Show full text]
  • NHS Dissertation4
    Patterns and Processes in the Dental Evolution of North American Plesiadapiforms and Euprimates from the Late Paleocene and Early Eocene DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Naava Hadassah Schottenstein, B.S. Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: John P. Hunter, Advisor Mark Hubbe Bryan Carstens Debbie Guatelli-Steinberg Copyright by Naava Hadassah Schottenstein 2020 Abstract This dissertation explores the radiation of Primates during the Paleogene. The first radiation of Primates began with the plesiadapiforms near the Cretaceous-Paleogene boundary and the second radiation marked the introduction and diversification of euprimates at the beginning of the Eocene. Questions surrounding these radiations include their general patterns of evolution, rates of dental evolution, and potential influences of abiotic and biotic drivers. I explore these questions in euprimates by presenting a study of the Tetonius- Pseudotetonius primate lineage. Rates of evolution and the roles of neutral and adaptive processes across this lineage remain unclear. Linking Tetonius and Pseudotetonius are a series of stratigraphic and morphologic intermediates revealing possible functional and developmental reorganization within the dentition. Notable changes involved a reduction of the P3 and the P4 became a robust tall-cusped tooth. I test whether neutral evolution can explain the phenotypic differences in the lineage, and whether P4 lost developmental association with P3 and became integrated with the molars. I calculate the rate of evolutionary differentiation, based on the ratio between inter- and intra-species variation in length and width of the premolars and molars, between lineage segments and the entire lineage.
    [Show full text]
  • A Review of the Proteutheria and Insectivora of the Willwood Formation (Lower Eocene), Bighorn Basin, Wyoming
    b 60 ~ r A Review of the Proteutheria and Insectivora of the Willwood Formation (lower Eocene), Bighorn Basin, Wyoming GEOLOGICAL SURVEY BULLETIN 1523 A Review of the Proteutheria and Insectivora of the Willwood Formation (lower Eocene), Bighorn Basin, Wyoming By THOMAS M BOWN and DAVID SCHANKLER GEOLOGICAL SURVEY BULLETIN 152: The Wzllwood sample of proteutherzans and znsectwores zs the largest and most dwerse known for lower Eocene rocks of the world UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1982 J UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Dzrector Library of Congress Catalogmg m Publication Data Bown, Thomas M A rev1ew of the Proteuthena and Insectlvora of the Willwood Formation (Lower Eocene), B1ghom Basm, Wyom- mg (Geolog•cal Survey Bulletm 1523) Bibliography p 73 Supt ofDocs No I 19 3 1523 I Proteuthena 2 Insecllvora, Foss1l Paleontology-Eocene 4 Paleontology-B1ghom R1ver water-shed, Wyo and Mont I Schankler, Dav1d M II T1tle III Senes QE75 B9 No 1523 [QE882 15] 557 3s 81-607068 [569' 12] AACR2 For sale by the Branch of Dtstnbutton, U S Geologtcal Survey 604 South Ptckett Street, Alexandna, VA 22304 CONTENTS Page Absttact--------------------------------------------------- 1 InttoductiOn ------------------------­ 2 History and purpose of mvestigation ----------------­ 2 Prehmmary faunal zonation of the Willwood Formation--------­ 3 Abbreviations ----------------------­ 4 Acknowledgments ---------------------- 4 Systematic paleontology--------------------------­
    [Show full text]
  • The Earliest Known Venomous Animals Recognized Among Conodonts
    The earliest known venomous animals recognized among conodonts HUBERT SZANIAWSKI Szaniawski, H. 2009. The earliest known venomous animals recognized among conodonts. Acta Palaeontologica Polo− nica 54 (4): 669–676. doi:10.4202/app.2009.0045 Conodonts, a large group of tiny extinct marine animals ranging in age from the Late Cambrian to Late Triassic (ca. 500 to 200 Mya), are usually considered as jawless vertebrates. Their only commonly occurring fossilized remains are minute, phosphatic, teeth−like elements of their feeding apparatuses. In most of the early conodonts the elements were conical and strongly elongated. Many of them are characterized by possession of a deep, longitudinal groove, usually associated with sharp edges or ridges. A comparative study of the grooved elements and venomous teeth and spines of living and extinct vertebrates strongly suggests that the groove in conodonts was also used for delivery of venom. Structural convergence of the conodont apparatus Panderodus with the grasping apparatus of chaetognaths, a group of extant, venomous inverte− brate predators of similarly ancient origin, provides additional support for this conclusion. Key words: Vertebrata, Conodonta, venomous animals. Hubert Szaniawski [[email protected]], Instytut Paleobiologii PAN, ul. Twarda 51/55, PL−00−818 Warszawa, Poland. Received 27 March 2009, accepted 6 October 2009, available online 12 October 2009. Introduction later identified as grasping spines of chaetognaths (Szaniaw− ski 2002). Conodonts are well known to geologists because the fossil− Wide geographic distribution shows that conodonts led a ized elements of their feeding apparatuses are exceedingly nektonic mode of life while their strong feeding apparatus sug− useful for stratigraphy.
    [Show full text]
  • Vertebrata of Messel Introduction
    Cour. Forsch.-Inst. Senckenberg | 252 | 95 – 108 | | Frankfurt a. M., 09. 12. 2004 Fossilienfundstätte Messel Nr. 164 * An annotated taxonomic list of the Middle Eocene (MP 11) Vertebrata of Messel Michael MORLO, Stephan SCHAAL, Gerald MAYR & Christina SEIFFERT Abstract 132 vertebrate species are known from the Messel Fossil Site. In this paper, all species and genera are listed, and for each of them the first report from Messel is cited. Moreover, recent discoveries and current research projects are mentioned. The list thus reflects the state-of-the-art knowledge on the present taxonomic status of all vertebrate species and genera of Messel. Key words: Faunal list, Vertebrata, Eocene, Messel Kurzfassung 132 Wirbeltierarten sind derzeit aus der Fossilienfundstelle Grube Messel bekannt. Sie werden hier aufgeführt. Darüber hinaus werden jeweils erste Nachweise aus Messel, neue Funde sowie laufende Forschungsprojekte genannt, wodurch der aktuelle taxonomische Status der einzelnen Arten und Gattungen widergegeben wird. Schlüsselworte: Faunenliste, Vertebrata, Eozän, Messel Introduction flora. The invertebrates will be presented in a separate list (WEDMANN in prep.). A recent overview on the Bac- Comprehensive lists of Eocene organisms known from teria of Messel was provided by LIEBIG (1998) after results the World Heritage Messel Pit Fossil Site have been of biochemical (see KOENIGSWALD & MICHAELIS 1984) published several times, beginning with TOBIEN (1969 a) and morphological (WUTTKE 1983) analyses had been and KOENIGSWALD (1979), with updates in KOENIGSWALD published. These overviews provide not only quick access (1980 a) and KOENIGSWALD & MICHAELIS (1984). These to the relevant literature for a specific taxon, but may authors listed all plants and animals known at the time also serve as a taxonomic basis for the ongoing work on by their taxonomic names.
    [Show full text]