Confronting the Water Crisis of Beijing Municipality in a Systems Perspective Focusing on Water Quantity and Quality Changes

Total Page:16

File Type:pdf, Size:1020Kb

Confronting the Water Crisis of Beijing Municipality in a Systems Perspective Focusing on Water Quantity and Quality Changes Confronting the Water Crisis of Beijing Municipality in a Systems Perspective Focusing on Water Quantity and Quality Changes Jin Ma Master of Science Thesis Stockholm 2011 Jin Ma Confronting the Water Crisis of Beijing Municipality in a Systems Perspective Focusing on Water Quantity and Quality Changes Supervisor: Ronald Wennersten Examiner: Ronald Wennersten Master of Science Thesis STOCKHOLM 2011 PRESENTED AT INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY TRITA-IM 2011:15 ISSN 1402-7615 Industrial Ecology, Royal Institute of Technology www.ima.kth.se SUMMARY In recent decades, water systems worldwide are under crisis due to excessive human interventions particularly in the arid and semi-arid regions. In many cities, the water quantity situation has become more and more serious, caused either by absolute water shortage or water pollution. Considering population growth and fast urbanization, ensuring adequate water supply with acceptable water quality is crucial to socio-economic development in the coming decades. In this context, one key point is to (re-)address various water problems in a more holistic way. This study explores the emerging water crisis events in Beijing Municipality so as to have a better understanding of water systems changes and to make more sustainable water-related decisions. The changes of water quantity and water quality in the region are analyzed in a systems perspective; and opportunities towards improved performance of Beijing‟s water systems are discussed. In order to aid in water systems analysis, a conceptual framework is developed, with a focus on identifying the most important interactions of the urban water sector. The results of the study show that the emerging water crisis events in the Beijing region are caused by a variety of inter-related factors, both external and internal. The external factor is mainly the decreasing upstream surface water inflow into the Guanting and Miyun reservoirs. The internal factors include precipitation variation, excessive water withdrawals, increasing water demands for different purposes and a large amount of pollutants discharged to the receiving water bodies. These factors together have caused tremendous water systems changes in Beijing Municipality from both the water quantity and water quality perspectives. In order to alleviate the serious water situation in Beijing Municipality, many further efforts are required in the dynamic socioeconomic and ecological context. Although tremendous work has been carried out by water-related institutions to prevent flood and ensure water supply, water resources development, planning and management must be addressed employing systems thinking and in a more holistic way. This is crucial for balancing the tradeoffs of water quantity and water quality in the Beijing region. Besides the experimental inter-basin water transfer activities, water demand management and pollution reduction and prevention should be the top priority on the agenda of the Beijing government in the long term. Moreover, only at a river basin level may various upstream-downstream conflicts be alleviated by wiser water allocation among administrative regions, as well as taking the ecological water demand into consideration. Finally, considering the current water situation and water management system, the following three aspects of improvement are emphasized in the present study, including a promoted water- centric value, institutional capacity building and employing economic principles for water resources management. Key words: Beijing, sustainability, systems thinking, urban water, water quality, water quantity i ACKNOWLEDGEMENT This thesis work is carried out at the Department of Industrial Ecology (DoIE), Royal Institute of Technology (KTH), Stockholm. I really appreciate the experiences of studying in the international master program of „Sustainable Technology‟. I have benefited so much from various courses related to Industrial Ecology and Sustainable Development. Absolutely many people have contributed either directly or indirectly to the thesis work. First of all, I would like to thank my supervisor Ronald Wennersten, professor at the DoIE, for his constructive guidance, encouragement and valuable comments on the thesis. Thanks too to Xingqiang Song, PhD student at the DoIE, for his assistance in data collection and helpful comments on the earlier drafts of the thesis. Further thanks to the teachers of all courses I took at KTH. Moreover, thanks to Karin Orve, the Education Administrator at the DoIE, and Monika Olsson, the Director of Studies at the DoIE, for their kindness and various help during my study period at KTH. I am also grateful to Ms. Yingfang He at the International Office of KTH for her help during my living in Stockholm, especially for her encourage when I still hesitated to apply for this master program a few years ago. In addition, I would like to thank all my Chinese friends for their help. Last but not least, I would like to add personal thanks to my family for years of support and understanding during the period of my study and living in Sweden. ii TABLE OF CONTENTS SUMMARY ........................................................................................................................... i ACKNOWLEDGEMENT ................................................................................................... ii ABBREVIATIONS ............................................................................................................... v LIST OF FIGURES ............................................................................................................. vi LIST OF TABLES ............................................................................................................ viii 1 INTRODUCTION ........................................................................................................... 1 1.1 Background .................................................................................................................................... 1 1.2 Water Stress in the Beijing Region .............................................................................................. 2 1.3 Aim and Objectives ...................................................................................................................... 5 2 METHODOLOGY ........................................................................................................... 6 2.1 Systems Thinking .......................................................................................................................... 6 2.2 A Conceptual Framework for Urban Water Systems Analysis .............................................. 6 2.3 Data Collection ............................................................................................................................. 7 3 WATER RESOURCES MANAGEMENT ...................................................................... 9 3.1 Sustainability and Water Resources ............................................................................................ 9 3.2 Integrated Water Resources Management ............................................................................... 11 3.4 Urban Water Management ......................................................................................................... 12 4 MATERIALS................................................................................................................... 16 4.1 Beijing Municipality and its Water Systems ............................................................................. 16 4.2 Characteristics of Water Systems Development .................................................................... 18 4.3 The Social and Economic Context .......................................................................................... 20 5 RESULTS ........................................................................................................................ 23 5.1 Water Quantity Changes ............................................................................................................ 23 5.1.1 Precipitation variation .................................................................................................... 23 5.1.2 Surface water inflow (SWI) ........................................................................................... 24 5.1.3 Surface water outflow (SWO) ....................................................................................... 26 5.2 Water Uses and Regional Water Deficits ................................................................................. 29 5.2.1 Water supply and water uses ......................................................................................... 29 5.2.2 Water deficits and decreasing groundwater table ....................................................... 31 5.3 Water Quality Changes ............................................................................................................... 33 5.3.1 Point and non-point pollution ...................................................................................... 33 5.3.2 Surface water quality....................................................................................................... 37 5.3.3 Groundwater quality....................................................................................................... 39 6 DISCUSSION ................................................................................................................. 41 6.1 Water Quantity
Recommended publications
  • Prominent City Lakes Fail Water Safety Test
    Homepage > News > China > Prominent city lakes fail water safety test 2009-11-16 11:24 BJT Three lakes in Beijing were seriously polluted in October, the Beijing municipal water resources bureau website said on Nov 12. Water quality in Chaoyang Park Lake, Honglingjin Lake and Lianhuachi Lake was revealed to be class V1, meaning the water is completely unusable. The lakes do not form part of the city's drinking water supply. "The pollution is mainly from domestic sewage," said Ma Jun, director of a green NGO- Institute of the Public and Environmental Affairs in Beijing which has released a China water pollution map annually since 2006. He said the water in Chaoyang Park Lake and Honglingjin Lake comes from the Liangma River. Ma said the river picks up domestic sewage before it reaches the lakes. Rain drainage systems and sewers also increase the number of pollutants. "This kind of pollution is called 'non-point source pollution'," he explained. Pollutants come from non-specific places and enter rivers and lakes with rainwater. Visitors to parks in east Beijing's business and expat-populated districts said the water pollution in Chaoyang Park is apparent. "I saw waste floating on Chaoyang Park lake and the water is almost black," Yang Xing, a 25-year-old PR company employee, said about her visit in August. Despite the pollution, hiring a boat remains a popular activity on the lake. "People don't seem to care about the water quality," Shi Yu, a postgraduate student and frequent visitor to Chaoyang Park Lake, told METRO yesterday.
    [Show full text]
  • Dams and Development in China
    BRYAN TILT DAMS AND The Moral Economy DEVELOPMENT of Water and Power IN CHINA DAMS AND DEVELOPMENT CHINA IN CONTEMPORARY ASIA IN THE WORLD CONTEMPORARY ASIA IN THE WORLD DAVID C. KANG AND VICTOR D. CHA, EDITORS This series aims to address a gap in the public-policy and scholarly discussion of Asia. It seeks to promote books and studies that are on the cutting edge of their respective disciplines or in the promotion of multidisciplinary or interdisciplinary research but that are also accessible to a wider readership. The editors seek to showcase the best scholarly and public-policy arguments on Asia from any field, including politics, his- tory, economics, and cultural studies. Beyond the Final Score: The Politics of Sport in Asia, Victor D. Cha, 2008 The Power of the Internet in China: Citizen Activism Online, Guobin Yang, 2009 China and India: Prospects for Peace, Jonathan Holslag, 2010 India, Pakistan, and the Bomb: Debating Nuclear Stability in South Asia, Šumit Ganguly and S. Paul Kapur, 2010 Living with the Dragon: How the American Public Views the Rise of China, Benjamin I. Page and Tao Xie, 2010 East Asia Before the West: Five Centuries of Trade and Tribute, David C. Kang, 2010 Harmony and War: Confucian Culture and Chinese Power Politics, Yuan-Kang Wang, 2011 Strong Society, Smart State: The Rise of Public Opinion in China’s Japan Policy, James Reilly, 2012 Asia’s Space Race: National Motivations, Regional Rivalries, and International Risks, James Clay Moltz, 2012 Never Forget National Humiliation: Historical Memory in Chinese Politics and Foreign Relations, Zheng Wang, 2012 Green Innovation in China: China’s Wind Power Industry and the Global Transition to a Low-Carbon Economy, Joanna I.
    [Show full text]
  • Biological Consequences of Environmental Pollution in Running Water Ecosystems: a Case Study in Zooplankton*
    Environmental Pollution 252 (2019) 1483e1490 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Biological consequences of environmental pollution in running water ecosystems: A case study in zooplankton* * Wei Xiong a, Ping Ni a, b, Yiyong Chen a, b, Yangchun Gao a, b, Shiguo Li a, b, Aibin Zhan a, b, a Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China b University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China article info abstract Article history: Biodiversity in running water ecosystems such as streams and rivers is threatened by chemical pollution Received 19 February 2019 derived from anthropogenic activities. Zooplankton are ecologically indicative in aquatic ecosystems, Received in revised form owing to their position of linking the top-down and bottom-up regulators in aquatic food webs, and thus 10 June 2019 of great potential to assess ecological effects of human-induced pollution. Here we investigated the Accepted 12 June 2019 influence of water pollution on zooplankton communities characterized by metabarcoding in Songhua Available online 24 June 2019 River Basin in northeast China. Our results clearly showed that varied levels of anthropogenic distur- bance significantly influenced water quality, leading to distinct environmental pollution gradients Keywords: < Water pollution (p 0.001), particularly derived from total nitrogen, nitrate nitrogen and pH. Redundancy analysis fi fl Biodiversity showed that such environmental gradients signi cantly in uenced the geographical distribution of Metabarcoding zooplankton biodiversity (R ¼ 0.283, p ¼ 0.001). In addition, along with the trend of increasing envi- Songhua River Basin ronmental pollution, habitat-related indicator taxa were shifted in constituents, altering from large-sized Zooplankton species (e.g.
    [Show full text]
  • Acknowledgements
    Acknowledgements First of all, I sincerely thank all the people I met in Lisbon that helped me to finish this Master thesis. Foremost I am deeply grateful to my supervisor --- Prof. Ana Estela Barbosa from LNEC, for her life caring, and academic guidance for me. This paper will be completed under her guidance that helped me in all the time of research and writing of the paper, also. Her profound knowledge, rigorous attitude, high sense of responsibility and patience benefited me a lot in my life. Second of all, I'd like to thank my Chinese promoter professor Xu Wenbin, for his encouragement and concern with me. Without his consent, I could not have this opportunity to study abroad. My sincere thanks also goes to Prof. João Alfredo Santos for his giving me some Portuguese skill, and teacher Miss Susana for her settling me down and providing me a beautiful campus to live and study, and giving me a lot of supports such as helping me to successfully complete my visa prolonging. Many thanks go to my new friends in Lisbon, for patiently answering all of my questions and helping me to solve different kinds of difficulties in the study and life. The list is not ranked and they include: Angola Angolano, Garson Wong, Kai Lee, David Rajnoch, Catarina Paulo, Gonçalo Oliveira, Ondra Dohnálek, Lu Ye, Le Bo, Valentino Ho, Chancy Chen, André Maia, Takuma Sato, Eric Won, Paulo Henrique Zanin, João Pestana and so on. This thesis is dedicated to my parents who have given me the opportunity of studying abroad and support throughout my life.
    [Show full text]
  • The Framework on Eco-Efficient Water Infrastructure Development in China
    KICT-UNESCAP Eco-Efficient Water Infrastructure Project The Framework on Eco-efficient Water Infrastructure Development in China (Final-Report) General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, China December 2009 Contents 1. WATER RESOURCES AND WATER INFRASTRUCTURE PRESENT SITUATION AND ITS DEVELOPMENT IN CHINA ............................................................................................................................. 1 1.1 CHARACTERISTICS OF WATER RESOURCES....................................................................................................... 6 1.2 WATER USE ISSUES IN CHINA .......................................................................................................................... 7 1.3 FOUR WATER RESOURCES ISSUES FACED BY CHINA .......................................................................................... 8 1.4 CHINA’S PRACTICE IN WATER RESOURCES MANAGEMENT................................................................................10 1.4.1 Philosophy change of water resources management...............................................................................10 1.4.2 Water resources management system .....................................................................................................12 1.4.3 Environmental management system for water infrastructure construction ..............................................13 1.4.4 System of water-draw and utilization assessment ...................................................................................13
    [Show full text]
  • China Environment Series 8 ISSUE 8, 2006
    China EnvironmEnt SEries 8 iSSUE 8, 2006 Legal Advocacy in Environmental Public Participation Evolving Civil Society: From Environment to Health Reducing China’s Thirst for Foreign Oil Spurring Innovations for Clean Energy and Water Protection Water Conflict Resolution Energy: China and the North American Response Plus: Notes From the Field, Spotlight on NGOs EDITOR Jennifer L. Turner MANAGING EDITOR Juli S. Kim SPECIAL REPORT CO-EDITOR Timothy Hildebrandt PRODUCTION EDITORS Lianne Hepler and Jeremy Swanston RESEARCH ASSISTANTS Xixi Chen, Baohua Yan, and Louise Yeung ECSP STAFF Karin R. Bencala, Gib Clarke, Geoffrey D. Dabelko, Juli S. Kim, Meaghan Parker, Sean Peoples, Jennifer L. Turner, Alison Williams COVER PHOTO A view of the Nu River in Yunnan Province. © Ma Jun China EnvironmEnt SEries iSSUE 8, 2006 The China Environment Forum For nine years, the China Environment Forum—a sub-project within the Environmental Change and Security Program—has been active in creating programming, exchanges, and publications to encour- age dialogue among U.S., Chinese, and other Asian scholars, policymakers, businesses, and nongov- ernmental organizations on environmental and energy challenges in China. The China Environment Forum regularly brings together experts with diverse backgrounds and affiliations from the fields of environmental protection, China studies, energy, U.S. foreign policy, economics, and rural develop- ment. Through monthly meetings and the annual China Environment Series, the China Environment Forum aims to identify the most important environmental and sustainable development issues in China and explore creative ideas and opportunities for governmental and nongovernmental cooperation. The Wilson Center’s Asia Program periodically cosponsors meetings with the China Environment Forum.
    [Show full text]
  • 2005 Report on the State of the Environment in China
    2005 Report on the State of the Environment in China State Environmental Protection Administration Table of Contents Environment....................................................................................................................................7 Marine Environment ....................................................................................................................35 Atmospheric Environment...........................................................................................................43 Acoustic Environment ..................................................................................................................52 Solid Wastes...................................................................................................................................56 Radiation and Radioactive Environment....................................................................................59 Arable Land/Land Resources ......................................................................................................62 Forests ............................................................................................................................................67 Grassland.......................................................................................................................................70 Biodiversity....................................................................................................................................75 Climate and Natural Disasters.....................................................................................................81
    [Show full text]
  • Swat Simulation Model for Climate Change Impact on Runoff
    INTERNATIONAL JOURNAL OF BIO-RESOURCE, ENVIRONMENT AND AGRICULTURAL SCIENCES (IJBEAS) Vol. 2(2) :322-332, 2016 www.sbear.in // ISSN 2454-3551 SWAT SIMULATION MODEL FOR CLIMATE CHANGE IMPACT ON RUNOFF Kishore Chandra Swain1*, Chiranjit Singha1 and Dinesh Kumar Rusia2 1Department of ASEPAN, Institute of Agriculture, Visva-Bharati, Sriniketan, Birbhum, West Bengal 731236 2Department of Agricultural Engineering, Birsa Agricultural University, Kanke, Ranchi, Jharkhand. *Corresponding author: [email protected]. Received: March 2016 Revised accepted: May 2016 ABSTRACT SWAT has proven to be an effective method of evaluating alternative land use effects on runoff, sediment and pollutant losses for simulation of hypothetical, real and future scenarios. This capability has been strengthened via the integration of GIS-SWAT with LULC simulation models in watershed management for sustainable agricultural planning programme. The assessment of climate change impact on water resources is still subject to great uncertainty. One of the major uncertainties is the climate projection, which has a marked influence on the simulated runoff in the context of future hydrology. In addition, the application of hydrological models involves uncertainty at various levels as the models are simplified conceptualizations of a real-world system. SWAT has been used as a tool for managing the runoff in the watershed involving future weather parameters from climate models, land use/land cover patterns, soil series information etc. The paper highlighted the contribution of various researchers for runoff estimations in national and international scenarios. Keywords: SWAT, ArcSWAT, climate change, watershed, land use/land cover INTRODUCTION Since the beginning of industrial revolution the influence of human activity has begun to extend to a global scale.
    [Show full text]
  • Assessment of Urban Green Space Based on Bio-Energy Landscape Connectivity: a Case Study on Tongzhou District in Beijing, China
    sustainability Article Assessment of Urban Green Space Based on Bio-Energy Landscape Connectivity: A Case Study on Tongzhou District in Beijing, China Kunyuan Wanghe y, Xinle Guo y, Xiaofeng Luan * and Kai Li * School of Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China * Correspondence: [email protected] (X.L.); [email protected] (K.L.); Tel.: +86-10-6233-6716 (X.L.); +86-10-6233-6698 (K.L.) The authors contributed equally to this study. y Received: 29 July 2019; Accepted: 5 September 2019; Published: 10 September 2019 Abstract: Green infrastructure is one of the key components that provides critical ecosystems services in urban areas, such as regulating services (temperature regulation, noise reduction, air purification), and cultural services (recreation, aesthetic benefits), but due to rapid urbanization, many environmental impacts associated with the decline of green space have emerged and are rarely been evaluated integrally and promptly. The Chinese government is building a new city as the sub-center of the capital in Tongzhou District, Beijing, China. A series of policies have been implemented to increase the size of green urban areas. To support this land-use decision-making process and achieve a sustainable development strategy, accurate assessments of green space are required. In the current study, using land-use data and environmental parameters, we assessed the urban green space in the case study area. The bio-energy and its fluxes, landscape connectivity, as well as
    [Show full text]
  • The Need for Integrated Management for the Endangered Miyun Resevoir
    Quenching Beijing’s Thirst: The Need for Integrated Management for the Endangered Miyun Resevoir By Christoph Peisert and Eva Sternfeld Miyun reservoir, a large reservoir northeast of Beijing municipality, is the Chinese capital’s most important source of drinking water. For many years the Beijing municipal government has made great efforts to protect the reservoir and its catchment area. However, successful implementation has been hampered by numerous user conflicts. This paper investigates the origin and various types of conflicts, which include inter-provincial, city-county disputes, as well as conflicts between county government and local residents living in the water protection zone. The magnitude of these conflicts and continued deteriorating quality of the reservoir underline the need for integrated watershed management approaches as stipulated in the 2002 revised Water Law, and the adoption of a water economy that includes the costs for water protection and compensation for those required to carry out watershed protection activities. he large Miyun reservoir, built during the Great Natural Determinants of the Beijing Water Crisis Leap Forward period (1958-1960) in the Beijing municipality is located in the dry northeast Tnortheast of Beijing municipality, is a critical edge of the North China Plain bordering the Mongolian source of drinking water for the 14 million people living Plateau in central Hebei province. Since the last in this booming metropolis. Considering the huge administrative reforms in 1958, the Chinese capital population reliant on the catchment for drinking water, and its rural hinterland were expanded to cover a total Miyun reservoir is one of the most important water area of 16,800 square kilometers (km2) with about protection areas in the world.
    [Show full text]
  • Botiidae Berg, 1940 - Loaches, Botias SUBFAMILY Leptobotiinae Nalbant, 2002 - Botias [=Leptobotiini] Notes: Leptobotiini Nalbant, 2002:315 [Ref
    FAMILY Botiidae Berg, 1940 - loaches, botias SUBFAMILY Leptobotiinae Nalbant, 2002 - botias [=Leptobotiini] Notes: Leptobotiini Nalbant, 2002:315 [ref. 27361] (tribe) Leptobotia GENUS Leptobotia Bleeker, 1870 - botias [=Leptobotia Bleeker [P.], 1870:256] Notes: [ref. 5871]. Fem. Botia elongata Bleeker, 1870. Type by monotypy. Species described in Botia but put in Leptobotia at end of description. •Valid as Leptobotia Bleeker, 1870 -- (Nalbant 1963:357 [ref. 3140], Sawada 1982:197 [ref. 14111], Sawada in Masuda et al. 1984:58 [ref. 6441], Ye in Pan et al. 1991:250 [ref. 23876], Bogutskaya & Naseka 1996:49 [ref. 22798], Chen & Zhang in Chen 1998:88 [ref. 23556], Vasil'eva 1998:100 [ref. 23591], Nalbant 2002:315 [ref. 27361], Kottelat 2004:15 [ref. 27360], Naseka & Bogutskaya 2004:283 [ref. 27838], Bogutskaya & Naseka 2004:107 [ref. 28183], Tang et al. 2008:1 [ref. 29536], Li et al. 2008:630 [ref. 29976], Watanabe et al. 2009:421 [ref. 30549], Kottelat 2012:16 [ref. 32367], Kottelat 2013:174 [ref. 32989]). Current status: Valid as Leptobotia Bleeker, 1870. Botiidae: Leptobotiinae. Species Leptobotia bellacauda Bohlen & Slechtova, 2016 - Anhui loach (author) [=Leptobotia bellacauda Bohlen [J.] & Šlechtová [V.], 2016:65, Figs. 1-3] Notes: [Zootaxa 4205 (no. 1); ref. 34953] Anhui province, Quipu River in Shitai County (Yangtze drainage), China. Current status: Valid as Leptobotia bellacauda Bohlen & Šlechtová, 2016. Botiidae: Leptobotiinae. Distribution: Quipu River, China. Habitat: freshwater. Species Leptobotia citrauratea (Nichols, 1925) - imperial flower loach [=Botia citrauratea Nichols [J. T.], 1925:5] Notes: [American Museum Novitates No. 177; ref. 3179] Tungting Lake, Hunan Province, China. Current status: Valid as Leptobotia citrauratea (Nichols, 1925). Botiidae: Leptobotiinae.
    [Show full text]
  • Policy Note on Integrated Flood Risk Management Key Lesson Learned and Recommendations for China
    Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Strategy Resources Partnership China CountryWater WATER PARTNERSHIP PROGRAM PARTNERSHIP WATER THE WORLDBANK (2013-2020) China Country Water Resources Partnership Strategy © 2013 The World Bank 1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this work is subject to copyright. Because The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2422; e-mail: [email protected]. Table of Contents ACKNOWLEDGMENTS ..................................................................................................................VII
    [Show full text]