DDT) and Its Metabolites in Rivers in Tianjin, China

Total Page:16

File Type:pdf, Size:1020Kb

DDT) and Its Metabolites in Rivers in Tianjin, China 中国科技论文在线 http://www.paper.edu.cn Chemosphere 68 (2007) 10–16 www.elsevier.com/locate/chemosphere Spatial and temporal variations and possible sources of dichlorodiphenyltrichloroethane (DDT) and its metabolites in rivers in Tianjin, China S. Tao *, B.G. Li, X.C. He, W.X. Liu, Z. Shi Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing 100871, China Received 13 July 2006; received in revised form 20 December 2006; accepted 21 December 2006 Available online 9 February 2007 Abstract Water, suspended solid (SS) and sediment samples were collected from nine water courses in Tianjin, China and analyzed for dichlo- rodiphenyltrichloroethane (DDT) and its metabolites (DDXs, including o,p0-,p,p0-DDT, DDD and DDE). The average DDX concen- trations in water, SS and sediment were 59 ± 30 ng lÀ1, 2690 ± 1940 ng gÀ1 dry wt. and 340 ± 930 ng gÀ1 dry wt., respectively. Due to the termination of the extensive agricultural application and industrial manufacture, DDXs in river sediment decreased by one order of magnitude since 1970’s and low DDT fractions in these sediments were observed. Still, DDXs in the sediments near the outlets of the major manufacturers remained relatively high attributed to the historic input. DDXs in sediment were also positively correlated with organic matter content. Spatial distributions of DDXs in SS and water was different from that in sediment. For SS, a negative correlation between DDX concentration and SS content indicated a dilution effect in many rivers. Dissolved organic carbon content was the major factor affecting DDX concentrations in water phase. Wastewater discharged from dicofol manufacturers and likely illegal agricultural application were the primary reasons causing high DDT (DDE + DDD) ratios in SS and water. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: DDT; River water; Sediment; Suspended solids; Tianjin; Dicofol 1. Introduction zenemethanol) (Qiu et al., 2005). DDT is used as an inter- mediate to produce dicofol in China and around 5–10% China was a major producer and consumer of dichloro- of DDT has been detected in the final product (Wei, diphenyltrichloroethane (DDT) in the past, and also uti- 2002). Since DDXs, especially freshly released DDT, have lized DDT for vector control, resulting in high residual been widely detected in China (Gong et al., 2004; Chen levels of DDT and its metabolites (DDXs) in various envi- et al., 2005; Wu et al., 2005; Peng et al., 2005; Hu et al., ronmental media and ecological compartments (Wong 2005) and some of these compounds were identified as et al., 2005; Sun et al., 2005; Chen et al., 2005; Liu et al., endocrine disrupters (Soto et al., 1994), public concerns 2006). Although the extensive application in agriculture over the enduring presence of DDT in the environment has been banned since 1992 (Chen, 1990), release of DDT have recently increased. into the environment is continuing, owing to possible illegal As one of the fastest growing areas in northern China, usage and occurrence of DDT as an impurity in other Tianjin, locating in the low reaches of Hai River, has suf- widely employed pesticides, such as dicofol (active ingre- fered from severe contamination of DDT from various dient: 4-chloro-a-(4-chlorophenyl)-a-(trichloromethyl)ben- sources. DDT had been extensively applied in local agricul- ture for several decades (Zhao and Ma, 2001). A large * Corresponding author. Tel./fax: +86 10 62751938. quantity of DDT was also produced locally in Dagu Chem- E-mail address: [email protected] (S. Tao). ical Company and Tianjin Chemical Company. Moreover, 0045-6535/$ - see front matter Ó 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.chemosphere.2006.12.082 转载 中国科技论文在线 http://www.paper.edu.cn S. Tao et al. / Chemosphere 68 (2007) 10–16 11 Renmin Pesticide Company and a number of other manu- South Canal (S. Canal), North Canal (N. Canal), South facturers in this area have produced dicofol since 1990’s. Sewer (S. Sewer), North Sewer (N. Sewer) and Beijing Over the years, the wastewater originated from the manu- Sewer (BJ Sewer) are either artificial water courses or facturers has been discharged into the adjacent aquatic open sewers. These water bodies collect the majority of nat- environment without effective treatment. It was reported ural runoff as well as industrial and domestic effluents in recently, that the mean DDX concentration in sediment Tianjin. samples from South Sewer (Nanpaiwu River) was 29 ng The sediment samples were collected using a grab sam- gÀ1 dry wt. (Hu et al., 2005). The measured DDXs in the pler, and the water and SS were sampled using cylinder sediments from the neighboring Hai River and Dagu Sewer samplers. At least three sub-samples were collected for each ranged from 2 to 19 ng gÀ1 dry wt. and 4 to 84 ng gÀ1 dry sample type at each location. The sub-samples were then wt., respectively (Yang et al., 2005). mixed thoroughly into a composite sample to reduce the So far, the data available on DDT contamination in possible random variation. All the samples were frozen aquatic environment of Tianjin were based on a limited immediately after being transported to the laboratory number of sediment samples. To provide an overall under- and kept at À18 °C before analysis. The sediment samples standing of the DDT contamination in Tianjin, an exten- were centrifuged (Centrifuge TDL-5 > 3000 r mÀ1), freeze- sive survey was conducted recently, and water, suspended dried (EYELA-FDU-830) and rubbed to pass through a solid (SS) and sediment were sampled concurrently. In 70-mesh sieve. The SS samples were separated from water addition to the levels and compositions of DDXs in the by glass fiber filters (Sartorius, B = 47 mm, 0.5 lm, area, the present study particularly focused on spatial ashed at 450 °C). The separated SS samples were also and temporal variations and source identification, in hopes freeze-dried. of offering necessary information for assessing the potential risk on the regional ecosystem and public health, and for 2.2. Extraction and cleanup of sediment and SS samples formulating practical management strategy. The sediment and SS samples were extracted with an 2. Methodology accelerated solvent extractor (ASE-300, Dionex, USA), equipped with 34 ml extraction cells. Around 5 g freeze- 2.1. Sampling dried sediment or 0.5 g SS sample was analytically weighed, mixed with anhydrous sodium sulfate (1:5) and transferred Twenty nine water samples, twenty nine SS samples and into the extraction cell. For the sediment samples, activated sixty bottom sediment samples were collected from various copper powder (1:1 ratio of copper powder to sediment) locations along the nine major rivers and canals (Fig. 1)in was added to desulphurize the extract. The samples were summer 2002. Hai (Hai R.), Chaobai (Chaobai R.) and extracted using dichloromethane as the extraction solvent Yongding (Yongding R.) are natural rivers, while Ji Canal, under 10335 kP at 140 °C. The extraction was carried out in one cycle with 7 min heating followed by 5 min static extraction. The extracted solutions were concentrated to 0 20 km N near dryness on a rotary evaporator at 35 °C. The concen- trated extracts were transferred with 2 ml hexane onto the top of a chromatography column (30 cm · 10 mm i.d.) Beijing filled with 6 g Florisil. The elution procedure consisted of 50 ml hexane and 50 ml 7:3 hexane/dichloromethane (v/v) Tianjin at a rate of 2 ml minÀ1. The eluate was collected and con- Chem. Co. centrated on the rotary evaporator, transferred to a Kud- N. Canal erna–Danish tube and then rinsed three times with BJ Sewer Chaobai R. hexane. The final volume was brought down to 1 ml under Ji Canal. Renmin a gentle stream of nitrogen. Pesticide Co. Tianjin Yongding R. Pesticide Co. 2.3. Extraction of water samples N. Sewer Bohai Bay Hai R. Dissolved DDXs in water samples were extracted by S. Sewer Dagu solid phase micro extraction (SPME). The fiber selected Chem. Co. was a fused-silica rod coated with 100 lm of poly- S. Canal Tianjin dimethylsiloxane (PDMS) from Supelco (Supelco Corp., China USA). The fibers were conditioned according to manufac- turer’s recommendations for 2 h at 250 °C before utiliza- Fig. 1. Water courses (thick lines), sampling locations (triangles) and tion. The fiber was exposed to the water sample in a major chemical and pesticide manufacturers (filled squares) in Tianjin. All 4.3 ml Supelco vial for 1 h and the water samples were con- rivers flow from northwest towards southeast. tinuously agitated with a magnetic stir bar on a stir plate 中国科技论文在线 http://www.paper.edu.cn 12 S. Tao et al. / Chemosphere 68 (2007) 10–16 revolving at 1000 rpm (Eyela RCH-3 D with 10 · 3 mm stir methane and hexane, 1:1 v/v) was concentrated to a total bar, Japan) during the extraction. Water that may have volume of 0.5 ml and then measured with GC-ECD to wicked into the needle was removed by vigorous shaking check the solvent background. The procedure blanks were of the fiber assembly and/or by touching the tip of the nee- run simultaneously with every set of the samples. A stan- dle with a tissue paper. The thermal desorption of the fiber dard solution was included for every 20 samples during occurred inside of the injection port at 220 °C for 4 min, GC measurements to monitor the stability of the detection. and once the desorption was complete, the split vent was All the samples were measured in two duplicates. opened for the remainder of the chromatographic sepa- Anhydrous sodium sulfate and glassware were heated at ration.
Recommended publications
  • Biological Consequences of Environmental Pollution in Running Water Ecosystems: a Case Study in Zooplankton*
    Environmental Pollution 252 (2019) 1483e1490 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Biological consequences of environmental pollution in running water ecosystems: A case study in zooplankton* * Wei Xiong a, Ping Ni a, b, Yiyong Chen a, b, Yangchun Gao a, b, Shiguo Li a, b, Aibin Zhan a, b, a Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China b University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China article info abstract Article history: Biodiversity in running water ecosystems such as streams and rivers is threatened by chemical pollution Received 19 February 2019 derived from anthropogenic activities. Zooplankton are ecologically indicative in aquatic ecosystems, Received in revised form owing to their position of linking the top-down and bottom-up regulators in aquatic food webs, and thus 10 June 2019 of great potential to assess ecological effects of human-induced pollution. Here we investigated the Accepted 12 June 2019 influence of water pollution on zooplankton communities characterized by metabarcoding in Songhua Available online 24 June 2019 River Basin in northeast China. Our results clearly showed that varied levels of anthropogenic distur- bance significantly influenced water quality, leading to distinct environmental pollution gradients Keywords: < Water pollution (p 0.001), particularly derived from total nitrogen, nitrate nitrogen and pH. Redundancy analysis fi fl Biodiversity showed that such environmental gradients signi cantly in uenced the geographical distribution of Metabarcoding zooplankton biodiversity (R ¼ 0.283, p ¼ 0.001). In addition, along with the trend of increasing envi- Songhua River Basin ronmental pollution, habitat-related indicator taxa were shifted in constituents, altering from large-sized Zooplankton species (e.g.
    [Show full text]
  • The Framework on Eco-Efficient Water Infrastructure Development in China
    KICT-UNESCAP Eco-Efficient Water Infrastructure Project The Framework on Eco-efficient Water Infrastructure Development in China (Final-Report) General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, China December 2009 Contents 1. WATER RESOURCES AND WATER INFRASTRUCTURE PRESENT SITUATION AND ITS DEVELOPMENT IN CHINA ............................................................................................................................. 1 1.1 CHARACTERISTICS OF WATER RESOURCES....................................................................................................... 6 1.2 WATER USE ISSUES IN CHINA .......................................................................................................................... 7 1.3 FOUR WATER RESOURCES ISSUES FACED BY CHINA .......................................................................................... 8 1.4 CHINA’S PRACTICE IN WATER RESOURCES MANAGEMENT................................................................................10 1.4.1 Philosophy change of water resources management...............................................................................10 1.4.2 Water resources management system .....................................................................................................12 1.4.3 Environmental management system for water infrastructure construction ..............................................13 1.4.4 System of water-draw and utilization assessment ...................................................................................13
    [Show full text]
  • Confronting the Water Crisis of Beijing Municipality in a Systems Perspective Focusing on Water Quantity and Quality Changes
    Confronting the Water Crisis of Beijing Municipality in a Systems Perspective Focusing on Water Quantity and Quality Changes Jin Ma Master of Science Thesis Stockholm 2011 Jin Ma Confronting the Water Crisis of Beijing Municipality in a Systems Perspective Focusing on Water Quantity and Quality Changes Supervisor: Ronald Wennersten Examiner: Ronald Wennersten Master of Science Thesis STOCKHOLM 2011 PRESENTED AT INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY TRITA-IM 2011:15 ISSN 1402-7615 Industrial Ecology, Royal Institute of Technology www.ima.kth.se SUMMARY In recent decades, water systems worldwide are under crisis due to excessive human interventions particularly in the arid and semi-arid regions. In many cities, the water quantity situation has become more and more serious, caused either by absolute water shortage or water pollution. Considering population growth and fast urbanization, ensuring adequate water supply with acceptable water quality is crucial to socio-economic development in the coming decades. In this context, one key point is to (re-)address various water problems in a more holistic way. This study explores the emerging water crisis events in Beijing Municipality so as to have a better understanding of water systems changes and to make more sustainable water-related decisions. The changes of water quantity and water quality in the region are analyzed in a systems perspective; and opportunities towards improved performance of Beijing‟s water systems are discussed. In order to aid in water systems analysis, a conceptual framework is developed, with a focus on identifying the most important interactions of the urban water sector. The results of the study show that the emerging water crisis events in the Beijing region are caused by a variety of inter-related factors, both external and internal.
    [Show full text]
  • Swat Simulation Model for Climate Change Impact on Runoff
    INTERNATIONAL JOURNAL OF BIO-RESOURCE, ENVIRONMENT AND AGRICULTURAL SCIENCES (IJBEAS) Vol. 2(2) :322-332, 2016 www.sbear.in // ISSN 2454-3551 SWAT SIMULATION MODEL FOR CLIMATE CHANGE IMPACT ON RUNOFF Kishore Chandra Swain1*, Chiranjit Singha1 and Dinesh Kumar Rusia2 1Department of ASEPAN, Institute of Agriculture, Visva-Bharati, Sriniketan, Birbhum, West Bengal 731236 2Department of Agricultural Engineering, Birsa Agricultural University, Kanke, Ranchi, Jharkhand. *Corresponding author: [email protected]. Received: March 2016 Revised accepted: May 2016 ABSTRACT SWAT has proven to be an effective method of evaluating alternative land use effects on runoff, sediment and pollutant losses for simulation of hypothetical, real and future scenarios. This capability has been strengthened via the integration of GIS-SWAT with LULC simulation models in watershed management for sustainable agricultural planning programme. The assessment of climate change impact on water resources is still subject to great uncertainty. One of the major uncertainties is the climate projection, which has a marked influence on the simulated runoff in the context of future hydrology. In addition, the application of hydrological models involves uncertainty at various levels as the models are simplified conceptualizations of a real-world system. SWAT has been used as a tool for managing the runoff in the watershed involving future weather parameters from climate models, land use/land cover patterns, soil series information etc. The paper highlighted the contribution of various researchers for runoff estimations in national and international scenarios. Keywords: SWAT, ArcSWAT, climate change, watershed, land use/land cover INTRODUCTION Since the beginning of industrial revolution the influence of human activity has begun to extend to a global scale.
    [Show full text]
  • Assessment of Urban Green Space Based on Bio-Energy Landscape Connectivity: a Case Study on Tongzhou District in Beijing, China
    sustainability Article Assessment of Urban Green Space Based on Bio-Energy Landscape Connectivity: A Case Study on Tongzhou District in Beijing, China Kunyuan Wanghe y, Xinle Guo y, Xiaofeng Luan * and Kai Li * School of Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China * Correspondence: [email protected] (X.L.); [email protected] (K.L.); Tel.: +86-10-6233-6716 (X.L.); +86-10-6233-6698 (K.L.) The authors contributed equally to this study. y Received: 29 July 2019; Accepted: 5 September 2019; Published: 10 September 2019 Abstract: Green infrastructure is one of the key components that provides critical ecosystems services in urban areas, such as regulating services (temperature regulation, noise reduction, air purification), and cultural services (recreation, aesthetic benefits), but due to rapid urbanization, many environmental impacts associated with the decline of green space have emerged and are rarely been evaluated integrally and promptly. The Chinese government is building a new city as the sub-center of the capital in Tongzhou District, Beijing, China. A series of policies have been implemented to increase the size of green urban areas. To support this land-use decision-making process and achieve a sustainable development strategy, accurate assessments of green space are required. In the current study, using land-use data and environmental parameters, we assessed the urban green space in the case study area. The bio-energy and its fluxes, landscape connectivity, as well as
    [Show full text]
  • Policy Note on Integrated Flood Risk Management Key Lesson Learned and Recommendations for China
    Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Strategy Resources Partnership China CountryWater WATER PARTNERSHIP PROGRAM PARTNERSHIP WATER THE WORLDBANK (2013-2020) China Country Water Resources Partnership Strategy © 2013 The World Bank 1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this work is subject to copyright. Because The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2422; e-mail: [email protected]. Table of Contents ACKNOWLEDGMENTS ..................................................................................................................VII
    [Show full text]
  • Attribution of Runoff Variation in the Headwaters of the Yangtze River
    International Journal of Environmental Research and Public Health Article Attribution of Runoff Variation in the Headwaters of the Yangtze River Based on the Budyko Hypothesis Junlong Liu , Jin Chen *, Jijun Xu, Yuru Lin, Zhe Yuan and Mingyuan Zhou Changjiang Scientific Research Institute of Changjiang Water Resources Commission, Wuhan 430010, China * Correspondence: [email protected] Received: 30 May 2019; Accepted: 11 July 2019; Published: 13 July 2019 Abstract: Quantifying the contributions of climate change and human activities on runoff changes is of great importance for water resource management, sustainable water resource utilization, and sustainable development of society. In this study, hydrological and climatic data from hydrological and meteorological stations in the headwaters of the Yangtze River (YRHA) from 1966 to 2013 were used to quantitatively attribute the runoff change to the impacts of climate change and human activities separately. Firstly, the change trends in precipitation, runoff depth and potential evapotranspiration were analyzed by the Mann-Kendall test method. Three methods, secondly, including ordered clustering, Mann-Kendall and cumulative anomaly curve were adopted to detect the change points of runoff at Zhimenda hydrological station and partition the whole study period into two sub-periods at the change point (base and impacted periods). Then, the elasticity coefficient method based on the Budyko hypothesis was applied to calculate elasticity coefficients of runoff to precipitation, potential evapotranspiration and land use/cover during the two periods, and to evaluate the contributions of climate change and human activities. Results indicated that during 1966–2013, runoff depth, precipitation and potential evapotranspiration all showed a significant increasing trend, 1 1 1 with increasing rates of 7.26 mm decade− , 18.725 mm decade− and 7.228 mm decade− , respectively.
    [Show full text]
  • Assessment of Climate Change Impact and Difference on the River Runoff In
    Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-448 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 27 September 2018 c Author(s) 2018. CC BY 4.0 License. Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 °C and 2.0 °C global warming Hongmei Xu1, Lüliu Liu1, Yong Wang2, Sheng Wang3, Ying Hao4, Jingjin Ma5, Tong Jiang6,1 5 1National Climate Center, China Meteorological Administration, Beijing, 100081, China 2Chongqing Climate Center, Chongqing, 401147, China 3Anhui Climate Center, Hefei, 230031, China 4Anhui Meteorological Observatory, Hefei, 230031, China 5Beijing Meteorological Disaster Prevention Center, Beijing, 100089, China 10 6Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geography and Remote Sensing, Nanjing University of Information Science & Technology, Nanjing, 210044, China Correspondence to: Hongmei Xu ([email protected]) Co-correspondence to: Tong Jiang ([email protected]) 15 Abstract: To quantify climate change impact and difference on basin-scale river runoff under the limiting global warming thresholds of 1.5 °C and 2.0 °C , this study examined four river basins covering a wide hydroclimatic setting. We analyzed projected climate change in four basins, quantified climate change impact on annual and seasonal runoff based on the Soil Water Assessment Tool, and estimated the uncertainty constrained by the global circulation models (GCMs) structure and the Representative Concentration Pathways (RCPs). All statistics for the two basins located in northern China indicated 20 generally warmer and wetter conditions, whereas the two basins located in southern China projected less warming and were inconsistent regarding annual precipitation change.
    [Show full text]
  • To Establish the Government-Civilian Cooperative Ecological Compensation System
    To establish the government-civilian cooperative ecological compensation system Fang Zhulan, Renmin University of China Jan.2010 Ecological compensation goes hand in hand with economic growth • as ecological protection draws more attention from people, ecological compensation will become the core content of sustainable economic growth. China now will put more emphasis on the establishment and perfection of an ecological compensation mechanism. • China's ecological compensation system, dominated by government through fiscal compensation, is divided into central government's relieving compensation to ecologically-deteriorating regions and ecological beneficiary region government's investment compensation to ecological contribution region's government. However, it has some drawbacks: Central government's ecological compensation • Central government's financial aid is normally in the mane of helping the poor, lacking the clear recognition to people's right of ecological contribution region. • In such a transfer payment, the so-called less- developed region's ecological contribution is often ignored, it is with more political concern than ecological consideration. • Zhangjiakou City and Chengde City in China's Hebei Province made remarkable contribution to the water source protection work of Beijing and Tianjin, through massive workload including the ecological repair of Yongding River, Chaobai River and Juma River, forbidding stock raising on hills and closing down polluting enterprises. Due to the protection on ecological establishment and water resource, Zhangjiakou City and Chengde City were both restricted in their economic development. • According to China's regional development Blue Book issued by Beijing Municipal Academy of Social Sciences in 2006, per capita GDP and local revenues in poverty region around Beijing and Tianjin in Hebei Province are only 1 / 4 and 1 / 10 of those in remote suburban districts and counties of Beijing and Tianjin.
    [Show full text]
  • River Conservancy and the Undetermined Future of the Port of Tianjin, 1888-1937 by Kan Li
    ISSUE EIGHT : FALL 2017 OPEN RIVERS : RETHINKING WATER, PLACE & COMMUNITY GRASPING WATER http://openrivers.umn.edu An interdisciplinary online journal rethinking the Mississippi from multiple perspectives within and beyond the academy. ISSN 2471-190X ISSUE EIGHT : FALL 2017 The cover image is of Delta of the Yellow River, China (top) and Delta of the Zambezi River, Mozam- bique (bottom). Landsat imagery courtesy of NASA Goddard Space Flight Center and U.S. Geological Survey. Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCom- mercial 4.0 International License. This means each author holds the copyright to her or his work, and grants all users the rights to: share (copy and/or redistribute the material in any medium or format) or adapt (remix, transform, and/or build upon the material) the article, as long as the original author and source is cited, and the use is for noncommercial purposes. Open Rivers: Rethinking Rethinking Water, Place & Community is produced by the University of Minnesota Libraries Publishing and the University of Minnesota Institute for Advanced Study. Editors Editorial Board Editor: Jay Bell, Soil, Water, and Climate, University of Patrick Nunnally, Institute for Advanced Study, Minnesota University of Minnesota Tom Fisher, Metropolitan Design Center, Administrative Editor: University of Minnesota Phyllis Mauch Messenger, Institute for Advanced Study, University of Minnesota Lewis E. Gilbert, Institute on the Environment, University of Minnesota Assistant Editor: Laurie
    [Show full text]
  • A Case Study in Chaobai River Replenished by Reclaimed Water, North China
    water Article Assessment of Water Quality Using Chemometrics and Multivariate Statistics: A Case Study in Chaobai River Replenished by Reclaimed Water, North China Yilei Yu 1,2 , Xianfang Song 3,*, Yinghua Zhang 3 and Fandong Zheng 4 1 Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; [email protected] 2 Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China 3 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 4 Beijing Water Science and Technology Institute, Beijing 10048, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-6488-9849 Received: 3 August 2020; Accepted: 10 September 2020; Published: 12 September 2020 Abstract: Dry rivers could be effectively recovered by reclaimed water in North China, while river water quality would be an important issue. Therefore, it is important to understand the spatiotemporal variation and controlling factors of river water. Water samples were collected during March, May, July, September, and November in the year 2010, then 20 parameters were analyzed. The water environment was oxidizing and alkaline, which was beneficial for nitrification. Nitrate was the main nitrogen form. Depleted and enriched isotopes were found in reclaimed water and river water, respectively. Total nitrogen (TN) and total phosphorus (TP) of reclaimed water exceed the threshold of reclaimed water reuse standard and Class V in the surface water quality criteria. Most river water was at the severe eutrophication level. The sodium adsorption ratio indicated a medium harmful level for irrigation purpose.
    [Show full text]
  • Analysis of Runoff Trends and Drivers in the Haihe River Basin, China
    International Journal of Environmental Research and Public Health Article Analysis of Runoff Trends and Drivers in the Haihe River Basin, China Huashan Xu 1, Yufen Ren 1,*, Hua Zheng 1, Zhiyun Ouyang 1 and Bo Jiang 2 1 Beijing Urban Ecosystem Research Station, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; [email protected] (H.X.); [email protected] (H.Z.); [email protected] (Z.O.) 2 Changjiang Water Resources Protection Institute, Changjiang Water Resources Commission of the Ministry of Water Resources, Wuhan 430051, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-62849751 Received: 26 December 2019; Accepted: 25 February 2020; Published: 29 February 2020 Abstract: During the past decades, runoff has been highly influenced by climate change and human activities in Haihe River basin, and it is important to analyze the runoff trends and the drivers of its change to guide water resources management. The Mann–Kendall method and Pettitt test were conducted to analyze the hydrological and climate trends. Data from six sub-basins were used, including runoff at six representative hydrological stations and precipitation and air temperature at 49 meteorological stations. We used multiple-regression analysis and policy review to explore the influence of climate change and human activities on the runoff change at six sub-basins. According to the results, annual runoff showed a significant downward trend at six hydrological stations (p < 0.05), and the most probable change points at all stations showed up during the period from the late 1970s to the early 1980s.
    [Show full text]