Radial Basis Functions

Total Page:16

File Type:pdf, Size:1020Kb

Radial Basis Functions Acta Numerica (2000), pp. 1–38 c Cambridge University Press, 2000 Radial basis functions M. D. Buhmann Mathematical Institute, Justus Liebig University, 35392 Giessen, Germany E-mail: [email protected] Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper. CONTENTS 1 Introduction 1 2 Convergence rates 5 3 Compact support 11 4 Iterative methods for implementation 16 5 Interpolation on spheres 25 6 Applications 28 References 34 1. Introduction There is a multitude of ways to approximate a function of many variables: multivariate polynomials, splines, tensor product methods, local methods and global methods. All of these approaches have many advantages and some disadvantages, but if the dimensionality of the problem (the number of variables) is large, which is often the case in many applications from stat- istics to neural networks, our choice of methods is greatly reduced, unless 2 M. D. Buhmann we resort solely to tensor product methods. In fact, sometimes we are given scattered data, immediately excluding the use of tensor product methods. Also, tensor product methods in high dimensions always require many, of- ten too many data. In this situation, the method of choice is often a radial basis function approach which is, incidentally, also highly useful in lower- dimensional problems and as an alternative to (piecewise) polynomials, be- cause of its excellent approximation properties; at any rate it is universally applicable independent of dimension. In order to formulate the problem as we will see it in this review, let Ξ be a finite set of distinct points in Rn, which are traditionally called centres in radial basis function jargon, because our basis functions will be radially symmetric about these points. The goal of our work is to approximate an unknown function that is only given at those centres via a set of real numbers fξ, ξ Ξ. These are almost always interpreted as function evaluations of ∈ n some smooth function f : R Ω R, so that fξ = f(ξ). Here, Ω is a domain in Rn. This point of view⊃ will→ allow us to measure conveniently the uniform approximation error between f and its approximant s. This error depends on the choice of the approximant, on Ξ, on f, and in particular on its smoothness. In order to approximate with s, which is usually by interpolation, we take a univariate continuous function φ that is radialized by composition with the Euclidean norm on Rn, or a suitable replacement thereof when we are working on a sphere in n-dimensional Euclidean space, for instance. This φ : R+ R is the radial basis function. Additionally, we take the given centres →ξ from the given finite set Ξ of distinct points and use them simultaneously for shifting the radial basis function and as interpolation (collocation) points. Therefore, our standard radial function approximants now have the form s(x)= λ φ( x ξ ),xRn, (1.1) ξ k − k ∈ ξ Ξ X∈ suitable adjustments being made when x is not from the whole space, and Ξ the coefficient vector λ =(λξ)ξ Ξ is an element of R . In many instances, particularly those that will interest∈ us in Section 3, the interpolation re- quirements s = f (1.2) |Ξ |Ξ for given data f lead to a positive definite interpolation matrix A = |Ξ φ( ξ ζ ) ξ,ζ Ξ. In that case, we call the radial basis function ‘positive definite’{ k − ask well.} ∈ If it is, the linear system of equations that comes from (1.1) and (1.2) and uses precisely that matrix A yields a unique coefficient vector λ RΞ for the interpolant (1.1). ∈All radial basis functions of Section 3 have this property of positive defin- Radial basis functions 3 c2r2 iteness, as does for instance the Gaussian radial basis function φ(r)=e− for all positive parameters c and the inverse multiquadric function φ(r)= 1/√r2 + c2. However, in some instances such as the so-called thin-plate spline radial basis function, the radial function φ is only conditionally positive definite of some order k on Rn, say, a notion that we shall explain and use in the Pk 1 subsequent section. Now, in this event, polynomials p(x) n− (x) of degree k 1inn unknowns are augmented to the right-hand side∈ of (1.1) so as to render− the interpolation problem again uniquely solvable. Consequently we have as approximant s(x)= λ φ( x ξ )+p(x),xRn. (1.3) ξ k − k ∈ ξ Ξ X∈ Then the extra degrees of freedom are taken up by requiring that the coeffi- RΞ Pk 1 cient vector λ is orthogonal to the polynomial space n− (Ξ), that is, all polynomials∈ of total degree less than k in n variables restricted to Ξ: Ξ k 1 k 1 R λ P − (Ξ) λ q(ξ)=0, q P − . (1.4) 3 ⊥ n ⇐⇒ ξ ∀ ∈ n ξ Ξ X∈ Pk 1 In order to retain uniqueness, Ξ has to contain a n− -unisolvent subset in this case. When k = 2, for instance, this means that the centre-set must not be a subset of a straight line. This is a requirement that can easily be met in most cases. The two probably best-known and most often applied radial basis func- tions are called multiquadrics and thin-plate splines, respectively. The former is, for a positive parameter c, φ(r)=√r2 + c2 and the latter is φ(r)=r2 log r, where in the second case (1.3) and (1.4) with k = 2 are applied. The multiquadric is, subject to a sign change, conditionally posit- ive definite of order k = 1, but it turns out that the original interpolation problem without augmentation by constants is also nonsingular because of special properties of the multiquadric function (Micchelli 1986). One more well-known example comes up when we set c = 0 in the mul- tiquadric example: then we have the so-called linear radial basis function φ(r)=r which also gives a nonsingular interpolation problem without aug- mentation by constants. All these examples are useful for various forms of interpolation and approximation and they all allow this interpolation pro- cedure in all dimensions n and all sets of distinct centres, independently of the geometry of the points. In contrast to spline approximation in more than one dimension, for instance, there is no triangulation or tessellation of the data points required, nor is there any restriction on the dimensionality of the problem. We note, however, that these nonsingularity properties are strictly linked to the fact that we use Euclidean norms; for p-norms with 4 M. D. Buhmann p>2, including p = ,orp = 1, singularity can occur in any dimension for unfortunate choices∞ of data points ξ (Baxter 1991). While it has been known for a long time (see Hardy (1990) for references and the history of the approach) that approximants of the above form exist and approximate well if the centres are sufficiently close together and the function f is smooth enough, it took quite a while to underpin these empir- ical results theoretically, that is, get existence, uniqueness and convergence results, and extend the known classes of useful radial basis functions to fur- ther examples. Now, however, research into radial basis functions is a very active and fruitful area and it is timely to stand back and summarize its new developments in this article. Among the plethora of new papers that are published every year on radial basis functions we have made out and selected five major directions which have had important new developments and which we will review in this work. One major feature, for example, that has been looked at recently (again) and that we address, is the accuracy of approximation with radial basis functions when the centres are scattered points in a domain, and, ultimately, form a dense subset of the domain – a subject, incidentally, well fitted to begin this review paper in the next section, because the whole theoretical de- velopment started some 20 years ago in France with Duchon’s contributions (1976, 1978, 1979) to exactly this question in a special context. Apart from the fundamental question of unique solvability of the ensuing linear system – which has by now been completely answered for large classes of radial basis functions that are conditionally positive definite, mostly fol- lowing Micchelli (1986) – an important question is that of convergence and convergence rates of those interpolants to the function f that is being ap- proximated by collocation to f Ξ if f is in a suitable smoothness space. Duchon (1976, 1978, 1979) gave| answers to this question that address the important special case of thin-plate splines φ(r)=r2 log r and its siblings, for instance the odd powers of r (‘pseudo-cubics’ φ(r)=r3, etc.), and recent research has improved some of his 20 year-old results in various directions, including inverse theorems, and theorems about optimality of convergence orders, the sets of centres still always being finite.
Recommended publications
  • Orthogonal Functions, Radial Basis Functions (RBF) and Cross-Validation (CV)
    Exercise 6: Orthogonal Functions, Radial Basis Functions (RBF) and Cross-Validation (CV) CSElab Computational Science & Engineering Laboratory Outline 1. Goals 2. Theory/ Examples 3. Questions Goals ⚫ Orthonormal Basis Functions ⚫ How to construct an orthonormal basis ? ⚫ Benefit of using an orthonormal basis? ⚫ Radial Basis Functions (RBF) ⚫ Cross Validation (CV) Motivation: Orthonormal Basis Functions ⚫ Computation of interpolation coefficients can be compute intensive ⚫ Adding or removing basis functions normally requires a re-computation of the coefficients ⚫ Overcome by orthonormal basis functions Gram-Schmidt Orthonormalization 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푛 ⚫ Goal: Generate a set of vectors 푢1, … , 푢푘 ⊂ 푅 such that 푢1, … , 푢푘 is orthonormal and spans the same subspace as 푣1, … , 푣푘 ⚫ Click here if the animation is not playing Recap: Projection of Vectors ⚫ Notation: Denote dot product as 푎Ԧ ⋅ 푏 = 푎Ԧ, 푏 1 (bilinear form). This implies the norm 푢 = 푎Ԧ, 푎Ԧ 2 ⚫ Define the scalar projection of v onto u as 푃푢 푣 = 푢,푣 | 푢 | 푢,푣 푢 ⚫ Hence, is the part of v pointing in direction of u | 푢 | | 푢 | 푢 푢 and 푣∗ = 푣 − , 푣 is orthogonal to 푢 푢 | 푢 | Gram-Schmidt for Vectors 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푣1 푢1 = | 푣1 | 푣2,푢1 푢1 푢2 = 푣2 − = 푣2 − 푣2, 푢1 푢1 as 푢1 normalized 푢1 푢1 푢෤3 = 푣3 − 푣3, 푢1 푢1 What’s missing? Gram-Schmidt for Vectors 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푣1 푢1 = | 푣1 | 푣2,푢1 푢1 푢2 = 푣2 − = 푣2 − 푣2, 푢1 푢1 as 푢1 normalized 푢1 푢1 푢෤3 = 푣3 − 푣3, 푢1 푢1 What’s missing? 푢෤3is orthogonal to 푢1, but not yet to 푢2 푢3 = 푢෤3 − 푢෤3, 푢2 푢2 If the animation is not playing, please click here Gram-Schmidt for Functions ⚫ Given: A set of functions 푔1, … , 푔푘 .We want 휙1, … , 휙푘 ⚫ Bridge to Gram-Schmidt for vectors: ∞ ⚫ Define 푔푖, 푔푗 = ׬−∞ 푔푖 푥 푔푗 푥 푑푥 ⚫ What’s the corresponding norm? Gram-Schmidt for Functions ⚫ Given: A set of functions 푔1, … , 푔푘 .We want 휙1, … , 휙푘 ⚫ Bridge to Gram-Schmidt for vectors: ∞ ⚫ 푔 , 푔 = 푔 푥 푔 푥 푑푥 .
    [Show full text]
  • Anatomically Informed Basis Functions — Anatomisch Informierte Basisfunktionen
    Anatomically Informed Basis Functions | Anatomisch Informierte Basisfunktionen Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr.rer.nat.), genehmigt durch die Fakult¨atf¨urNaturwissenschaften der Otto{von{Guericke{Universit¨atMagdeburg von Diplom-Informatiker Stefan Kiebel geb. am 10. Juni 1968 in Wadern/Saar Gutachter: Prof. Dr. Lutz J¨ancke Prof. Dr. Hermann Hinrichs Prof. Dr. Cornelius Weiller Eingereicht am: 27. Februar 2001 Verteidigung am: 9. August 2001 Abstract In this thesis, a method is presented that incorporates anatomical information into the statistical analysis of functional neuroimaging data. Available anatomical informa- tion is used to explicitly specify spatial components within a functional volume that are assumed to carry evidence of functional activation. After estimating the activity by fitting the same spatial model to each functional volume and projecting the estimates back into voxel-space, one can proceed with a conventional time-series analysis such as statistical parametric mapping (SPM). The anatomical information used in this work comprised the reconstructed grey matter surface, derived from high-resolution T1-weighted magnetic resonance images (MRI). The spatial components specified in the model were of low spatial frequency and confined to the grey matter surface. By explaining the observed activity in terms of these components, one efficiently captures spatially smooth response components induced by underlying neuronal activations lo- calised close to or within the grey matter sheet. Effectively, the method implements a spatially variable anatomically informed deconvolution and consequently the method was named anatomically informed basis functions (AIBF). AIBF can be used for the analysis of any functional imaging modality. In this thesis it was applied to simu- lated and real functional MRI (fMRI) and positron emission tomography (PET) data.
    [Show full text]
  • A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations Maggie Elizabeth Chenoweth [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2012 A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations Maggie Elizabeth Chenoweth [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Numerical Analysis and Computation Commons Recommended Citation Chenoweth, Maggie Elizabeth, "A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations" (2012). Theses, Dissertations and Capstones. Paper 243. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. A LOCAL RADIAL BASIS FUNCTION METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS Athesissubmittedto the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Arts in Mathematics by Maggie Elizabeth Chenoweth Approved by Dr. Scott Sarra, Committee Chairperson Dr. Anna Mummert Dr. Carl Mummert Marshall University May 2012 Copyright by Maggie Elizabeth Chenoweth 2012 ii ACKNOWLEDGMENTS I would like to begin by expressing my sincerest appreciation to my thesis advisor, Dr. Scott Sarra. His knowledge and expertise have guided me during my research endeavors and the process of writing this thesis. Dr. Sarra has also served as my teaching mentor, and I am grateful for all of his encouragement and advice. It has been an honor to work with him. I would also like to thank the other members of my thesis committee, Dr.
    [Show full text]
  • Linear Basis Function Models
    Linear basis function models Linear basis function models Linear models for regression Francesco Corona FC - Fortaleza Linear basis function models Linear models for regression Linear basis function models Linear models for regression The focus so far on unsupervised learning, we turn now to supervised learning ◮ Regression The goal of regression is to predict the value of one or more continuous target variables t, given the value of a D-dimensional vector x of input variables ◮ e.g., polynomial curve fitting FC - Fortaleza Linear basis function models Linear basis function models Linear models for regression (cont.) Training data of N = 10 points, blue circles ◮ each comprising an observation of the input variable x along with the 1 corresponding target variable t t 0 The unknown function sin(2πx) is used to generate the data, green curve ◮ −1 Goal: Predict the value of t for some new value of x ◮ 0 x 1 without knowledge of the green curve The input training data x was generated by choosing values of xn, for n = 1,..., N, that are spaced uniformly in the range [0, 1] The target training data t was obtained by computing values sin(2πxn) of the function and adding a small level of Gaussian noise FC - Fortaleza Linear basis function models Linear basis function models Linear models for regression (cont.) ◮ We shall fit the data using a polynomial function of the form M 2 M j y(x, w)= w0 + w1x + w2x + · · · + wM x = wj x (1) Xj=0 ◮ M is the polynomial order, x j is x raised to the power of j ◮ Polynomial coefficients w0,..., wM are collected
    [Show full text]
  • Introduction to Radial Basis Function Networks
    Intro duction to Radial Basis Function Networks Mark J L Orr Centre for Cognitive Science University of Edinburgh Buccleuch Place Edinburgh EH LW Scotland April Abstract This do cumentisanintro duction to radial basis function RBF networks a typ e of articial neural network for application to problems of sup ervised learning eg regression classication and time series prediction It is now only available in PostScript an older and now unsupp orted hyp ertext ver sion maybeavailable for a while longer The do cumentwas rst published in along with a package of Matlab functions implementing the metho ds describ ed In a new do cument Recent Advances in Radial Basis Function Networks b ecame available with a second and improved version of the Matlab package mjoancedacuk wwwancedacukmjopapersintrops wwwancedacukmjointrointrohtml wwwancedacukmjosoftwarerbfzip wwwancedacukmjopapersrecadps wwwancedacukmjosoftwarerbfzip Contents Intro duction Sup ervised Learning Nonparametric Regression Classication and Time Series Prediction Linear Mo dels Radial Functions Radial Basis Function Networks Least Squares The Optimal WeightVector The Pro jection Matrix Incremental Op erations The Eective NumberofParameters Example Mo del Selection Criteria CrossValidation Generalised
    [Show full text]
  • Linear Models for Regression
    Machine Learning Srihari Linear Models for Regression Sargur Srihari [email protected] 1 Machine Learning Srihari Topics in Linear Regression • What is regression? – Polynomial Curve Fitting with Scalar input – Linear Basis Function Models • Maximum Likelihood and Least Squares • Stochastic Gradient Descent • Regularized Least Squares 2 Machine Learning Srihari The regression task • It is a supervised learning task • Goal of regression: – predict value of one or more target variables t – given d-dimensional vector x of input variables – With dataset of known inputs and outputs • (x1,t1), ..(xN,tN) • Where xi is an input (possibly a vector) known as the predictor • ti is the target output (or response) for case i which is real-valued – Goal is to predict t from x for some future test case • We are not trying to model the distribution of x – We dont expect predictor to be a linear function of x • So ordinary linear regression of inputs will not work • We need to allow for a nonlinear function of x • We don’t have a theory of what form this function to take 3 Machine Learning Srihari An example problem • Fifty points generated (one-dimensional problem) – With x uniform from (0,1) – y generated from formula y=sin(1+x2)+noise • Where noise has N(0,0.032) distribution • Noise-free true function and data points are as shown 4 Machine Learning Srihari Applications of Regression 1. Expected claim amount an insured person will make (used to set insurance premiums) or prediction of future prices of securities 2. Also used for algorithmic
    [Show full text]
  • Basis Functions
    Basis Functions Volker Tresp Summer 2017 1 Nonlinear Mappings and Nonlinear Classifiers • Regression: { Linearity is often a good assumption when many inputs influence the output { Some natural laws are (approximately) linear F = ma { But in general, it is rather unlikely that a true function is linear • Classification: { Linear classifiers also often work well when many inputs influence the output { But also for classifiers, it is often not reasonable to assume that the classification boundaries are linear hyper planes 2 Trick • We simply transform the input into a high-dimensional space where the regressi- on/classification is again linear! • Other view: let's define appropriate features • Other view: let's define appropriate basis functions • XOR-type problem with patterns 0 0 ! +1 1 0 ! −1 0 1 ! −1 1 1 ! +1 3 XOR is not linearly separable 4 Trick: Let's Add Basis Functions • Linear Model: input vector: 1; x1; x2 • Let's consider x1x2 in addition • The interaction term x1x2 couples two inputs nonlinearly 5 With a Third Input z3 = x1x2 the XOR Becomes Linearly Separable f(x) = 1 − 2x1 − 2x2 + 4x1x2 = φ1(x) − 2φ2(x) − 2φ3(x) + 4φ4(x) with φ1(x) = 1; φ2(x) = x1; φ3(x) = x2; φ4(x) = x1x2 6 f(x) = 1 − 2x1 − 2x2 + 4x1x2 7 Separating Planes 8 A Nonlinear Function 9 f(x) = x − 0:3x3 2 3 Basis functions φ1(x) = 1; φ2(x) = x; φ3(x) = x ; φ4(x) = x und w = (0; 1; 0; −0:3) 10 Basic Idea • The simple idea: in addition to the original inputs, we add inputs that are calculated as deterministic functions of the existing inputs, and treat them as additional inputs
    [Show full text]
  • Lecture 6 – Orthonormal Wavelet Bases
    Lecture 6 – Orthonormal Wavelet Bases David Walnut Department of Mathematical Sciences George Mason University Fairfax, VA USA Chapman Lectures, Chapman University, Orange, CA 6-10 November 2017 Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Outline Wavelet systems Example 1: The Haar Wavelet basis Characterizations of wavelet bases Example 2: The Shannon Wavelet basis Example 3: The Meyer Wavelet basis Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Wavelet systems Definition A wavelet system in L2(R) is a collection of functions of the form j/2 j D2j Tk j,k Z = 2 (2 x k) j,k Z = j,k j,k Z { } 2 { − } 2 { } 2 where L2(R) is a fixed function sometimes called the 2 mother wavelet. A wavelet system that forms an orthonormal basis for L2(R) is called a wavelet orthonormal basis for L2(R). Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases If the mother wavelet (x) is concentrated around 0 then j j,k (x) is concentrated around 2− k. If (x) is essentially supported on an interval of length L, then j,k (x) is essentially j supported on an interval of length 2− L. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Since (D j T ) (γ)=D j M (γ) it follows that if is 2 k ^ 2− k concentrated on the interval I then j,k is concentrated on the interval 2j I. b b d Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Dyadic time-frequency tiling Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Example 1: The Haar System This is historically the first orthonormal wavelet basis, described by A.
    [Show full text]
  • On Fourier Transforms of Radial Functions and Distributions
    ON FOURIER TRANSFORMS OF RADIAL FUNCTIONS AND DISTRIBUTIONS LOUKAS GRAFAKOS AND GERALD TESCHL Abstract. We find a formula that relates the Fourier transform of a radial function on Rn with the Fourier transform of the same function defined on Rn+2. This formula enables one to explicitly calculate the Fourier transform of any radial function f(r) in any dimension, provided one knows the Fourier transform of the one-dimensional function t 7! f(jtj) and the two-dimensional function (x1; x2) 7! f(j(x1; x2)j). We prove analogous results for radial tempered distributions. 1. Introduction The Fourier transform of a function Φ in L1(Rn) is defined by the con- vergent integral Z −2πix·ξ Fn(Φ)(ξ) = Φ(x)e dx : Rn If the function Φ is radial, i.e., Φ(x) = '(jxj) for some function ' on the line, then its Fourier transform is also radial and we use the notation Fn(Φ)(ξ) = Fn(')(r) ; where r = jξj. In this article, we will show that there is a relationship be- tween Fn(')(r) and Fn+2(')(r) as functions of the positive real variable r. We have the following result. Theorem 1.1. Let n ≥ 1. Suppose that f is a function on the real line such that the functions f(j · j) are in L1(Rn+2) and also in L1(Rn). Then we have 1 1 d (1) F (f)(r) = − F (f)(r) r > 0 : n+2 2π r dr n Moreover, the following formula is valid for all even Schwartz functions ' on the real line: 1 1 d (2) F (')(r) = F s−n+1 ('(s)sn) (r); r > 0 : n+2 2π r2 n ds 1991 Mathematics Subject Classification.
    [Show full text]
  • Finite Element Methods
    Part I Finite Element Methods Chapter 1 Approximation of Functions 1.1 Approximation of Functions Many successful numerical methods for differential equations aim at approx- imating the unknown function by a sum N u(x)= ciϕi(x), (1.1) i=0 X where ϕi(x) are prescribed functions and ci, i = 0,...,N, are unknown coffi- cients to be determined. Solution methods for differential equations utilizing (1.1) must have a principle for constructing N + 1 equations to determine c0,...,cN . Then there is a machinery regarding the actual constructions of the equations for c0,...,cN in a particular problem. Finally, there is a solve phase for computing solution c0,...,cN of the N + 1 equations. Especially in the finite element method, the machinery for constructing the equations is quite comprehensive, with many mathematical and imple- mentational details entering the scene at the same time. From a pedagogical point of view it can therefore be wise to introduce the computational ma- chinery for a trivial equation, namely u = f. Solving this equation with f given and u on the form (1.1) means that we seek an approximation u to f. This approximation problem has the advantage of introducing most of the finite element toolbox, but with postponing variational forms, integration by parts, boundary conditions, and coordinate mappings. It is therefore from a pedagogical point of view advantageous to become familiar with finite ele- ment approximation before addressing finite element methods for differential equations. First, we refresh some linear algebra concepts about approximating vec- tors in vector spaces. Second, we extend these concepts to approximating functions in function spaces, using the same principles and the same nota- tion.
    [Show full text]
  • Basis Functions
    Basis Functions Volker Tresp Summer 2015 1 I am an AI optimist. We've got a lot of work in machine learning, which is sort of the polite term for AI nowadays because it got so broad that it's not that well defined. Bill Gates (Scientific American Interview, 2004) \If you invent a breakthrough in artificial intelligence, so machines can learn," Mr. Gates responded,\that is worth 10 Microsofts."(Quoted in NY Times, Monday March 3, 2004) 2 Nonlinear Mappings and Nonlinear Classifiers • Regression: { Linearity is often a good assumption when many inputs influence the output { Some natural laws are (approximately) linear F = ma { But in general, it is rather unlikely that a true function is linear • Classification: { Similarly, it is often not reasonable to assume that the classification boundaries are linear hyper planes 3 Trick • We simply transform the input into a high-dimensional space where the regressi- on/classification is again linear! • Other view: let's define appropriate features • Other view: let's define appropriate basis functions 4 XOR is not linearly separable 5 Trick: Let's Add Basis Functions • Linear Model: input vector: 1; x1; x2 • Let's consider x1x2 in addition • The interaction term x1x2 couples two inputs nonlinearly 6 With a Third Input z3 = x1x2 the XOR Becomes Linearly Separable f(x) = 1 − 2x1 − 2x2 + 4x1x2 = φ1(x) − 2φ2(x) − 2φ3(x) + 4φ4(x) with φ1(x) = 1; φ2(x) = x1; φ3(x) = x2; φ4(x) = x1x2 7 f(x) = 1 − 2x1 − 2x2 + 4x1x2 8 Separating Planes 9 A Nonlinear Function 10 f(x) = x − 0:3x3 2 3 Basis functions φ1(x) = 1; φ2(x)
    [Show full text]
  • Choosing Basis Functions and Shape Parameters for Radial Basis Function Methods
    Choosing Basis Functions and Shape Parameters for Radial Basis Function Methods Michael Mongillo October 25, 2011 Abstract Radial basis function (RBF) methods have broad applications in numerical analysis and statistics. They have found uses in the numerical solution of PDEs, data mining, machine learning, and kriging methods in statistics. This work examines the use of radial basis func- tions in scattered data approximation. In particular, the experiments in this paper test the properties of shape parameters in RBF methods, as well as methods for finding an optimal shape parameter. Locating an optimal shape parameter is a difficult problem and a topic of current research. Some experiments also consider whether the same methods can be applied to the more general problem of selecting basis functions. 1 Introduction Radial basis function (RBF) methods are an active area of mathematical research. The initial motivation for RBF methods came from geodesy, mapping, and meteorology. They have since found applications in other areas, such as the numerical solution of PDEs, machine learning, and statistics. In the 1970s, Rolland Hardy suggested what he called the multiquadric method for ap- plications in cartography because he was not satisfied with the results of polynomial interpolation. His new method for fitting data could handle unevenly distributed data sites with greater consis- tency than previous methods [Har90]. The method of RBF interpolation used in this paper is a generalization of Hardy’s multiquadric and inverse multiquadric methods. Many RBFs are defined by a constant called the shape parameter. The choice of basis function and shape parameter have a significant impact on the accuracy of an RBF method.
    [Show full text]