Lecture 6 – Orthonormal Wavelet Bases

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 6 – Orthonormal Wavelet Bases Lecture 6 – Orthonormal Wavelet Bases David Walnut Department of Mathematical Sciences George Mason University Fairfax, VA USA Chapman Lectures, Chapman University, Orange, CA 6-10 November 2017 Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Outline Wavelet systems Example 1: The Haar Wavelet basis Characterizations of wavelet bases Example 2: The Shannon Wavelet basis Example 3: The Meyer Wavelet basis Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Wavelet systems Definition A wavelet system in L2(R) is a collection of functions of the form j/2 j D2j Tk j,k Z = 2 (2 x k) j,k Z = j,k j,k Z { } 2 { − } 2 { } 2 where L2(R) is a fixed function sometimes called the 2 mother wavelet. A wavelet system that forms an orthonormal basis for L2(R) is called a wavelet orthonormal basis for L2(R). Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases If the mother wavelet (x) is concentrated around 0 then j j,k (x) is concentrated around 2− k. If (x) is essentially supported on an interval of length L, then j,k (x) is essentially j supported on an interval of length 2− L. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Since (D j T ) (γ)=D j M (γ) it follows that if is 2 k ^ 2− k concentrated on the interval I then j,k is concentrated on the interval 2j I. b b d Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Dyadic time-frequency tiling Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Example 1: The Haar System This is historically the first orthonormal wavelet basis, described by A. Haar (1910) as a basis for L2[0, 1]. The Haar basis is an alternative to the traditional Fourier basis but has the property that the partial sums of the series expansion of a continuous function f converges uniformly to f . We will prove “by hand” that the Haar basis is an orthonormal basis using a technique that will be generalized in the next lecture. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases The dyadic intervals Definition Define the dyadic intervals on R by = [2j k, 2j (k + 1)]: j, k Z , D { 2 } j j We write Ij,k =[2 k, 2 (k + 1)], and refer to the collection Ij,k : k Z { 2 } ` r ` as the dyadic intervals at scale j. Ij,k = Ij,k Ij,k , where Ij,k and r [ Ij,k are dyadic intervals at scale j + 1, to denote the left half and ` right half of the interval Ij,k . In fact, Ij,k = Ij+1,2k and r Ij,k = Ij+1,2k+1. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Note that given Ij,k , I = I I j,k j+1,2k [ j+1,2k+1 where Ij+1,2k is the left half of Ij,k and Ij+1,2k+1 the right half of Ij,k . Given (j , k ) =(j , k ), either I and I are disjoint or 0 0 6 1 1 j1,k1 j0,k0 one is contained in the other. In the latter case, the smaller interval is contained in either the right half or left half of the larger. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases The Dyadic step functions Definition A dyadic step function (at scale j) is a step function in L2(R) constant on the dyadic intervals Ij,k , k Z. We denote the 2 collection of all such step functions by Vj . For each j Z, Vj is a linear space. 2 If f V then f V for all j j, that is, V V if j > j. 2 j 2 j0 0 ≥ j ✓ j0 0 Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases The Haar scaling function Definition Let p(x)=1[0,1)(x), and for each j, k Z, let 2 j/2 j p (x)=2 p(2 x k)=D j T p(x). j,k − 2 k The collection pj,k (x): j, k Z { 2 } is the system of Haar scaling functions. For fixed j, pj,k (x) k Z { } 2 is the system of scale j Haar scaling functions. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases j/2 Note that pj,k = 2 1I and that for each j, pj,k : k Z is j,k { 2 } an orthonormal system. j/2 In fact pj,k = 2 1Ij,k is an orthonormal basis for Vj . Since V V , we can write p in terms of the basis j ✓ j+1 j,k pj+1,k : k Z , and in fact { 2 } 1/2 1/2 pj,k = 2 pj+1,2k + 2 pj+1,2k+1. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases The Haar system Definition Let h(x)=1[0,1/2)(x) 1[1/2,1)(x), and for each j, k Z, let − 2 j/2 j h (x)=2 h(2 x k)=D j T h(x). j,k − 2 k The collection hj,k (x) j,k Z { } 2 is the Haar system on R. For fixed j, hj,k (x) k Z { } 2 is the system of scale j Haar functions. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Note that supp h = I and h V . j,k j,k j,k 2 j+1 Also h = p p . j,k j+1,2k − j+1,2k+1 Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Theorem The Haar system is an orthonormal system in L2(R). If k = k 0 Z then hj,k and hj,k have disjoint supports. 6 2 0 If j < j0 then either hj,k and hj0,k 0 have disjoint supports, or supp hj0,k 0 is contained in an interval on which hj,k is constant. In either case, h , h = 0. h j0,k 0 j,k i Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Completeness of the Haar system Lemma For j Z, define the space Wj by 2 Wj = span hj,k : k Z . { 2 } Then V = V W . j+1 j ⊕ j Proof: ak pj+1,k = (a2n pj+1,2n + a2n+1 pj+1,2n+1) k Z n Z X2 X2 a + a = 2n 2n+1 (p + p ) 2 j+1,2n j+1,2n+1 n Z X2 a a + 2n − 2n+1 (p p ) 2 j+1,2n − j+1,2n+1 a2n + a2n+1 a2n a2n+1 = p , + − h , . 21/2 j n 21/2 j n n Z n Z X2 X2 Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Completeness of the Haar system Theorem The Haar system is an orthonormal basis for L2(R). Proof: Define the orthogonal projection operators P f = f , p p . j h j,k i j,k k Z X2 Because any L2 function can be approximated by a dyadic step function, Pj f f as j , and also P j f 0 as ! !1 − ! j . !1 J 1 − Note that VJ = Wj V J which implies that ⊕ − j= J+1 M− 2 L (R)= Wj . j Z M2 Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Smooth wavelet bases The Haar basis is the paradigmatic wavelet basis with good time localization. Since h(x) is discontinuous, it has very poor frequency localization. One of Meyer’s early contributions to the theory was to create an orthonormal wavelet basis with good decay in both time and frequency. Before getting to that proof, we will describe the paradigmatic orthonormal wavelet basis with optimal frequency localization, known as the Shannon basis. This will again be a proof “by hand” and will give the flavor of Meyer’s original proof. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Characterization of orthonormal bases Lemma A sequence x in a Hilbert space H is an orthonormal basis { n} for H if and only if 1. for all x H, x, x 2 = x 2, and 2 n |h ni| k k 2. x = 1 for all n. k nk P In other words, x is a normalized tight frame for H with { n} frame bound 1. The proof is trivial: Given m, note that 1 = x 2 = x , x 2 = x , x 2 + 1. k mk |h m ni| |h m ni| n n=m X X6 Hence x , x = 0 if n = m and x is an orthonormal h m ni 6 { n} system. Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Characterization of wavelet ONB Theorem (A.) Suppose that L2(R) satisfies = 1. Then 2 k k2 j/2 j 2 (2 x k): j, k Z = j,k : j, k Z { − 2 } { 2 } is an orthonormal wavelet basis for L2(R) if and only if 1. (2j γ) 2 1, and | | ⌘ j Z X2 1 b 2. (2j γ) (2j (γ + k)) = 0 for all odd integers k. Xj=0 b b Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Characterization of wavelet ON systems Theorem (B.) 2 Given L (R), the wavelet system j,k j,k Z is an 2 { } 2 orthonormal system in L2(R) if and only if 1. (γ + k) 2 1, and | | ⌘ k Z X2 b 2. (2j (γ + k)) (γ + k)=0 for all j 1. ≥ k Z X2 b b Walnut (GMU) Lecture 6 – Orthonormal Wavelet Bases Corollary 2 2 Given L (R), if j,k j,k Z is an orthonormal basis for L (R) 2 { } 2 then 1. (2j γ) 2 1, and | | ⌘ j Z X2 2. b(γ + k) 2 1. | | ⌘ k Z X2 b This says that a wavelet orthonormal basis must form a partition of unity in frequency both by translation and dilation.
Recommended publications
  • Orthogonal Functions, Radial Basis Functions (RBF) and Cross-Validation (CV)
    Exercise 6: Orthogonal Functions, Radial Basis Functions (RBF) and Cross-Validation (CV) CSElab Computational Science & Engineering Laboratory Outline 1. Goals 2. Theory/ Examples 3. Questions Goals ⚫ Orthonormal Basis Functions ⚫ How to construct an orthonormal basis ? ⚫ Benefit of using an orthonormal basis? ⚫ Radial Basis Functions (RBF) ⚫ Cross Validation (CV) Motivation: Orthonormal Basis Functions ⚫ Computation of interpolation coefficients can be compute intensive ⚫ Adding or removing basis functions normally requires a re-computation of the coefficients ⚫ Overcome by orthonormal basis functions Gram-Schmidt Orthonormalization 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푛 ⚫ Goal: Generate a set of vectors 푢1, … , 푢푘 ⊂ 푅 such that 푢1, … , 푢푘 is orthonormal and spans the same subspace as 푣1, … , 푣푘 ⚫ Click here if the animation is not playing Recap: Projection of Vectors ⚫ Notation: Denote dot product as 푎Ԧ ⋅ 푏 = 푎Ԧ, 푏 1 (bilinear form). This implies the norm 푢 = 푎Ԧ, 푎Ԧ 2 ⚫ Define the scalar projection of v onto u as 푃푢 푣 = 푢,푣 | 푢 | 푢,푣 푢 ⚫ Hence, is the part of v pointing in direction of u | 푢 | | 푢 | 푢 푢 and 푣∗ = 푣 − , 푣 is orthogonal to 푢 푢 | 푢 | Gram-Schmidt for Vectors 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푣1 푢1 = | 푣1 | 푣2,푢1 푢1 푢2 = 푣2 − = 푣2 − 푣2, 푢1 푢1 as 푢1 normalized 푢1 푢1 푢෤3 = 푣3 − 푣3, 푢1 푢1 What’s missing? Gram-Schmidt for Vectors 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푣1 푢1 = | 푣1 | 푣2,푢1 푢1 푢2 = 푣2 − = 푣2 − 푣2, 푢1 푢1 as 푢1 normalized 푢1 푢1 푢෤3 = 푣3 − 푣3, 푢1 푢1 What’s missing? 푢෤3is orthogonal to 푢1, but not yet to 푢2 푢3 = 푢෤3 − 푢෤3, 푢2 푢2 If the animation is not playing, please click here Gram-Schmidt for Functions ⚫ Given: A set of functions 푔1, … , 푔푘 .We want 휙1, … , 휙푘 ⚫ Bridge to Gram-Schmidt for vectors: ∞ ⚫ Define 푔푖, 푔푗 = ׬−∞ 푔푖 푥 푔푗 푥 푑푥 ⚫ What’s the corresponding norm? Gram-Schmidt for Functions ⚫ Given: A set of functions 푔1, … , 푔푘 .We want 휙1, … , 휙푘 ⚫ Bridge to Gram-Schmidt for vectors: ∞ ⚫ 푔 , 푔 = 푔 푥 푔 푥 푑푥 .
    [Show full text]
  • Anatomically Informed Basis Functions — Anatomisch Informierte Basisfunktionen
    Anatomically Informed Basis Functions | Anatomisch Informierte Basisfunktionen Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr.rer.nat.), genehmigt durch die Fakult¨atf¨urNaturwissenschaften der Otto{von{Guericke{Universit¨atMagdeburg von Diplom-Informatiker Stefan Kiebel geb. am 10. Juni 1968 in Wadern/Saar Gutachter: Prof. Dr. Lutz J¨ancke Prof. Dr. Hermann Hinrichs Prof. Dr. Cornelius Weiller Eingereicht am: 27. Februar 2001 Verteidigung am: 9. August 2001 Abstract In this thesis, a method is presented that incorporates anatomical information into the statistical analysis of functional neuroimaging data. Available anatomical informa- tion is used to explicitly specify spatial components within a functional volume that are assumed to carry evidence of functional activation. After estimating the activity by fitting the same spatial model to each functional volume and projecting the estimates back into voxel-space, one can proceed with a conventional time-series analysis such as statistical parametric mapping (SPM). The anatomical information used in this work comprised the reconstructed grey matter surface, derived from high-resolution T1-weighted magnetic resonance images (MRI). The spatial components specified in the model were of low spatial frequency and confined to the grey matter surface. By explaining the observed activity in terms of these components, one efficiently captures spatially smooth response components induced by underlying neuronal activations lo- calised close to or within the grey matter sheet. Effectively, the method implements a spatially variable anatomically informed deconvolution and consequently the method was named anatomically informed basis functions (AIBF). AIBF can be used for the analysis of any functional imaging modality. In this thesis it was applied to simu- lated and real functional MRI (fMRI) and positron emission tomography (PET) data.
    [Show full text]
  • A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations Maggie Elizabeth Chenoweth [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2012 A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations Maggie Elizabeth Chenoweth [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Numerical Analysis and Computation Commons Recommended Citation Chenoweth, Maggie Elizabeth, "A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations" (2012). Theses, Dissertations and Capstones. Paper 243. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. A LOCAL RADIAL BASIS FUNCTION METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS Athesissubmittedto the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Arts in Mathematics by Maggie Elizabeth Chenoweth Approved by Dr. Scott Sarra, Committee Chairperson Dr. Anna Mummert Dr. Carl Mummert Marshall University May 2012 Copyright by Maggie Elizabeth Chenoweth 2012 ii ACKNOWLEDGMENTS I would like to begin by expressing my sincerest appreciation to my thesis advisor, Dr. Scott Sarra. His knowledge and expertise have guided me during my research endeavors and the process of writing this thesis. Dr. Sarra has also served as my teaching mentor, and I am grateful for all of his encouragement and advice. It has been an honor to work with him. I would also like to thank the other members of my thesis committee, Dr.
    [Show full text]
  • Linear Basis Function Models
    Linear basis function models Linear basis function models Linear models for regression Francesco Corona FC - Fortaleza Linear basis function models Linear models for regression Linear basis function models Linear models for regression The focus so far on unsupervised learning, we turn now to supervised learning ◮ Regression The goal of regression is to predict the value of one or more continuous target variables t, given the value of a D-dimensional vector x of input variables ◮ e.g., polynomial curve fitting FC - Fortaleza Linear basis function models Linear basis function models Linear models for regression (cont.) Training data of N = 10 points, blue circles ◮ each comprising an observation of the input variable x along with the 1 corresponding target variable t t 0 The unknown function sin(2πx) is used to generate the data, green curve ◮ −1 Goal: Predict the value of t for some new value of x ◮ 0 x 1 without knowledge of the green curve The input training data x was generated by choosing values of xn, for n = 1,..., N, that are spaced uniformly in the range [0, 1] The target training data t was obtained by computing values sin(2πxn) of the function and adding a small level of Gaussian noise FC - Fortaleza Linear basis function models Linear basis function models Linear models for regression (cont.) ◮ We shall fit the data using a polynomial function of the form M 2 M j y(x, w)= w0 + w1x + w2x + · · · + wM x = wj x (1) Xj=0 ◮ M is the polynomial order, x j is x raised to the power of j ◮ Polynomial coefficients w0,..., wM are collected
    [Show full text]
  • Introduction to Radial Basis Function Networks
    Intro duction to Radial Basis Function Networks Mark J L Orr Centre for Cognitive Science University of Edinburgh Buccleuch Place Edinburgh EH LW Scotland April Abstract This do cumentisanintro duction to radial basis function RBF networks a typ e of articial neural network for application to problems of sup ervised learning eg regression classication and time series prediction It is now only available in PostScript an older and now unsupp orted hyp ertext ver sion maybeavailable for a while longer The do cumentwas rst published in along with a package of Matlab functions implementing the metho ds describ ed In a new do cument Recent Advances in Radial Basis Function Networks b ecame available with a second and improved version of the Matlab package mjoancedacuk wwwancedacukmjopapersintrops wwwancedacukmjointrointrohtml wwwancedacukmjosoftwarerbfzip wwwancedacukmjopapersrecadps wwwancedacukmjosoftwarerbfzip Contents Intro duction Sup ervised Learning Nonparametric Regression Classication and Time Series Prediction Linear Mo dels Radial Functions Radial Basis Function Networks Least Squares The Optimal WeightVector The Pro jection Matrix Incremental Op erations The Eective NumberofParameters Example Mo del Selection Criteria CrossValidation Generalised
    [Show full text]
  • Linear Models for Regression
    Machine Learning Srihari Linear Models for Regression Sargur Srihari [email protected] 1 Machine Learning Srihari Topics in Linear Regression • What is regression? – Polynomial Curve Fitting with Scalar input – Linear Basis Function Models • Maximum Likelihood and Least Squares • Stochastic Gradient Descent • Regularized Least Squares 2 Machine Learning Srihari The regression task • It is a supervised learning task • Goal of regression: – predict value of one or more target variables t – given d-dimensional vector x of input variables – With dataset of known inputs and outputs • (x1,t1), ..(xN,tN) • Where xi is an input (possibly a vector) known as the predictor • ti is the target output (or response) for case i which is real-valued – Goal is to predict t from x for some future test case • We are not trying to model the distribution of x – We dont expect predictor to be a linear function of x • So ordinary linear regression of inputs will not work • We need to allow for a nonlinear function of x • We don’t have a theory of what form this function to take 3 Machine Learning Srihari An example problem • Fifty points generated (one-dimensional problem) – With x uniform from (0,1) – y generated from formula y=sin(1+x2)+noise • Where noise has N(0,0.032) distribution • Noise-free true function and data points are as shown 4 Machine Learning Srihari Applications of Regression 1. Expected claim amount an insured person will make (used to set insurance premiums) or prediction of future prices of securities 2. Also used for algorithmic
    [Show full text]
  • Haar Wavelet Based Numerical Method for the Solution of Multidimensional Stochastic Integral Equations
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 10 (2019) pp. 2507-2521 © Research India Publications. http://www.ripublication.com Haar Wavelet Based Numerical Method for the Solution of Multidimensional Stochastic Integral Equations S. C. Shiralashetti*, Lata Lamani1 P. G. Department of Studies in Mathematics, Karnatak University, Dharwad-580003, Karnataka, India. Abstract for numerical solution of multi-term fractional differential equations [5] and numerical solution of initial value problems In this paper, we develop an accurate and efficient Haar [6]. Solution of nonlinear oscillator equations, Stiff systems, wavelet based numerical method for the solution of Multi- regular Sturm-Liouville problems, etc. using Haar wavelets dimensional Stochastic Integral equations. Initially, we study were studied by Bujurke et al[14, 15]. In 2012, Maleknejad et the properties of stochastic integral equations and Haar al applied block-pulse functions for the solution of wavelets. Then, Haar wavelets operational matrix of multidimensional stochastic integral equations [13]. In this integration and Haar wavelets stochastic operational matrix of paper, we developed the numerical method for the solution of integration are developed. Convergence and error analysis of stochastic integral equations using Haar wavelets. Consider the Stochastic Haar wavelet method is presented for the the stochastic Ito-volterra integral equation, solution of Multi-dimensional Stochastic Integral equations. Efficiency of the proposed method is justified through the t U(t)=g(t) k s,t U(s)ds illustrative examples. 0 0 n t (1.1) Keywords: Haar wavelets, Multi-dimensional Stochastic k s, t U(s)dB (s), t [0,T) 0 ii Integral equations, stochastic operational matrix of i1 integration.
    [Show full text]
  • Discrete Wavelet Transforms of Haar's Wavelet
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 9, SEPTEMBER 2014 ISSN 2277-8616 Discrete Wavelet Transforms Of Haar’s Wavelet Bahram Dastourian, Elias Dastourian, Shahram Dastourian, Omid Mahnaie Abstract: Wavelet play an important role not only in the theoretic but also in many kinds of applications, and have been widely applied in signal processing, sampling, coding and communications, filter bank theory, system modeling, and so on. This paper focus on the Haar’s wavelet. We discuss on some command of Haar’s wavelet with its signal by MATLAB programming. The base of this study followed from multiresolution analysis. Keyword: approximation; detail; filter; Haar’s wavelet; MATLAB programming, multiresolution analysis. ———————————————————— 1 INTRODUCTION Definition 4. Let 퐻 be a Hilbert space i) A family 풙 ⊂ 푯 is an orthonormal system if Wavelets are a relatively recent development in applied 풋 풋∈푱 mathematics. Their name itself was coined approximately a decade ago (Morlet, Arens, Fourgeau, and Giard [11], Morlet 1 푖 = 푗, ∀푖, 푗 ∈ 퐽 ∶ 푥 , 푥 = [10], Grossmann, Morlet [3] and Mallat[9]); in recently years 푖 푗 0 푖 ≠ 푗. interest in them has grown at an explosive rate. There are several reasons for their present success. On the one hand, ii) A family 풙 ⊂ 푯 is total if for all 풙 ∈ 푯 the following the concept of wavelets can be viewed as a synthesis of ideas 풋 풋∈푱 which originated during the last twenty or thirty years in implication holds engineering (subband coding), physics (coherent states, renormalization group), and pure mathematics (study of ∀푗 ∈ 퐽 ∶ 푥, 푥푗 = 0 ⇒ 푥 = 0.
    [Show full text]
  • Radial Basis Functions
    Acta Numerica (2000), pp. 1–38 c Cambridge University Press, 2000 Radial basis functions M. D. Buhmann Mathematical Institute, Justus Liebig University, 35392 Giessen, Germany E-mail: [email protected] Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper. CONTENTS 1 Introduction 1 2 Convergence rates 5 3 Compact support 11 4 Iterative methods for implementation 16 5 Interpolation on spheres 25 6 Applications 28 References 34 1. Introduction There is a multitude of ways to approximate a function of many variables: multivariate polynomials, splines, tensor product methods, local methods and global methods. All of these approaches have many advantages and some disadvantages, but if the dimensionality of the problem (the number of variables) is large, which is often the case in many applications from stat- istics to neural networks, our choice of methods is greatly reduced, unless 2 M. D. Buhmann we resort solely to tensor product methods.
    [Show full text]
  • SOHO: Orthogonal and Symmetric Haar Wavelets on the Sphere
    SOHO: Orthogonal and Symmetric Haar Wavelets on the Sphere CHRISTIAN LESSIG and EUGENE FIUME University of Toronto We propose the SOHO wavelet basis – the first spherical Haar wavelet basis that is both orthogonal and symmetric, making it particularly well suited for the approximation and processing of all- frequency signals on the sphere. We obtain the basis with a novel spherical subdivision scheme that defines a partition acting as the domain of the basis functions. Our construction refutes earlier claims doubting the existence of a basis that is both orthogonal and symmetric. Experimental results for the representation of spherical signals verify that the superior theoretical properties of the SOHO wavelet basis are also relevant in practice. Categories and Subject Descriptors: I.3.0 [Computing Methodologies]: Computer Graph- ics—General; G.1.0 [Numerical Analysis]: General—Numerical Algorithms; G.1.2 [Numerical Analysis]: Approximation—Nonlinear Approximation General Terms: Theory, Measurement Additional Key Words and Phrases: wavelet transform, spherical signals 1. INTRODUCTION Many signals are naturally parametrized over the sphere S2. Examples from com- puter graphics include bidirectional reflectance distribution functions (BRDFs), ra- diance, and visibility. Spherically parametrized signals can also be found in many other fields, including astronomy, physics, climate modeling, and medical imaging. An efficient and distortion free representation of spherical signals is therefore of importance. Of particular interest are the ability to approximate a wide range of signals accurately with a small number of basis function coefficients, and the pos- sibility of obtaining computationally efficient algorithms to process a signal in its basis representation. A variety of representations for spherical signals has been proposed in the literature.
    [Show full text]
  • Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations
    Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.229-243, 2012 Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations Mingxu Yi1 and Yiming Chen1 Abstract: In this paper, Haar wavelet operational matrix method is proposed to solve a class of fractional partial differential equations. We derive the Haar wavelet operational matrix of fractional order integration. Meanwhile, the Haar wavelet operational matrix of fractional order differentiation is obtained. The operational matrix of fractional order differentiation is utilized to reduce the initial equation to a Sylvester equation. Some numerical examples are included to demonstrate the validity and applicability of the approach. Keywords: Haar wavelet, operational matrix, fractional partial differential equa- tion, Sylvester equation, numerical solution. 1 Introduction Wavelet analysis is a relatively new area in different fields of science and engi- neering. It is a developing of Fourier analysis. Wavelet analysis has been ap- plied widely in time-frequency analysis, signal analysis and numerical analysis. It permits the accurate representation of a variety of functions and operators, and establishes a connection with fast numerical algorithms [Beylkin, Coifman, and Rokhlin (1991)]. Functions are decomposed into summation of “basic functions”, and every “basic function” is achieved by compression and translation of a mother wavelet function with good properties of smoothness and locality, which makes people analyse the properties of locality and integer in the process of expressing functions [Li and Luo (2005); Ge and Sha (2007)]. Consequently, wavelet analysis can describe the properties of functions more accurate than Fourier analysis. Fractional differential equations are generalized from classical integer order ones, which are obtained by replacing integer order derivatives by fractional ones.
    [Show full text]
  • An Introduction to Wavelets for Economists
    Bank of Canada Banque du Canada Working Paper 2002-3 / Document de travail 2002-3 An Introduction to Wavelets for Economists by Christoph Schleicher ISSN 1192-5434 Printed in Canada on recycled paper Bank of Canada Working Paper 2002-3 January 2002 An Introduction to Wavelets for Economists by Christoph Schleicher Monetary and Financial Analysis Department Bank of Canada Ottawa, Ontario, Canada K1A 0G9 The views expressed in this paper are those of the author. No responsibility for them should be attributed to the Bank of Canada. iii Contents Acknoweldgements. iv Abstract/Résumé. v 1. Introduction . 1 2. Wavelet Evolution . 3 3. A Bit of Wavelet Theory . .5 3.1 Mallat’s multiscale analysis . 10 4. Some Examples. 16 4.1 Filtering. 18 4.2 Separation of frequency levels . 20 4.3 Disbalancing of energy . 21 4.4 Whitening of correlated signals . 23 5. Applications for Economists. 24 5.1 Frequency domain analysis. 24 5.2 Non-stationarity and complex functions. 25 5.3 Long-memory processes . 26 5.4 Time-scale decompositions: the relationship between money and income . 27 5.5 Forecasting . .28 6. Conclusions . 28 7. How to Get Started. 29 Bibliography . 30 iv Acknowledgements I would like to thank Paul Gilbert, Pierre St-Amant, and Greg Tkacz from the Bank of Canada for helpful comments. v Abstract Wavelets are mathematical expansions that transform data from the time domain into different layers of frequency levels. Compared to standard Fourier analysis, they have the advantage of being localized both in time and in the frequency domain, and enable the researcher to observe and analyze data at different scales.
    [Show full text]