Functional Data Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orthogonal Functions, Radial Basis Functions (RBF) and Cross-Validation (CV)
Exercise 6: Orthogonal Functions, Radial Basis Functions (RBF) and Cross-Validation (CV) CSElab Computational Science & Engineering Laboratory Outline 1. Goals 2. Theory/ Examples 3. Questions Goals ⚫ Orthonormal Basis Functions ⚫ How to construct an orthonormal basis ? ⚫ Benefit of using an orthonormal basis? ⚫ Radial Basis Functions (RBF) ⚫ Cross Validation (CV) Motivation: Orthonormal Basis Functions ⚫ Computation of interpolation coefficients can be compute intensive ⚫ Adding or removing basis functions normally requires a re-computation of the coefficients ⚫ Overcome by orthonormal basis functions Gram-Schmidt Orthonormalization 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푛 ⚫ Goal: Generate a set of vectors 푢1, … , 푢푘 ⊂ 푅 such that 푢1, … , 푢푘 is orthonormal and spans the same subspace as 푣1, … , 푣푘 ⚫ Click here if the animation is not playing Recap: Projection of Vectors ⚫ Notation: Denote dot product as 푎Ԧ ⋅ 푏 = 푎Ԧ, 푏 1 (bilinear form). This implies the norm 푢 = 푎Ԧ, 푎Ԧ 2 ⚫ Define the scalar projection of v onto u as 푃푢 푣 = 푢,푣 | 푢 | 푢,푣 푢 ⚫ Hence, is the part of v pointing in direction of u | 푢 | | 푢 | 푢 푢 and 푣∗ = 푣 − , 푣 is orthogonal to 푢 푢 | 푢 | Gram-Schmidt for Vectors 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푣1 푢1 = | 푣1 | 푣2,푢1 푢1 푢2 = 푣2 − = 푣2 − 푣2, 푢1 푢1 as 푢1 normalized 푢1 푢1 푢3 = 푣3 − 푣3, 푢1 푢1 What’s missing? Gram-Schmidt for Vectors 푛 ⚫ Given: A set of vectors 푣1, … , 푣푘 ⊂ 푅 푣1 푢1 = | 푣1 | 푣2,푢1 푢1 푢2 = 푣2 − = 푣2 − 푣2, 푢1 푢1 as 푢1 normalized 푢1 푢1 푢3 = 푣3 − 푣3, 푢1 푢1 What’s missing? 푢3is orthogonal to 푢1, but not yet to 푢2 푢3 = 푢3 − 푢3, 푢2 푢2 If the animation is not playing, please click here Gram-Schmidt for Functions ⚫ Given: A set of functions 푔1, … , 푔푘 .We want 휙1, … , 휙푘 ⚫ Bridge to Gram-Schmidt for vectors: ∞ ⚫ Define 푔푖, 푔푗 = −∞ 푔푖 푥 푔푗 푥 푑푥 ⚫ What’s the corresponding norm? Gram-Schmidt for Functions ⚫ Given: A set of functions 푔1, … , 푔푘 .We want 휙1, … , 휙푘 ⚫ Bridge to Gram-Schmidt for vectors: ∞ ⚫ 푔 , 푔 = 푔 푥 푔 푥 푑푥 . -
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster Cotter, Simon and Roberts, Gareth and Stuart, Andrew and White, David 2013 MIMS EPrint: 2014.71 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 Statistical Science 2013, Vol. 28, No. 3, 424–446 DOI: 10.1214/13-STS421 c Institute of Mathematical Statistics, 2013 MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster S. L. Cotter, G. O. Roberts, A. M. Stuart and D. White Abstract. Many problems arising in applications result in the need to probe a probability distribution for functions. Examples include Bayesian nonparametric statistics and conditioned diffusion processes. Standard MCMC algorithms typically become arbitrarily slow under the mesh refinement dictated by nonparametric description of the un- known function. We describe an approach to modifying a whole range of MCMC methods, applicable whenever the target measure has density with respect to a Gaussian process or Gaussian random field reference measure, which ensures that their speed of convergence is robust under mesh refinement. Gaussian processes or random fields are fields whose marginal distri- butions, when evaluated at any finite set of N points, are RN -valued Gaussians. The algorithmic approach that we describe is applicable not only when the desired probability measure has density with respect to a Gaussian process or Gaussian random field reference measure, but also to some useful non-Gaussian reference measures constructed through random truncation. -
Intrinsic Riemannian Functional Data Analysis
Submitted to the Annals of Statistics INTRINSIC RIEMANNIAN FUNCTIONAL DATA ANALYSIS By Zhenhua Lin and Fang Yao University of California, Davis and University of Toronto In this work we develop a novel and foundational framework for analyzing general Riemannian functional data, in particular a new de- velopment of tensor Hilbert spaces along curves on a manifold. Such spaces enable us to derive Karhunen-Loève expansion for Riemannian random processes. This framework also features an approach to com- pare objects from different tensor Hilbert spaces, which paves the way for asymptotic analysis in Riemannian functional data analysis. Built upon intrinsic geometric concepts such as vector field, Levi-Civita con- nection and parallel transport on Riemannian manifolds, the devel- oped framework applies to not only Euclidean submanifolds but also manifolds without a natural ambient space. As applications of this framework, we develop intrinsic Riemannian functional principal com- ponent analysis (iRFPCA) and intrinsic Riemannian functional linear regression (iRFLR) that are distinct from their traditional and ambient counterparts. We also provide estimation procedures for iRFPCA and iRFLR, and investigate their asymptotic properties within the intrinsic geometry. Numerical performance is illustrated by simulated and real examples. 1. Introduction. Functional data analysis (FDA) advances substantially in the past two decades, as the rapid development of modern technology enables collecting more and more data continuously over time. There is rich literature spanning more than seventy years on this topic, in- cluding development on functional principal component analysis such as Rao (1958); Kleffe (1973); Dauxois, Pousse and Romain (1982); Silverman (1996); Yao, Müller and Wang (2005a); Hall and Hosseini-Nasab (2006); Zhang and Wang (2016), and advances on functional linear regression such as Yao, Müller and Wang (2005b); Hall and Horowitz (2007); Yuan and Cai (2010); Kong et al. -
Anatomically Informed Basis Functions — Anatomisch Informierte Basisfunktionen
Anatomically Informed Basis Functions | Anatomisch Informierte Basisfunktionen Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr.rer.nat.), genehmigt durch die Fakult¨atf¨urNaturwissenschaften der Otto{von{Guericke{Universit¨atMagdeburg von Diplom-Informatiker Stefan Kiebel geb. am 10. Juni 1968 in Wadern/Saar Gutachter: Prof. Dr. Lutz J¨ancke Prof. Dr. Hermann Hinrichs Prof. Dr. Cornelius Weiller Eingereicht am: 27. Februar 2001 Verteidigung am: 9. August 2001 Abstract In this thesis, a method is presented that incorporates anatomical information into the statistical analysis of functional neuroimaging data. Available anatomical informa- tion is used to explicitly specify spatial components within a functional volume that are assumed to carry evidence of functional activation. After estimating the activity by fitting the same spatial model to each functional volume and projecting the estimates back into voxel-space, one can proceed with a conventional time-series analysis such as statistical parametric mapping (SPM). The anatomical information used in this work comprised the reconstructed grey matter surface, derived from high-resolution T1-weighted magnetic resonance images (MRI). The spatial components specified in the model were of low spatial frequency and confined to the grey matter surface. By explaining the observed activity in terms of these components, one efficiently captures spatially smooth response components induced by underlying neuronal activations lo- calised close to or within the grey matter sheet. Effectively, the method implements a spatially variable anatomically informed deconvolution and consequently the method was named anatomically informed basis functions (AIBF). AIBF can be used for the analysis of any functional imaging modality. In this thesis it was applied to simu- lated and real functional MRI (fMRI) and positron emission tomography (PET) data. -
A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations Maggie Elizabeth Chenoweth [email protected]
Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2012 A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations Maggie Elizabeth Chenoweth [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Numerical Analysis and Computation Commons Recommended Citation Chenoweth, Maggie Elizabeth, "A Local Radial Basis Function Method for the Numerical Solution of Partial Differential Equations" (2012). Theses, Dissertations and Capstones. Paper 243. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. A LOCAL RADIAL BASIS FUNCTION METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS Athesissubmittedto the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Arts in Mathematics by Maggie Elizabeth Chenoweth Approved by Dr. Scott Sarra, Committee Chairperson Dr. Anna Mummert Dr. Carl Mummert Marshall University May 2012 Copyright by Maggie Elizabeth Chenoweth 2012 ii ACKNOWLEDGMENTS I would like to begin by expressing my sincerest appreciation to my thesis advisor, Dr. Scott Sarra. His knowledge and expertise have guided me during my research endeavors and the process of writing this thesis. Dr. Sarra has also served as my teaching mentor, and I am grateful for all of his encouragement and advice. It has been an honor to work with him. I would also like to thank the other members of my thesis committee, Dr. -
A Reproducing Kernel Hilbert Space Approach to Functional Linear
The Annals of Statistics 2010, Vol. 38, No. 6, 3412–3444 DOI: 10.1214/09-AOS772 c Institute of Mathematical Statistics, 2010 A REPRODUCING KERNEL HILBERT SPACE APPROACH TO FUNCTIONAL LINEAR REGRESSION By Ming Yuan1 and T. Tony Cai2 Georgia Institute of Technology and University of Pennsylvania We study in this paper a smoothness regularization method for functional linear regression and provide a unified treatment for both the prediction and estimation problems. By developing a tool on si- multaneous diagonalization of two positive definite kernels, we obtain shaper results on the minimax rates of convergence and show that smoothness regularized estimators achieve the optimal rates of con- vergence for both prediction and estimation under conditions weaker than those for the functional principal components based methods developed in the literature. Despite the generality of the method of regularization, we show that the procedure is easily implementable. Numerical results are obtained to illustrate the merits of the method and to demonstrate the theoretical developments. 1. Introduction. Consider the following functional linear regression mod- el where the response Y is related to a square integrable random function X( ) through · (1) Y = α0 + X(t)β0(t) dt + ε. ZT Here α is the intercept, is the domain of X( ), β ( ) is an unknown slope 0 T · 0 · function and ε is a centered noise random variable. The domain is assumed T to be a compact subset of an Euclidean space. Our goal is to estimate α0 arXiv:1211.2607v1 [math.ST] 12 Nov 2012 Received March 2009; revised November 2009. 1Supported in part by NSF Grant DMS-MPSA-0624841 and NSF CAREER Award DMS-0846234. -
Linear Basis Function Models
Linear basis function models Linear basis function models Linear models for regression Francesco Corona FC - Fortaleza Linear basis function models Linear models for regression Linear basis function models Linear models for regression The focus so far on unsupervised learning, we turn now to supervised learning ◮ Regression The goal of regression is to predict the value of one or more continuous target variables t, given the value of a D-dimensional vector x of input variables ◮ e.g., polynomial curve fitting FC - Fortaleza Linear basis function models Linear basis function models Linear models for regression (cont.) Training data of N = 10 points, blue circles ◮ each comprising an observation of the input variable x along with the 1 corresponding target variable t t 0 The unknown function sin(2πx) is used to generate the data, green curve ◮ −1 Goal: Predict the value of t for some new value of x ◮ 0 x 1 without knowledge of the green curve The input training data x was generated by choosing values of xn, for n = 1,..., N, that are spaced uniformly in the range [0, 1] The target training data t was obtained by computing values sin(2πxn) of the function and adding a small level of Gaussian noise FC - Fortaleza Linear basis function models Linear basis function models Linear models for regression (cont.) ◮ We shall fit the data using a polynomial function of the form M 2 M j y(x, w)= w0 + w1x + w2x + · · · + wM x = wj x (1) Xj=0 ◮ M is the polynomial order, x j is x raised to the power of j ◮ Polynomial coefficients w0,..., wM are collected -
Mixture Inner Product Spaces and Their Application to Functional Data Analysis
MIXTURE INNER PRODUCT SPACES AND THEIR APPLICATION TO FUNCTIONAL DATA ANALYSIS Zhenhua Lin1, Hans-Georg Muller¨ 2 and Fang Yao1;3 Abstract We introduce the concept of mixture inner product spaces associated with a given separable Hilbert space, which feature an infinite-dimensional mixture of finite-dimensional vector spaces and are dense in the underlying Hilbert space. Any Hilbert valued random element can be arbi- trarily closely approximated by mixture inner product space valued random elements. While this concept can be applied to data in any infinite-dimensional Hilbert space, the case of functional data that are random elements in the L2 space of square integrable functions is of special interest. For functional data, mixture inner product spaces provide a new perspective, where each realiza- tion of the underlying stochastic process falls into one of the component spaces and is represented by a finite number of basis functions, the number of which corresponds to the dimension of the component space. In the mixture representation of functional data, the number of included mix- ture components used to represent a given random element in L2 is specifically adapted to each random trajectory and may be arbitrarily large. Key benefits of this novel approach are, first, that it provides a new perspective on the construction of a probability density in function space under mild regularity conditions, and second, that individual trajectories possess a trajectory-specific dimension that corresponds to a latent random variable, making it possible to use a larger num- ber of components for less smooth and a smaller number for smoother trajectories. -
Perturbations of Operators with Application to Testing Equality of Covariance Operators
Perturbations of Operators with Application to Testing Equality of Covariance Operators. by Krishna Kaphle, M.S. A Dissertation In Mathematics and Statistics Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philoshopy Approved Frits H. Ruymgaart Linda J. Allen Petros Hadjicostas Peggy Gordon Miller Interim Dean of the Graduate School August, 2011 c 2011, Krishna Kaphle Texas Tech University, Krishna Kaphle, August-2011 ACKNOWLEDGEMENTS This dissertation would not have been possible without continuous support of my advisor Horn Professor Dr. Firts H. Ruymgaart. I am heartily thankful to Dr. Ruym- gaart for his encouragement, and supervision from the research problem identification to the present level of my dissertation research. His continuous supervision enabled me not only to bring my dissertation in this stage but also to develop an understand- ing of the subject. I am lucky to have a great person like him as my advisor. I am grateful to Horn. Professor Dr. Linda J. Allen for her help throughout my stay at Texas Tech. I would also like to thank Dr. Petros Hadjicostas for encouragement and several valuable remarks during my research. I am also heartily thankful to Dr. David Gilliam for his support and help on writing Matlab code. I am pleased to thank those who made this dissertation possible. Among those, very important people are Dr. Kent Pearce, chair, Dr. Ram Iyer, graduate advisor, and all the staffs of Department of Mathematics and Statistics, who gave me the moral, financial, and technological supports required during my study. -
Introduction to Radial Basis Function Networks
Intro duction to Radial Basis Function Networks Mark J L Orr Centre for Cognitive Science University of Edinburgh Buccleuch Place Edinburgh EH LW Scotland April Abstract This do cumentisanintro duction to radial basis function RBF networks a typ e of articial neural network for application to problems of sup ervised learning eg regression classication and time series prediction It is now only available in PostScript an older and now unsupp orted hyp ertext ver sion maybeavailable for a while longer The do cumentwas rst published in along with a package of Matlab functions implementing the metho ds describ ed In a new do cument Recent Advances in Radial Basis Function Networks b ecame available with a second and improved version of the Matlab package mjoancedacuk wwwancedacukmjopapersintrops wwwancedacukmjointrointrohtml wwwancedacukmjosoftwarerbfzip wwwancedacukmjopapersrecadps wwwancedacukmjosoftwarerbfzip Contents Intro duction Sup ervised Learning Nonparametric Regression Classication and Time Series Prediction Linear Mo dels Radial Functions Radial Basis Function Networks Least Squares The Optimal WeightVector The Pro jection Matrix Incremental Op erations The Eective NumberofParameters Example Mo del Selection Criteria CrossValidation Generalised -
Linear Models for Regression
Machine Learning Srihari Linear Models for Regression Sargur Srihari [email protected] 1 Machine Learning Srihari Topics in Linear Regression • What is regression? – Polynomial Curve Fitting with Scalar input – Linear Basis Function Models • Maximum Likelihood and Least Squares • Stochastic Gradient Descent • Regularized Least Squares 2 Machine Learning Srihari The regression task • It is a supervised learning task • Goal of regression: – predict value of one or more target variables t – given d-dimensional vector x of input variables – With dataset of known inputs and outputs • (x1,t1), ..(xN,tN) • Where xi is an input (possibly a vector) known as the predictor • ti is the target output (or response) for case i which is real-valued – Goal is to predict t from x for some future test case • We are not trying to model the distribution of x – We dont expect predictor to be a linear function of x • So ordinary linear regression of inputs will not work • We need to allow for a nonlinear function of x • We don’t have a theory of what form this function to take 3 Machine Learning Srihari An example problem • Fifty points generated (one-dimensional problem) – With x uniform from (0,1) – y generated from formula y=sin(1+x2)+noise • Where noise has N(0,0.032) distribution • Noise-free true function and data points are as shown 4 Machine Learning Srihari Applications of Regression 1. Expected claim amount an insured person will make (used to set insurance premiums) or prediction of future prices of securities 2. Also used for algorithmic -
Radial Basis Functions
Acta Numerica (2000), pp. 1–38 c Cambridge University Press, 2000 Radial basis functions M. D. Buhmann Mathematical Institute, Justus Liebig University, 35392 Giessen, Germany E-mail: [email protected] Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper. CONTENTS 1 Introduction 1 2 Convergence rates 5 3 Compact support 11 4 Iterative methods for implementation 16 5 Interpolation on spheres 25 6 Applications 28 References 34 1. Introduction There is a multitude of ways to approximate a function of many variables: multivariate polynomials, splines, tensor product methods, local methods and global methods. All of these approaches have many advantages and some disadvantages, but if the dimensionality of the problem (the number of variables) is large, which is often the case in many applications from stat- istics to neural networks, our choice of methods is greatly reduced, unless 2 M. D. Buhmann we resort solely to tensor product methods.