SYSGO & Pikeos®
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Real-Time, Safe and Certified OS
Real-Time, Safe and Certified OS Roman Kapl <[email protected]> drivers, customer projects, development Tomas Martinec <[email protected]> testing and certification © SYSGO AG · INTERNAL 1 Introduction • PikeOS – real-time, safety certified OS • Desktop and Server vs. • Embedded • Real-Time • Safety-Critical • Certified • Differences • Scheduling • Resource management • Features • Development © SYSGO AG · INTERNAL 2 Certification • Testing • Analysis • Lot of time • Even more paper • Required for safety-critical systems • Trains • Airplanes © SYSGO AG · INTERNAL 3 PikeOS • Embedded, real-time, certified OS • ~150 people (not just engineers) • Rail • Avionics • Space • This presentation is not about PikeOS specifically © SYSGO AG · INTERNAL 4 PikeOS technical • Microkernel • Inspired by L4 • Memory protection (MMU) • More complex than FreeRTOS • Virtualization hypervisor • X86, ARM, SPARC, PowerPC • Eclipse IDE for development © SYSGO AG · INTERNAL 5 Personalities • General • POSIX • Linux • Domain specific • ARINC653 • PikeOS native • Other • Ada, RT JAVA, AUTOSAR, ITRON, RTEMS © SYSGO AG · INTERNAL 6 PikeOS Architecture App. App. App. App. App. App. Volume Syste m Provider Partition PikeOS Para-Virtualized HW Virtualized File System (Native, POSIX, Guest OS PikeOS Native ARINC653, ...) Guest OS Linux, Android Linux, Android Device Driver User Space / Partitions Syste m PikeOS System Software ExtensionSyste m Extension PikeOS Microkernel Kernel Space / Hypervisor Architecture Platform Kernel Level Support Package Support Package Driver SoC / -
Software Model Checking of ARINC-653 Flight Code with MCP Sarah J
Software Model Checking of ARINC-653 Flight Code with MCP Sarah J. Thompson Guillaume Brat SGT Inc., NASA Ames Research Center CMU, NASA Ames Research Center MS269-1, Moffett Field, California MS-269-1, Moffett Field, California [email protected] [email protected] Arnaud Venet SGT Inc., NASA Ames Research Center MS269-1, Moffett Field, California [email protected] Abstract The ARINC-653 standard defines a common interface for Integrated Modular Avionics (IMA) code. In particular, ARINC-653 Part 1 specifies a process- and partition-management API that is analogous to POSIX threads, but with certain extensions and restrictions intended to support the implementation of high reliability flight code. MCP is a software model checker, developed at NASA Ames, that provides capabilities for model checking C and C++ source code. In this paper, we present recent work aimed at implementing extensions to MCP that support ARINC-653, and we discuss the challenges and opportunities that consequentially arise. Providing support for ARINC-653’s time and space partitioning is nontrivial, though there are implicit benefits for partial order reduction possible as a consequence of the API’s strict interprocess communication policy. 1 Introduction NASA missions are becoming increasingly complex, and, more and more of this complexity is imple- mented in software. In 1977, the flight software for the Voyager mission amounted to only 3000 lines. Twenty years later, the software for Cassini had grown by a factor of ten, and more strikingly, the soft- ware for the Mars Path Finder mission amounted to 160 KLOCs (thousands of lines of code). -
Sistemi Operativi Real-Time Marco Cesati Lezione R13 Sistemi Operativi Real-Time – II Schema Della Lezione
Sistemi operativi real-time Marco Cesati Lezione R13 Sistemi operativi real-time – II Schema della lezione Caratteristiche comuni VxWorks LynxOS Sistemi embedded e real-time QNX eCos Windows Linux come RTOS 15 gennaio 2013 Marco Cesati Dipartimento di Ingegneria Civile e Ingegneria Informatica Università degli Studi di Roma Tor Vergata SERT’13 R13.1 Sistemi operativi Di cosa parliamo in questa lezione? real-time Marco Cesati In questa lezione descriviamo brevemente alcuni dei più diffusi sistemi operativi real-time Schema della lezione Caratteristiche comuni VxWorks LynxOS 1 Caratteristiche comuni degli RTOS QNX 2 VxWorks eCos 3 LynxOS Windows Linux come RTOS 4 QNX Neutrino 5 eCos 6 Windows Embedded CE 7 Linux come RTOS SERT’13 R13.2 Sistemi operativi Caratteristiche comuni dei principali RTOS real-time Marco Cesati Corrispondenza agli standard: generalmente le API sono proprietarie, ma gli RTOS offrono anche compatibilità (compliancy) o conformità (conformancy) allo standard Real-Time POSIX Modularità e Scalabilità: il kernel ha una dimensione Schema della lezione Caratteristiche comuni (footprint) ridotta e le sue funzionalità sono configurabili VxWorks Dimensione del codice: spesso basati su microkernel LynxOS QNX Velocità e Efficienza: basso overhead per cambi di eCos contesto, latenza delle interruzioni e primitive di Windows sincronizzazione Linux come RTOS Porzioni di codice non interrompibile: generalmente molto corte e di durata predicibile Gestione delle interruzioni “separata”: interrupt handler corto e predicibile, ISR lunga -
Communications for Integrated Modular Avionics
Communications for Integrated Modular Avionics Richard L. Alena [email protected] John P. Ossenfort IV, SAIC Kenneth I. Laws, QSS Andre Goforth NASA Ames Research Center Moffett Field, CA 94035 Fernando Figueroa, NASA Stennis Space Center TABLE OF CONTENTS Abstract—The aerospace industry has been adopting avionics architectures to take advantage of advances in computer engineering. Integrated Modular Avionics (IMA), 1. INTRODUCTION ..................................................... 1 as described in ARINC 653, distributes functional modules 2. INTEGRATED MODULAR AVIONICS...................... 2 into a robust configuration interconnected with a “virtual 3. NETWORKS FOR AEROSPACE ............................... 4 backplane” data communications network. Each avionics 4. MISSION COMPUTER DESIGN............................... 8 module’s function is defined in software compliant with the 5. LAB EVALUATION............................................... 12 APEX Application Program Interface. The Avionics Full- 6. CONCLUSIONS..................................................... 16 Duplex Ethernet (AFDX) network replaces the point-to- REFERENCES........................................................... 17 point connections used in previous distributed systems with BIOGRAPHY ............................................................ 18 “virtual links”. This network creates a command and data path between avionics modules with the software and 1. INTRODUCTION network defining the active virtual links over an integrated physical network. -
Performance Study of Real-Time Operating Systems for Internet Of
IET Software Research Article ISSN 1751-8806 Performance study of real-time operating Received on 11th April 2017 Revised 13th December 2017 systems for internet of things devices Accepted on 13th January 2018 E-First on 16th February 2018 doi: 10.1049/iet-sen.2017.0048 www.ietdl.org Rafael Raymundo Belleza1 , Edison Pignaton de Freitas1 1Institute of Informatics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CP 15064, Porto Alegre CEP: 91501-970, Brazil E-mail: [email protected] Abstract: The development of constrained devices for the internet of things (IoT) presents lots of challenges to software developers who build applications on top of these devices. Many applications in this domain have severe non-functional requirements related to timing properties, which are important concerns that have to be handled. By using real-time operating systems (RTOSs), developers have greater productivity, as they provide native support for real-time properties handling. Some of the key points in the software development for IoT in these constrained devices, like task synchronisation and network communications, are already solved by this provided real-time support. However, different RTOSs offer different degrees of support to the different demanded real-time properties. Observing this aspect, this study presents a set of benchmark tests on the selected open source and proprietary RTOSs focused on the IoT. The benchmark results show that there is no clear winner, as each RTOS performs well at least on some criteria, but general conclusions can be drawn on the suitability of each of them according to their performance evaluation in the obtained results. -
Programmability Configuration Guide, Cisco IOS XE Bengaluru 17.6.X
Programmability Configuration Guide, Cisco IOS XE Bengaluru 17.6.x First Published: 2021-07-31 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. -
Security Target Pikeos Separation Kernel V4.2.2
Security Target PikeOS Separation Kernel v4.2.2 Document ID Revision DOORS Baseline Date State 00101-8000-ST 20.6 N.A. 2018-10-10 App Author: Dominic Eschweiler SYSGO AG Am Pfaffenstein 14, D-55270 Klein-Winternheim Notice: The contents of this document are proprietary to SYSGO AG and shall not be disclosed, disseminated, copied, or used except for purposes expressly authorized in writing by SYSGO AG. Doc. ID: 00101-8000-ST Revision: 20.6 This page intentionally left blank Copyright 2018 Page 2 of 47 All rights reserved. SYSGO AG Doc. ID: 00101-8000-ST Revision: 20.6 This page intentionally left blank Copyright 2018 Page 3 of 47 All rights reserved. SYSGO AG Doc. ID: 00101-8000-ST Revision: 20.6 Table of Contents 1 Introduction .................................................................................................................... 6 1.1 Purpose of this Document ........................................................................................... 6 1.2 Document References ................................................................................................ 6 1.2.1 Applicable Documents......................................................................................... 6 1.2.2 Referenced Documents ....................................................................................... 6 1.3 Abbreviations and Acronyms ....................................................................................... 6 1.4 Terms and Definitions................................................................................................ -
Avionics Applications on a Time-Predictable Chip-Multiprocessor
Avionics Applications on a Time-predictable Chip-Multiprocessor Andre´ Rocha and Claudio´ Silva Rasmus Bo Sørensen, Jens Sparsø, and Martin Schoeberl GMV Department of Applied Mathematics and Computer Science Lisbon, Portugal Technical University of Denmark Email: [andre.rocha, claudio.silva]@gmv.com Email: [rboso, jspa, masca]@dtu.dk Abstract—Avionics applications need to be certified for The demonstrators were ported to the T-CREST platform the highest criticality standard. This certification includes using its compiler tool-chain and analysis tools. The demon- schedulability analysis and worst-case execution time (WCET) strators validate the T-CREST platform. Part of the exercise, analysis. WCET analysis is only possible when the software is written to be WCET analyzable and when the platform is however, is to evaluate the added value of the platform. The time-predictable. In this paper we present prototype avionics platform shall enable application developers to determine the applications that have been ported to the time-predictable WCET of their applications more precisely or more easily. T-CREST platform. The applications are WCET analyzable, Therefore, we compare the T-CREST platform with a well- and T-CREST is supported by the aiT WCET analyzer. This established platform in the avionics domain. combination allows us to provide WCET bounds of avionic tasks, even when executing on a multicore processor. The T-CREST platform was evaluated with the aid of the following three real-world avionic applications: (1) an Airlines Operational Centre (AOC), (2) a Crew Alerting I. INTRODUCTION System (CAS), and (3) an I/O Partition (IOP). We chose The mission of the T-CREST project [1], [2] is to develop T-CREST as platform for avionics applications as this is and build a multicore processor that is time-predictable and currently the only multicore processor where static WCET easy to analyze for the worst-case execution time (WCET). -
WIND RIVER Vxworks 653 PLATFORM 2.4 and 2.5
WIND RIVER VxWORKS 653 PLATFORM 2.4 AND 2.5 TABLE OF CONTENTS RTCA DO-178C Certification Evidence .......................................... 2 VxWorks 653 Platform Benefits ................................................. 2 VxWorks 653 Runtime Components ............................................ 3 VxWorks 653 Module OS ................................................... 4 Partition Management ..................................................... 4 Partition Scheduling ....................................................... 4 Partition Operating System ................................................. 4 COIL .................................................................... 5 APEX Application Support .................................................. 5 FACE Technical Reference 2.0 and 2.1 Support ................................ 5 Inter-partition Communication ............................................... 6 Intra-partition Communication ............................................... 6 Health Monitor ........................................................... 6 Wind River Workbench ..................................................... 7 Included Runtime Products .................................................. 12 Wind River DO-178C Network Stack ......................................... 12 Wind River Highly Reliable File System ....................................... 12 Technical Specifications ..................................................... 12 Supported Target Architectures ........................................... -
Linux Journal | January 2016 | Issue
™ AUTOMATE Full Disk Encryption Since 1994: The Original Magazine of the Linux Community JANUARY 2016 | ISSUE 261 | www.linuxjournal.com IMPROVE + Enhance File Transfer Client-Side Performance Security for Users Making Sense of Profiles and RC Scripts ABINIT for Computational Chemistry Research Leveraging Ad Blocking WATCH: ISSUE Audit Serial OVERVIEW Console Access V LJ261-January2016.indd 1 12/17/15 8:35 PM Improve Finding Your Business Way: Mapping Processes with Your Network Practical books an Enterprise to Improve Job Scheduler Manageability for the most technical Author: Author: Mike Diehl Bill Childers Sponsor: Sponsor: people on the planet. Skybot InterMapper DIY Combating Commerce Site Infrastructure Sprawl Author: Reuven M. Lerner Author: GEEK GUIDES Sponsor: GeoTrust Bill Childers Sponsor: Puppet Labs Get in the Take Control Fast Lane of Growing with NVMe Redis NoSQL Author: Server Clusters Mike Diehl Author: Sponsor: Reuven M. Lerner Silicon Mechanics Sponsor: IBM & Intel Download books for free with a Linux in Apache Web simple one-time registration. the Time Servers and of Malware SSL Encryption Author: Author: http://geekguide.linuxjournal.com Federico Kereki Reuven M. Lerner Sponsor: Sponsor: GeoTrust Bit9 + Carbon Black LJ261-January2016.indd 2 12/17/15 8:35 PM Improve Finding Your Business Way: Mapping Processes with Your Network Practical books an Enterprise to Improve Job Scheduler Manageability for the most technical Author: Author: Mike Diehl Bill Childers Sponsor: Sponsor: people on the planet. Skybot InterMapper DIY Combating Commerce Site Infrastructure Sprawl Author: Reuven M. Lerner Author: GEEK GUIDES Sponsor: GeoTrust Bill Childers Sponsor: Puppet Labs Get in the Take Control Fast Lane of Growing with NVMe Redis NoSQL Author: Server Clusters Mike Diehl Author: Sponsor: Reuven M. -
Purchases from $1K-$5K
County Purchases $1K - $5K April 29, 2019 - August 31, 2021 Beginning in April 2020, data for this report is provided by the ERP system, which includes some report changes. POs between $1K & $5K are now listed by line, which is why there may be multiple lines for each PO number. PO Number Date Vendor Description Accounting Unit Amount Status HONEYWELL ABOVE & BEYOND VOYAGERCG 21002855 8/2/2021 ELECTRONICS LLC 9540 - BAR CLERK OF COURTS $ 1,359.12 Approved ABOVE & BEYOND 21002855 8/2/2021 ELECTRONICS LLC SHIPPING CLERK OF COURTS $ 1,359.12 Approved INDEPENDENCE SHERIFF 21002859 8/2/2021 BUSINESS SUPPLY OFFICE CHAIRS OPERATIONS $ 4,880.00 Approved DARLING FIRE & VINYL GLOVES- DETENTION 21002862 8/2/2021 SAFETY CO XLARGE CENTER $ 1,387.60 Approved DARLING FIRE & VINYL GLOVES- DETENTION 21002862 8/2/2021 SAFETY CO LARGE CENTER $ 1,387.60 Approved REGIONAL PREMIER MEDICAL 3" TRANSFER FORENSIC SCIENCE 21002864 8/2/2021 SUPPLIES PIPETTES LAB $ 2,150.40 Approved REGIONAL PREMIER MEDICAL SHIPPING IF FORENSIC SCIENCE 21002864 8/2/2021 SUPPLIES APPLICABLE LAB $ 2,150.40 Approved CHEMISTRY CONTROLS REGIONAL AUTO FORENSIC SCIENCE 21002869 8/2/2021 NOVA BIOMEDICAL CARTRIDG LAB $ 4,077.12 Approved CHEMISTRY CONTROLS REGIONAL AUTO FORENSIC SCIENCE 21002869 8/2/2021 NOVA BIOMEDICAL CARTRIDG LAB $ 4,077.12 Approved REGIONAL NOVA PHOX FORENSIC SCIENCE 21002869 8/2/2021 NOVA BIOMEDICAL CAL CARTRIDGE LAB $ 4,077.12 Approved REGIONAL NOVA PHOX FORENSIC SCIENCE 21002869 8/2/2021 NOVA BIOMEDICAL CAL CARTRIDGE LAB $ 4,077.12 Approved REGIONAL CREATININE FORENSIC -
Towards a Real-Time Component Framework for Software Health Management
Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, 37203 Towards a Real-time Component Framework for Software Health Management Abhishek Dubey , Gabor Karsai , Robert Kereskenyi , Nagabhushan Mahadevan TECHNICAL REPORT ISIS-09-111 November, 2009 Towards a Real-time Component Framework for Software Health Management Abhishek Dubey Gabor Karsai Robert Kereskenyi Nagabhushan Mahadevan Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37203, USA Abstract— The complexity of software in systems like aerospace industry, that deals with detecting anomalies, di- aerospace vehicles has reached the point where new techniques agnosing failure sources, and prognosticating future failures are needed to ensure system dependability. Such techniques in complex systems, like aerospace vehicles. While System include a novel direction called ‘Software Health Management’ (SHM) that extends classic software fault tolerance with tech- Health Management has been developed for physical (hard- niques borrowed from System Health Management. In this ware) systems, it provides interesting systems engineering paper the initial steps towards building a SHM approach are techniques for other fields like embedded software systems. described that combine component-based software construction The use of System Health Management techniques for with hard real-time operating system platforms. Specifically, embedded software systems points beyond the capabilities the paper discusses how the CORBA Component Model could be combined with the ARINC-653 platform services and the provided by the SFT techniques and can potentially in- lessons learned from this experiment. The results point towards crease a system’s dependability. This new direction is called both extending the CCM as well as revising the ARINC-653. Software Health Management (SHM) [4].