Repeatability and Reproducibility of Freesurfer, FSL-SIENAX and SPM Brain Volumetric Measurements and the Effect of Lesion Filling in Multiple Sclerosis

Total Page:16

File Type:pdf, Size:1020Kb

Repeatability and Reproducibility of Freesurfer, FSL-SIENAX and SPM Brain Volumetric Measurements and the Effect of Lesion Filling in Multiple Sclerosis European Radiology https://doi.org/10.1007/s00330-018-5710-x NEURO Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis Chunjie Guo1,2 & Daniel Ferreira1 & Katarina Fink3,4 & Eric Westman1 & Tobias Granberg3,5 Received: 10 April 2018 /Revised: 14 July 2018 /Accepted: 7 August 2018 # The Author(s) 2018 Abstract Objectives To compare the cross-sectional robustness of commonly used volumetric software and effects of lesion filling in multiple sclerosis (MS). Methods Nine MS patients (six females; age 38±13 years, disease duration 7.3±5.2 years) were scanned twice with repositioning on three MRI scanners (Siemens Aera 1.5T, Avanto 1.5T, Trio 3.0T) the same day. Volumetric T1-weighted images were processed with FreeSurfer, FSL-SIENAX, SPM and SPM-CAT before and after 3D FLAIR lesion filling with LST. The whole-brain, grey matter (GM) and white matter (WM) volumes were calculated with and without normalisation to the intra- cranial volume or FSL-SIENAX scaling factor. Robustness was assessed using the coefficient of variation (CoV). Results Variability in volumetrics was lower within than between scanners (CoV 0.17–0.96% vs. 0.65–5.0%, p<0.001). All software provided similarly robust segmentations of the brain volume on the same scanner (CoV 0.17–0.28%, p=0.076). Normalisation improved inter-scanner reproducibility in FreeSurfer and SPM-based methods, but the FSL-SIENAX scaling factor did not improve robustness. Generally, SPM-based methods produced the most consistent volumetrics, while FreeSurfer was more robust for WM volumes on different scanners. FreeSurfer had more robust normalised brain and GM volumes on different scanners than FSL-SIENAX (p=0.004). MS lesion filling changed the output of FSL-SIENAX, SPM and SPM-CAT but not FreeSurfer. Conclusions Consistent use of the same scanner is essential and normalisation to the intracranial volume is recommended for multiple scanners. Based on robustness, SPM-based methods are particularly suitable for cross-sectional volumetry. FreeSurfer poses a suitable alternative with WM segmentations less sensitive to MS lesions. Key Points • The same scanner should be used for brain volumetry. If different scanners are used, the intracranial volume normalisation improves the FreeSurfer and SPM robustness (but not the FSL scaling factor). • FreeSurfer, FSL and SPM all provide robust measures of the whole brain volume on the same MRI scanner. SPM-based methods overall provide the most robust segmentations (except white matter segmentations on different scanners where FreeSurfer is more robust). • MS lesion filling with Lesion Segmentation Toolbox changes the output of FSL-SIENAX and SPM. FreeSurfer output is not affected by MS lesion filling since it already takes white matter hypointensities into account and is therefore particularly suitable for MS brain volumetry. Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00330-018-5710-x) contains supplementary material, which is available to authorized users. * Tobias Granberg 3 Department of Clinical Neuroscience, Karolinska Institutet, [email protected] Stockholm, Sweden 4 Department of Neurology, Karolinska University Hospital, 1 Division of Clinical Geriatrics, Department of Neurobiology, Care Stockholm, Sweden Sciences and Society, Karolinska Institutet, Stockholm, Sweden 5 Division of Neuroradiology, Department of Radiology, Karolinska 2 Department of Radiology, The First Hospital of Jilin University, University Hospital, 141 86 Stockholm, Sweden Changchun, China Eur Radiol Keywords Multiple sclerosis . Magnetic resonance imaging . Brain . Reproducibility of results . Imaging, three-dimensional Abbreviations and is based on a combined volumetric- and surface-based CoV Coefficient of variation segmentation aimed to reduce partial volume effects from CSF Cerebrospinal fluid the convoluted shape of the cortical ribbon [11]. FreeSurfer FLAIR Fluid-attenuated inversion recovery uses a template-driven approach to provide a detailed FSL Functional magnetic resonance imaging of the parcellation and segmentation of the cortex and subcortical brain software library structures. SIENAX, part of the FMRIB Software Library GM Grey matter (FSL), is computationally less demanding but only provides LST Lesion segmentation toolbox measurements of the gross tissue volumes (WM, GM and MS Multiple sclerosis CSF) [12]. FSL-SIENAX relies on registration to the SIENAX Structural image evaluation with normalisation of Montreal Neurological Institute 152 template for skull strip- atrophy cross-sectional ping and then performs intensity-based segmentation; the tem- SPM Statistical parametric mapping plate registration step provides a scaling factor that can be WM White matter used for normalisation. SPM is based on non-linear registra- tion of the brain to a template and segments brain tissues by assigning tissue probabilities per voxel [13]. Computational Introduction Anatomy Toolbox (SPM-CAT) is an extension for SPM that provides segmentations with a different segmentation ap- Multiple sclerosis (MS) is a common chronic neuroinflammatory proach based on spatial interpolation, denoising, additional and neurodegenerative disease [1]. Demyelinating lesions in the affine registration steps, local intensity correction, adaptive brain and spinal cord are the pathological hallmarks of MS, segmentation and partial volume segmentation [14]. Like which are detectable in vivo with magnetic resonance imaging FSL-SIENAX, the SPM-based methods are less computation- (MRI). MRI has therefore become an essential tool for the diag- ally demanding, relative to FreeSurfer, and only provide gross nosis and monitoring of disease activity in MS [1, 2]. In MS, the brain tissue volumes. lesion volume reflects the inflammatory burden while atrophy The primary purpose of this study was to compare the measures quantify neurodegenerative aspects of the disease, repeatability on the same scanner and the reproducibility on which play an important role in all disease stages [3]. different scanners for brain tissue segmentations in FreeSurfer, Volumetry is therefore commonly used as a secondary endpoint FSL-SIENAX, SPM and SPM-CAT. A secondary aim was to in clinical trials [4]. Furthermore, volumetry can be helpful in study the effect of automated lesion filling to reduce MS improving our understanding of the disease since atrophy pat- lesion-related brain tissue segmentation bias. ternshavebeenshowntobedifferentinMScomparedtoother demyelinating disorders [5]. Obtaining robust imaging biomarkers in MS for assess- Materials and methods ment of the inflammatory and neurodegenerative burden of disease is, however, challenging [3]. Brain volumetry is influ- Participants enced by several subject-related factors such as hydration sta- tus, inflammation and clinical therapy [6]. MS lesions can Nine MS patients (six females, three males; mean age 38±13 specifically affect tissue segmentations since white matter years; mean disease duration 7.3±5.2 years) diagnosed ac- (WM) lesions can be misclassified as grey matter (GM) or cording to the McDonald 2010 diagnostic criteria [15], were cerebrospinal fluid (CSF) [7, 8]. Brain volumetry is also im- prospectively recruited from the outpatient clinic at the pacted by technical factors such as MRI field strength and Department of Neurology, Karolinska University Hospital in scanner model, as well as post-processing related issues Huddinge, Stockholm, Sweden, among consecutive patients [8–10]. Understanding the effect and magnitude of technical referred for a clinical MRI. The participants were representa- factors is important when planning MRI studies [8]. tive of the MS population in Sweden, with all subtypes repre- There are several freely available tools for automated brain sented in proportion to their frequency in clinical practice: six volumetry that are commonly applied in MS. Popular choices relapsing-remitting (RR), two secondary progressive, one pri- include FreeSurfer [11], Structural Image Evaluation with mary progressive [16]. Exclusion criteria were contraindica- Normalisation of Atrophy Cross-sectional (SIENAX) [12] tions to MRI, neurological co-morbidities or a history of head and Statistical Parametric Mapping (SPM) [13]. These soft- trauma (none were excluded). The physical disability of the ware can automatically pre-process and segment T1-weighted patients was assessed according to the Expanded Disability images of the brain. FreeSurfer is computationally demanding Status Scale [17] by an MS-experienced neurologist (K.F.). Eur Radiol The median physical disability score was 2.0 (range 1.0–5.5). rater (T.G.) and were found to be of satisfactory quality. The study was approved by the local ethics committee and Examples of the volumetric output are presented in Fig. 2. written informed consent was obtained from all participants. FreeSurfer FreeSurfer 6.0.0 (http://surfer.nmr.mgh.harvard. MRI protocol edu, Harvard University, Boston, MA, USA) was used to perform automatic processing as previously described [11, All participants were scanned twice on the same day on all 18]. FreeSurfer was run with the options ‘-mprage’ and for three clinical MRI systems used in the study: Siemens Aera the 3.0 T data also ‘-3T’, as recommended by its developers. (1.5 T), Avanto (1.5 T) and Trio (3.0 T) (Siemens Healthcare, The variable ‘Brain Segmentation Volume Without Ventricles Erlangen, Germany). A 3D T1-weighted
Recommended publications
  • Accurate Segmentation of Brain MR Images
    Accurate segmentation of brain MR images Master of Science Thesis in Biomedical Engineering ANTONIO REYES PORRAS PÉREZ Department of Signals and Systems Division of Biomedical Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2010 Report No. EX028/2010 Abstract Full brain segmentation has been of significant interest throughout the years. Recently, many research groups worldwide have been looking into development of patient-specific electromagnetic models for dipole source location in EEG. To obtain this model, accurate segmentation of various tissues and sub-cortical structures is thus required. In this project, the performance of three of the most widely used software packages for brain segmentation has been analyzed: FSL, SPM and FreeSurfer. For the analysis, real images from a patient and a set of phantom images have been used in order to evaluate the performance r of each one of these tools. Keywords: dipole source location, brain, patient-specific model, image segmentation, FSL, SPM, FreeSurfer. Acknowledgements To my advisor, Antony, for his guidance through the project. To my partner, Koushyar, for all the days we have spent in the hospital helping each other. To the staff in Sahlgrenska hospital for their collaboration. To MedTech West for this opportunity to learn. Table of contents 1. Introduction ......................................................................................................................................... 1 2. Magnetic resonance imaging ..............................................................................................................
    [Show full text]
  • Freesurfer Tutorial
    FreeSurfer Tutorial FreeSurfer is brought to you by the Martinos Center for Biomedical Imaging supported by NCRR/P41RR14075, Massachusetts General Hospital, Boston, MA USA 2008-06-01 20:47 1 FreeSurfer Tutorial Table of Contents Section Page Overview and course outline 3 Inspection of Freesurfer output 5 Troubleshooting your output 22 Fixing a bad skull strip 26 Making edits to the white matter 34 Correcting pial surfaces 46 Using control points to fix intensity normalization 50 Talairach registration 55 recon-all: morphometry and reconstruction 69 recon-all: process flow table 97 QDEC Group analysis 100 Group analysis: average subject, design matrix, mri_glmfit 125 Group analysis: visualization and inspection 149 Integrating FreeSurfer and FSL's FEAT 159 Exercise overview 172 Tkmedit reference 176 Tksurfer reference 211 Glossary 227 References 229 Acknowledgments 238 2008-06-01 20:47 2 top FreeSurfer Slides 1. Introduction to Freesurfer - Bruce Fischl 2. Anatomical Analysis with Freesurfer - Doug Greve 3. Surface-based Group Analysis - Doug Greve 4. Applying FreeSurfer Tools to FSL fMRI Analysis - Doug Greve FreeSurfer Tutorial Overview The FreeSurfer tools deal with two main types of data: volumetric data volumes of voxels and surface data polygons that tile a surface. This tutorial should familiarize you with FreeSurfer’s volume and surface processing streams, the recommended workflow to execute these, and many of their component tools. The tutorial also describes some of FreeSurfer's tools for registering volumetric datasets, performing group analysis on morphology data, and integrating FSL Feat output with FreeSurfer overlaying color coded parametric maps onto the cortical surface and visualizing plotted results.
    [Show full text]
  • Confrontsred Tape
    IPS: THE MENTAL HEALTH SERVICES CONFERENCE Oct. 8-11, 2015 • New York City When Good Care Confronts Red Tape Navigating the System for Our Patients and Our Practice New York, NY | Sheraton New York Times Square POSTER SESSION OCTOBER 09, 2015 POSTER SESSION 1 P1- 1 ANGIOEDEMA DUE TO POTENTIATING EFFECTS OF RITONIVIR ON RISPERIDONE: CASE REPORT Lead Author: Luisa S. Gonzalez, M.D. Co-Author(s): David A. Kasle MSIII Kavita Kothari M.D. SUMMARY: For many drugs, the liver is the principal site of its metabolism. The most important enzyme system of phase I metabolism is the cytochrome P-450 (CYP450). Ritonavir, a protease inhibitor used for the treatment of human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS), has been shown to be a potent inhibitor of the (CYP450) 3A and 2D6 isozymes. This inhibition increases the chance for potential drug-drug interactions with compounds that are metabolized by these isoforms. Risperidone, a second generation atypical antipsychotic, is metabolized to a significant extent by the (CYP450) 2D6, and to a lesser extent 3A4. Ritonavir and risperidone can both cause serious, and even life threatening, side effects. An example of one such rare side effect is angioedema which is characterized by edema of the deep dermal and subcutaneous tissues. Here we present three cases of patients residing in a nursing home setting, diagnosed with HIV/AIDS and comorbid psychiatric illness. These patients were all on antiretroviral medications such as ritonavir, and all later presented with varying degrees of edema after long term use of risperidone. We aim to bring to awareness the potential for ritonavir inhibiting the metabolism of risperidone, thus leading to an increased incidence of angioedema in these patients.
    [Show full text]
  • A Novel Mricompatible Brain Ventricle Phantom for Validation of Segmentation and Volumetry Methods
    CME JOURNAL OF MAGNETIC RESONANCE IMAGING 36:476–482 (2012) Original Research A Novel MRI-Compatible Brain Ventricle Phantom for Validation of Segmentation and Volumetry Methods Amanda F. Khan, MSc,1,2 John J. Drozd, PhD,2 Robert K. Moreland, MSc,2,3 Robert M. Ta, MSc,1,2 Michael J. Borrie, MB ChB,3,4 Robert Bartha, PhD1,2* and the Alzheimer’s Disease Neuroimaging Initiative Purpose: To create a standardized, MRI-compatible, life- Conclusion: The phantom represents a simple, realistic sized phantom of the brain ventricles to evaluate ventricle and objective method to test the accuracy of lateral ventri- segmentation methods using T1-weighted MRI. An objec- cle segmentation methods and we project it can be tive phantom is needed to test the many different segmen- extended to other anatomical structures. tation programs currently used to measure ventricle vol- Key Words: 3T; brain phantom; MRI; ventricle; software umes in patients with Alzheimer’s disease. validation; segmentation Materials and Methods: A ventricle model was con- J. Magn. Reson. Imaging 2012;36:476–482. structed from polycarbonate using a digital mesh of the VC 2012 Wiley Periodicals, Inc. ventricles created from the 3 Tesla (T) MRI of a subject with Alzheimer’s disease. The ventricle was placed in a brain mold and surrounded with material composed of VOLUMETRY HAS DEMONSTRATED that large mor- 2% agar in water, 0.01% NaCl and 0.0375 mM gadopente- phological changes occur in the brain during the tate dimeglumine to match the signal intensity properties course of Alzheimer’s disease (AD) (1). In particular, of brain tissue in 3T T -weighted MRI.
    [Show full text]
  • Medical Images Research Framework
    Medical Images Research Framework Sabrina Musatian Alexander Lomakin Angelina Chizhova Saint Petersburg State University Saint Petersburg State University Saint Petersburg State University Saint Petersburg, Russia Saint Petersburg, Russia Saint Petersburg, Russia Email: [email protected] Email: [email protected] Email: [email protected] Abstract—with a growing interest in medical research problems for the development of medical instruments and to show and the introduction of machine learning methods for solving successful applications of this library on some real medical those, a need in an environment for integrating modern solu- cases. tions and algorithms into medical applications developed. The main goal of our research is to create medical images research 2. Existing systems for medical image process- framework (MIRF) as a solution for the above problem. MIRF ing is a free open–source platform for the development of medical tools with image processing. We created it to fill in the gap be- There are many open–source packages and software tween innovative research with medical images and integrating systems for working with medical images. Some of them are it into real–world patients treatments workflow. Within a short specifically dedicated for these purposes, others are adapted time, a developer can create a rich medical tool, using MIRF's to be used for medical procedures. modular architecture and a set of included features. MIRF Many of them comprise a set of instruments, dedicated takes the responsibility of handling common functionality for to solving typical tasks, such as images pre–processing medical images processing. The only thing required from the and analysis of the results – ITK [1], visualization – developer is integrating his functionality into a module and VTK [2], real–time pre–processing of images and video – choosing which of the other MIRF's features are needed in the OpenCV [3].
    [Show full text]
  • 9. Biomedical Imaging Informatics Daniel L
    9. Biomedical Imaging Informatics Daniel L. Rubin, Hayit Greenspan, and James F. Brinkley After reading this chapter, you should know the answers to these questions: 1. What makes images a challenging type of data to be processed by computers, as opposed to non-image clinical data? 2. Why are there many different imaging modalities, and by what major two characteristics do they differ? 3. How are visual and knowledge content in images represented computationally? How are these techniques similar to representation of non-image biomedical data? 4. What sort of applications can be developed to make use of the semantic image content made accessible using the Annotation and Image Markup model? 5. Describe four different types of image processing methods. Why are such methods assembled into a pipeline when creating imaging applications? 6. Give an example of an imaging modality with high spatial resolution. Give an example of a modality that provides functional information. Why are most imaging modalities not capable of providing both? 7. What is the goal in performing segmentation in image analysis? Why is there more than one segmentation method? 8. What are two types of quantitative information in images? What are two types of semantic information in images? How might this information be used in medical applications? 9. What is the difference between image registration and image fusion? Given an example of each. 1 9.1. Introduction Imaging plays a central role in the healthcare process. Imaging is crucial not only to health care, but also to medical communication and education, as well as in research.
    [Show full text]
  • Segmentation Tools Frederic Cervenansky What Is Open-Source
    Through the forest of open source segmentation tools Frederic Cervenansky What is Open-Source Open source doesn’t just mean access to source code 1 - Free Redistribution (no restriction from selling or giving away the software as a component) 2 - Source Code ( as well as compiled form) 3 - Derived Works (copyleft license) 4 - Integrity of The Author's Source Code (users have a right to know who is the original author) 5 – Distribution of License (no need of a third license) 6 and more What criteria to discriminate software? Usability Code Langage Segmentation methods Plugins – Extensions Organ/structure specificity Software Organs specific Code Segmentation Plugins Citations* Language Methods ImageJ no Java Automatic Yes 723 Fiji No ( Cell) Java Automatic Yes 1254 Freesurfer Brain C++, bash Automatic no 470 ITK no C++ Automatic Yes-no 512 Slicer3D No (Brain) C++ Manual- Automatic Yes 75 FSL Brain C++, bash Automatic No 690 SPM Brain matlab Automatic Yes 7574 pubmed … --- --- --- --- --- *: JAVA Bio-imaging Plugins system User friendly IMAGEJ 2D and 3D limitation No hierarchy in plugins ImgLib (n-dimensional, repackaging, sharing improvement) KMeans Color Quantization Color Picker Fiji Marching IMAGEJ2 Icy Threshold Learning Active Contours Squassh KMeans Clustering Texture Level Set Maximum Entropy Threshold HK-Means Graph Cut Maximum Multi Entropy Threshold Active Cells Bad Indexation: Seeded Region Growing Toolbox dithering as Snake. segmenation tool Brain Organ specific Fully automatic FreeSurfer Allow to restart at divergent steps. Both available Fully automatic through VIP Catalog of tools FSL BET ( Brain Extraction) FAST (GM and WM automated Segmentation). SPM Modified gaussian mixture model Need a matlab license.
    [Show full text]
  • CV Xinwang.Pdf
    Room 310, Ho Sin Hang Engineering Bldg CUHK, Shatin, N.T., Hong Kong H +852 67003439 B [email protected] Xin WANG Í http://tracyxinwang.site Education 2018.10– University of Melbourne , Australia current Melbourne Neuropsychiatry Centre (MNC), Department of Psychiatry Visitng student Supervisor: Professor Andrew Zalesky 2016–current The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China Department of Biomedical Engineering Ph.D. in Electronic Engineering Supervisor: Professor Raymond Kai-yu Tong 2012–2016 University of Electronic Science and Technology of China (UESTC), China School of Communication and Information Engineering B.E. in Communication Engineering Overall GPA: 3.95/4.0; 90.1/100 Ranking: 2/405 Research Interests Computational Using neuroimaging techniques to develop computational models to investigate Neuroscience functional brain networks for neurological disorders Causal Fusion multi-modalities of neuroimaging data (e.g. fMRI, EEG) and develop causal Inference frameworks to infer dynamic structures and patterns in brain functions Research Projects 2017-current Using neuroimaging and computational modeling to customize transcranial direct current stimulation protocols for facilitating hand function recovery after stroke { Develop computational models of neuromodulation for understanding the tDCS- induced changes in brain activation and brain networks in stroke subjects { Simulate the neural dynamics and tDCS effect on lesioned brain. { Identify the optimal stimulation target area from neuroimaging and neurophysio- logical findings to optimize the tDCS delivery target brain region. 1/2 2016-2017 Development of a brain computer interface system with neurofeedback to facilitate the activation of the mirror neuron system for stroke rehabilitation { Characterize brain reorganization during stroke rehabilitation { Analyze multimodal brain imaging datasets to infer changed patterns in brain functions after stroke recovery Publications Wang, X, Wong, W, Sun, R, Chu, CW, Tong, KY.
    [Show full text]
  • Software Tools for the Analysis of Functional Magnetic Resonance Imaging
    Basic and Clinical Autumn 2012, Volume 3, Number 5 Software Tools for the Analysis of Functional Magnetic Resonance Imaging Mehdi Behroozi 1,2, Mohammad Reza Daliri 1* 1. Biomedical Engineering Department, Faculty of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran. 2. School of Cognitive Sciences (SCS), Institute for Research in Fundamental Science (IPM), Niavaran, Tehran, Iran. Article info: A B S T R A C T Received: 12 July 2012 First Revision: 7 August 2012 Functional magnetic resonance imaging (fMRI) has become the most popular method for Accepted: 25 August 2012 imaging of brain functions. Currently, there is a large variety of software packages for the analysis of fMRI data, each providing many features for users. Since there is no single package that can provide all the necessary analyses for the fMRI data, it is helpful to know the features of each software package. In this paper, several software tools have been introduced and they Key Words: have been evaluated for comparison of their functionality and their features. The description of fMRI Software Packages, each program has been discussed and summarized. Preprocessing, Segmentation, Visualization, Registration. 1. Introduction analysis the fMRI data to extract information about the different stimuli (Matthews, Shehzad, & Kelly, 2006). unctional Magnetic resonance imaging (fMRI), a modern technique of imaging, is a Generated data from fMRI have very large amount. powerful non-invasive and safe tool which The handling, processing, analysis and visualization Downloaded from bcn.iums.ac.ir at 18:01 CET on Friday February 20th 2015 F is used for the study of the function of the of fMRI data are not feasible without computer-based brain based on measure of the brain neural methods.
    [Show full text]
  • Postdoctoral Fellow in Advanced Machine Learning Techniques in Brain Imaging Hurvitz Brain Sciences Program and Physical Science
    Postdoctoral Fellow in Advanced Machine Learning Techniques in Brain Imaging Hurvitz Brain Sciences Program and Physical Sciences at the Sunnybrook Research Institute Departments of Medicine and Medical Biophysics Temerty Faculty of Medicine, University of Toronto PIs: Maged Goubran, PhD Assistant Professor, Scientist Medical Biophysics University of Toronto Sandra Black, MD, FRCP Professor, Director Brain Sciences Neurology University of Toronto Description of the Position: We are seeking a postdoctoral fellow to lead development of novel, machine learning algorithms for the analysis of MRI and microscopy data. The position is with the Sandra Black Centre for Brain Resilience & Recovery, the LC Campbell Cognitive Neurology Research Unit, and the Hurvitz Brain Sciences Program at the Sunnybrook Research Institute. This dynamic and collegial research environment provides opportunities to participate in pioneering techniques that will be used to understand and treat neurodegenerative and neurovascular disease. Current large multi-site studies and trials include the Ontario Neurodegenerative Disease Research Initiative (ONDRI), the Toronto Dementia Research Alliance (TDRA), Brain-Eye Amyloid Memory Study (BEAM), and Medical Imaging Trials Network of Canada-C6 (MITNEC-C6). The position requires working closely with the PIs Dr. Goubran (machine learning, neuroimaging, computational neuroscience), Dr. Black (neurology, small vessel disease, cognition) and with graduate students, imaging analysts and software developers in the lab to develop, improve and apply novel computational approaches to challenging image analyses and patient outcome prediction problems. This will be performed in collaboration with our internal and external international collaborators including neurologists, radiologists, surgeons, psychologists, physicists and computer scientists. There will be opportunities for multiple publications on novel computational tools for dementia, stroke and neuroscience research.
    [Show full text]
  • 3D Slicer Documentation
    3D Slicer Documentation Slicer Community Sep 24, 2021 CONTENTS 1 About 3D Slicer 3 1.1 What is 3D Slicer?............................................3 1.2 License..................................................4 1.3 How to cite................................................5 1.4 Acknowledgments............................................7 1.5 Commercial Use.............................................8 1.6 Contact us................................................9 2 Getting Started 11 2.1 System requirements........................................... 11 2.2 Installing 3D Slicer............................................ 12 2.3 Using Slicer............................................... 14 2.4 Glossary................................................. 19 3 Get Help 23 3.1 I need help in using Slicer........................................ 23 3.2 I want to report a problem........................................ 23 3.3 I would like to request enhancement or new feature........................... 24 3.4 I would like to let the Slicer community know, how Slicer helped me in my research......... 24 3.5 Troubleshooting............................................. 24 4 User Interface 27 4.1 Application overview........................................... 27 4.2 Review loaded data............................................ 29 4.3 Interacting with views.......................................... 31 4.4 Mouse & Keyboard Shortcuts...................................... 35 5 Data Loading and Saving 37 5.1 DICOM data..............................................
    [Show full text]
  • LONI Pipeline Handbook
    LONI Pipeline Neuroimaging Solutions A practical, hands-on guide to using the LONI Pipeline for neuroimaging analysis LONI Pipeline version 7.0.1 Handbook version 1.6 http://pipeline.loni.usc.edu LONI Pipeline training is funded by the National Institutes of Health through NIBIB grant P41EB015922 Contents Getting Started 1 Overview: About LONI Pipeline 1 Benefits 1 Requirements 1 Installation 2 Software Download 2 LONI Cluster Usage Account 2 Platform-Specific Installation 2 OS X 2 Windows 3 Linux/Unix 3 Interface 4 Overview 4 Data Sources & Sinks 6 Overview 6 How-to 6 Find & Replace 7 LONI Pipeline Viewer 8 Overview 8 Beginning Example Workflows 9 Registration Using AIR 10 Image Processing with the Quantitative Imaging Toolkit - Denoising 29 Intermediate Topics 37 LONI Image Data Archive 38 Overview 38 Change Server for Entire Workflow 40 Overview 40 How-to 40 Intermediate Example Workflows 41 fMRI First Level Analyses 42 DTI Analyses 59 DSI Analyses 65 Image Analysis with the Quantitative Imaging Toolkit - Tractography Metrics 73 Advanced Topics 85 Building a Module 86 Overview 86 How-to 86 Optional Actions 87 Required Options 88 Adding additional parameters 90 Specify dependencies and manipulate file names 90 LONI Pipeline Provenance 92 Overview 92 How-to 92 Adding Metadata 95 Overview 95 How-to 96 Conditional Module 98 Overview 98 How-to 98 Distributed Pipeline Server Installation 102 Introduction 102 GUI Installation 102 Command Line Installation 110 Glossary 113 Bibliography 116 Getting Started Overview: About LONI Pipeline The LONI Pipeline is a free workflow application primarily aimed at neuroimaging researchers. With the LONI Pipeline, users can quickly create workflows that take advantage of any and all neuroimaging tools available.
    [Show full text]