9. Biomedical Imaging Informatics Daniel L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioimage Analysis Tools
Bioimage Analysis Tools Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, Ulrike Schulze, Simon Norrelykke, Christian Tischer, Thomas Pengo To cite this version: Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, et al.. Bioimage Analysis Tools. Kota Miura. Bioimage Data Analysis, Wiley-VCH, 2016, 978-3-527-80092-6. hal- 02910986 HAL Id: hal-02910986 https://hal.archives-ouvertes.fr/hal-02910986 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Bioimage Analysis Tools 1 2 3 4 5 6 Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Pau/-Gilloteaux, - Ulrike Schulze,7 Simon F. Nerrelykke,8 Christian Tischer,9 and Thomas Penqo'" 1 European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany National Institute of Basic Biology, Okazaki, 444-8585, Japan 2/nstitute for Research in Biomedicine ORB Barcelona), Advanced Digital Microscopy, Parc Científic de Barcelona, dBaldiri Reixac 1 O, 08028 Barcelona, Spain 3German Center of Neurodegenerative -
An End-To-End System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging
Neuroinformatics (2019) 17:373–389 https://doi.org/10.1007/s12021-018-9405-x ORIGINAL ARTICLE An End-to-end System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging Alexander D. Kyriazis1 · Shahriar Noroozizadeh1 · Amir Refaee1 · Woongcheol Choi1 · Lap-Tak Chu1 · Asma Bashir2 · Wai Hang Cheng2 · Rachel Zhao2 · Dhananjay R. Namjoshi2 · Septimiu E. Salcudean3 · Cheryl L. Wellington2 · Guy Nir4 Published online: 8 November 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Detailed studies of the microglial response after TBI require high throughput quantification of changes in microglial count and morphology in histological sections throughout the brain. In this paper, we present a fully automated end-to-end system that is capable of assessing microglial activation in white matter regions on whole slide images of Iba1 stained sections. Our approach involves the division of the full brain slides into smaller image patches that are subsequently automatically classified into white and grey matter sections. On the patches classified as white matter, we jointly apply functional minimization methods and deep learning classification to identify Iba1-immunopositive microglia. Detected cells are then automatically traced to preserve their complex branching structure after which fractal analysis is applied to determine the activation states of the cells. The resulting system detects white matter regions with 84% accuracy, detects microglia with a performance level of 0.70 (F1 score, the harmonic mean of precision and sensitivity) and performs binary microglia morphology classification with a 70% accuracy. -
Computational Anatomy: Model Construction and Application for Anatomical Structures Recognition in Torso CT Images
The First International Symposium on the Project “Computational Anatomy” Computational Anatomy: Model Construction and Application for Anatomical Structures Recognition in Torso CT Images Hiroshi Fujita #1, Takeshi Hara #2, Xiangrong Zhou #3, Huayue Chen *4, and Hiroaki Hoshi **5 # Department of Intelligent Image Information, Graduate School of Medicine, Gifu University * Department of Anatomy, Graduate School of Medicine, Gifu University ** Department of Radiology, Graduate School of Medicine, Gifu University Yanagido 1-1, Gifu 501-1194, Japan 1 [email protected] 2 [email protected] 3 [email protected] 4 [email protected] 5 [email protected] Abstract—This paper describes the purpose and recent summary advanced CAD system that aims at multi-disease detection of our research work which is a part of research project from multi-organ [2]. The traditional approach for lesion “Computational anatomy for computer-aided diagnosis and detection prepares a pattern for a specific lesion type and therapy: Frontiers of medical image sciences” that was funded searches the lesion candidates in CT images by a pattern by Grant-in-Aid for Scientific Research on Innovative Areas, matching process. In the case of multi-disease detection from MEXT, Japan. The main purpose of our research in this project focus on model construction of computational anatomy and multi-organ, generating and matching a lot of prior lesion model applications for analyzing and recognizing the anatomical patterns from CT images can be tedious and sometimes not structures of human torso region using high-resolution torso X- possible. -
Accurate Segmentation of Brain MR Images
Accurate segmentation of brain MR images Master of Science Thesis in Biomedical Engineering ANTONIO REYES PORRAS PÉREZ Department of Signals and Systems Division of Biomedical Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2010 Report No. EX028/2010 Abstract Full brain segmentation has been of significant interest throughout the years. Recently, many research groups worldwide have been looking into development of patient-specific electromagnetic models for dipole source location in EEG. To obtain this model, accurate segmentation of various tissues and sub-cortical structures is thus required. In this project, the performance of three of the most widely used software packages for brain segmentation has been analyzed: FSL, SPM and FreeSurfer. For the analysis, real images from a patient and a set of phantom images have been used in order to evaluate the performance r of each one of these tools. Keywords: dipole source location, brain, patient-specific model, image segmentation, FSL, SPM, FreeSurfer. Acknowledgements To my advisor, Antony, for his guidance through the project. To my partner, Koushyar, for all the days we have spent in the hospital helping each other. To the staff in Sahlgrenska hospital for their collaboration. To MedTech West for this opportunity to learn. Table of contents 1. Introduction ......................................................................................................................................... 1 2. Magnetic resonance imaging .............................................................................................................. -
Freesurfer Tutorial
FreeSurfer Tutorial FreeSurfer is brought to you by the Martinos Center for Biomedical Imaging supported by NCRR/P41RR14075, Massachusetts General Hospital, Boston, MA USA 2008-06-01 20:47 1 FreeSurfer Tutorial Table of Contents Section Page Overview and course outline 3 Inspection of Freesurfer output 5 Troubleshooting your output 22 Fixing a bad skull strip 26 Making edits to the white matter 34 Correcting pial surfaces 46 Using control points to fix intensity normalization 50 Talairach registration 55 recon-all: morphometry and reconstruction 69 recon-all: process flow table 97 QDEC Group analysis 100 Group analysis: average subject, design matrix, mri_glmfit 125 Group analysis: visualization and inspection 149 Integrating FreeSurfer and FSL's FEAT 159 Exercise overview 172 Tkmedit reference 176 Tksurfer reference 211 Glossary 227 References 229 Acknowledgments 238 2008-06-01 20:47 2 top FreeSurfer Slides 1. Introduction to Freesurfer - Bruce Fischl 2. Anatomical Analysis with Freesurfer - Doug Greve 3. Surface-based Group Analysis - Doug Greve 4. Applying FreeSurfer Tools to FSL fMRI Analysis - Doug Greve FreeSurfer Tutorial Overview The FreeSurfer tools deal with two main types of data: volumetric data volumes of voxels and surface data polygons that tile a surface. This tutorial should familiarize you with FreeSurfer’s volume and surface processing streams, the recommended workflow to execute these, and many of their component tools. The tutorial also describes some of FreeSurfer's tools for registering volumetric datasets, performing group analysis on morphology data, and integrating FSL Feat output with FreeSurfer overlaying color coded parametric maps onto the cortical surface and visualizing plotted results. -
Confrontsred Tape
IPS: THE MENTAL HEALTH SERVICES CONFERENCE Oct. 8-11, 2015 • New York City When Good Care Confronts Red Tape Navigating the System for Our Patients and Our Practice New York, NY | Sheraton New York Times Square POSTER SESSION OCTOBER 09, 2015 POSTER SESSION 1 P1- 1 ANGIOEDEMA DUE TO POTENTIATING EFFECTS OF RITONIVIR ON RISPERIDONE: CASE REPORT Lead Author: Luisa S. Gonzalez, M.D. Co-Author(s): David A. Kasle MSIII Kavita Kothari M.D. SUMMARY: For many drugs, the liver is the principal site of its metabolism. The most important enzyme system of phase I metabolism is the cytochrome P-450 (CYP450). Ritonavir, a protease inhibitor used for the treatment of human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS), has been shown to be a potent inhibitor of the (CYP450) 3A and 2D6 isozymes. This inhibition increases the chance for potential drug-drug interactions with compounds that are metabolized by these isoforms. Risperidone, a second generation atypical antipsychotic, is metabolized to a significant extent by the (CYP450) 2D6, and to a lesser extent 3A4. Ritonavir and risperidone can both cause serious, and even life threatening, side effects. An example of one such rare side effect is angioedema which is characterized by edema of the deep dermal and subcutaneous tissues. Here we present three cases of patients residing in a nursing home setting, diagnosed with HIV/AIDS and comorbid psychiatric illness. These patients were all on antiretroviral medications such as ritonavir, and all later presented with varying degrees of edema after long term use of risperidone. We aim to bring to awareness the potential for ritonavir inhibiting the metabolism of risperidone, thus leading to an increased incidence of angioedema in these patients. -
Using Deep Learning Convolutional Neural Network
Yang et al. BioMed Eng OnLine (2018) 17:138 https://doi.org/10.1186/s12938-018-0587-0 BioMedical Engineering OnLine RESEARCH Open Access Multimodal MRI‑based classifcation of migraine: using deep learning convolutional neural network Hao Yang†, Junran Zhang*†, Qihong Liu and Yi Wang *Correspondence: [email protected] Abstract †Hao Yang and Junran Zhang Background: Recently, deep learning technologies have rapidly expanded into medi- contributed equally to this work cal image analysis, including both disease detection and classifcation. As far as we Department of Medical know, migraine is a disabling and common neurological disorder, typically character- Information Engineering, ized by unilateral, throbbing and pulsating headaches. Unfortunately, a large number School of Electrical Engineering and Information, of migraineurs do not receive the accurate diagnosis when using traditional diagnostic Sichuan University, Chengdu, criteria based on the guidelines of the International Headache Society. As such, there Sichuan, China is substantial interest in developing automated methods to assist in the diagnosis of migraine. Methods: To the best of our knowledge, no studies have evaluated the potential of deep learning technologies in assisting with the classifcation of migraine patients. Here, we used deep learning methods in combination with three functional measures (the amplitude of low-frequency fuctuations, regional homogeneity and regional functional correlation strength) based on rs-fMRI data to distinguish not only between migraineurs and healthy controls, but also between the two subtypes of migraine. We employed 21 migraine patients without aura, 15 migraineurs with aura, and 28 healthy controls. Results: Compared with the traditional support vector machine classifer, which has an accuracy of 83.67%, our Inception module-based convolutional neural network approach showed a signifcant improvement in classifcation output (over 86.18%). -
Downloaded from the Cellprofiler Site [31] to Provide a Starting Point for New Analyses
Open Access Software2006CarpenteretVolume al. 7, Issue 10, Article R100 CellProfiler: image analysis software for identifying and quantifying comment cell phenotypes Anne E Carpenter*, Thouis R Jones*†, Michael R Lamprecht*, Colin Clarke*†, In Han Kang†, Ola Friman‡, David A Guertin*, Joo Han Chang*, Robert A Lindquist*, Jason Moffat*, Polina Golland† and David M Sabatini*§ reviews Addresses: *Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. †Computer Sciences and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. ‡Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA. §Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Correspondence: David M Sabatini. Email: [email protected] Published: 31 October 2006 Received: 15 September 2006 Accepted: 31 October 2006 reports Genome Biology 2006, 7:R100 (doi:10.1186/gb-2006-7-10-r100) The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2006/7/10/R100 © 2006 Carpenter et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. deposited research Cell<p>CellProfiler, image analysis the software first free, open-source system for flexible and high-throughput cell image analysis is described.</p> Abstract Biologists can now prepare and image thousands of samples per day using automation, enabling chemical screens and functional genomics (for example, using RNA interference). Here we describe the first free, open-source system designed for flexible, high-throughput cell image analysis, research refereed CellProfiler. -
A Review on Deep Learning in Medical Image Reconstruction ∗
A Review on Deep Learning in Medical Image Reconstruction ∗ Haimiao Zhang† and Bin Dong†‡ June 26, 2019 Abstract. Medical imaging is crucial in modern clinics to provide guidance to the diagnosis and treatment of diseases. Medical image reconstruction is one of the most fundamental and important components of medical imaging, whose major objective is to acquire high-quality medical images for clinical usage at the minimal cost and risk to the patients. Mathematical models in medical image reconstruction or, more generally, image restoration in computer vision, have been playing a promi- nent role. Earlier mathematical models are mostly designed by human knowledge or hypothesis on the image to be reconstructed, and we shall call these models handcrafted models. Later, handcrafted plus data-driven modeling started to emerge which still mostly relies on human designs, while part of the model is learned from the observed data. More recently, as more data and computation resources are made available, deep learning based models (or deep models) pushed the data-driven modeling to the extreme where the models are mostly based on learning with minimal human designs. Both handcrafted and data-driven modeling have their own advantages and disadvantages. Typical hand- crafted models are well interpretable with solid theoretical supports on the robustness, recoverability, complexity, etc., whereas they may not be flexible and sophisticated enough to fully leverage large data sets. Data-driven models, especially deep models, on the other hand, are generally much more flexible and effective in extracting useful information from large data sets, while they are currently still in lack of theoretical foundations. -
Cellprofiler: Image Analysis Software for Identifying and Quantifying Cell Phenotypes
CellProfiler: image analysis software for identifying and quantifying cell phenotypes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Genome Biology. 2006 Oct 31;7(10):R100 As Published http://dx.doi.org/10.1186/gb-2006-7-10-r100 Publisher BioMed Central Ltd Version Final published version Citable link http://hdl.handle.net/1721.1/58762 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.0 1 2 3 Table of Contents Getting Started: MaskImage . 96 Introduction . 6 Morph . 110 Installation . 7 OverlayOutlines . 111 Getting Started with CellProfiler . 9 PlaceAdjacent . 112 RescaleIntensity . 115 Resize . 116 Help: Rotate . 118 BatchProcessing . 11 Smooth . 122 Colormaps. .16 Subtract . 125 DefaultImageFolder . 17 SubtractBackground . 126 DefaultOutputFolder . 18 Tile.............................................127 DeveloperInfo . 19 FastMode . 28 MatlabCrash . 29 Object Processing modules: OutputFilename . 30 ClassifyObjects . 41 PixelSize . 31 ClassifyObjectsByTwoMeasurements . 42 Preferences. .32 ConvertToImage . 45 SkipErrors . 33 Exclude . 65 TechDiagnosis . 34 ExpandOrShrink . 66 FilterByObjectMeasurement . 71 IdentifyObjectsInGrid . 76 File Processing modules: IdentifyPrimAutomatic . 77 CreateBatchFiles . 51 IdentifyPrimManual . 83 ExportToDatabase . 68 IdentifySecondary . 84 ExportToExcel. .70 IdentifyTertiarySubregion. .88 LoadImages . 90 Relate . 113 LoadSingleImage . 94 LoadText. .95 RenameOrRenumberFiles . -
Deep Learning in Bioinformatics
Deep Learning in Bioinformatics Seonwoo Min1, Byunghan Lee1, and Sungroh Yoon1,2* 1Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea 2Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e., omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e., deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. *Corresponding author. Mailing address: 301-908, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea. E-mail: [email protected]. Phone: +82-2-880-1401. Keywords Deep learning, neural network, machine learning, bioinformatics, omics, biomedical imaging, biomedical signal processing Key Points As a great deal of biomedical data have been accumulated, various machine algorithms are now being widely applied in bioinformatics to extract knowledge from big data. -
MEDICAL IMAGING INFORMATICS: Lecture # 1
MEDICAL IMAGING INFORMATICS: Lecture # 1 Basics of Medical Imaggging Informatics: Estimation Theory Norbert Schuff Professor of Radiology VA Medical Center and UCSF [email protected] UC Medical Imaging Informatics 2011 Nschuff SF VA Course # 170.03 Department of Slide 1/31 Radiology & Biomedical Imaging What Is Medical Imaging Informatics? • Signal Processing – Digital Image Acquisition – Image Processing and Enhancement • Data Mining – Computational anatomy – Statistics – Databases – Data-mining – Workflow and Process Modeling and Simulation • Data Management – Picture Archiving and Communication System (PACS) – Imaging Informatics for the Enterprise – Image-Enabled Electronic Medical Records – Radiology Information Systems (RIS) and Hospital Information Systems (HIS) – Quality Assurance – Archive Integrity and Security • Data Visualization – Image Data Compression – 3D, Visualization and Multi -media – DICOM, HL7 and other Standards • Teleradiology – Imaging Vocabularies and Ontologies – Transforming the Radiological Interpretation Process (TRIP)[2] – Computer pute -Aided D etectio n a nd Diag nos is (C AD ). – Radiology Informatics Education •Etc. UCSF Department of VA Radiology & Biomedical Imaging What Is The Focus Of This Course? Learn using computational tools to maximize information for knowledge gain: Pro-active Improve Data Refine collection Model Measurements knowledge Image Model Extract Compare information with Re-active model UC Medical Imaging Informatics 2009, Nschuff SF VA Course # 170.03 Department of Slide 3/31