Results of Flora Survey

Total Page:16

File Type:pdf, Size:1020Kb

Results of Flora Survey AnnexureF Results of Flora Survey Annexure to EPA Assessment No. 1403 Lot4 Underwood Avenue, Shenton Park Response to Public Submissions 2007 FLORA LIST FOR LOT 4, LOC 2103 UNDERWOOD AVENUE, SHENTON PARK GYMNOSPERMS CUPRESSACEAE *Callitrispreissii ZAMLACEAE Macrozamiafraseri MONOCOTYLEDONS ANTHERICACEAE Caesiaparviflora Corynotheca micrantha Laxmannia squarrosa Lomandra nigricans Sowerbaea laxiflora Thysanotuspatersonii Thysanotus sparteus COLCHICACEAE Burchardia umbellata CYPERACEAE Isolepis cernua Lepidosperma leptostachyum Lepidosperma scabrum Mesomelaenapseudostygia Tetraria octandra DASYPOGONACEAE Calectasia cyanea Lomandra caespitosa Lomandra nigricans Lomandrapreissii HAEMODORACEAE Anigozanthos humilis Anigozanthos manglesii Conostylis aculeata Conostylis aurea Conostylis setigera Haemodorum laxum Haemodorum spicatum IRIDACEAE *Freesia leichtlinii *Glaa'iolus caryophyllaceus Orthrosanthos laxus *R0mulea rosea ORCHIDACEAE Caladenia arenicola Caladeniaflava Caladenia latzfolia Bumettia nigricans Diuris corymbosa Pterostylis vittata PHORMIACEAE Dianella divaricata POACEAE */Ivenafatua *Brz'zamaxima *Briza minor *C)/nodon dactylon *Ehrharta calycina *Ehrharta longiflora *Eragr0stz's curvula *Lagurus ovatus *Pennisetum setaceum *Poa annua *Sten0taphrum secundatum RESTIONACEAE Alexgeorgea nitens Desmocladusflexuosus Lyginiabarbata XANTHORRHOEACEAE Calectasia cyanea Xanthorrhoea brunonis Xanthorrhoeapreissii DICOTYLEDONS AIZOACEAE *Carpobrotus edulis AMARANTHACEAE Ptilotus drummondii Ptilotus polystachyus APIACEAE Erfyngiumrostratum Trachymenepilosa ASTERACEAE *Arct0thecacalendula *Cytissusproliferus *Helipterum roseum *Hypochaerisglabra Lagenifera huegelii Olearia axillaris ”‘0steospermum clandestinum Ozothamnus cordatus Podolepis gmcilis Quinetia urvillei *Sonchus oleraceus *Ursinia anthemoides BRASSICACEAE *Heliophilapusilla CAESALPINIACEAE *Labichea lanceolata subsp. lanceolata CASUARINACEAE Allocasuarinafiaseriana CRASSULACEAE *Crassula colorata DILLENIACEAE Hibbertia hypericoides Hibbertia huegelii Hibbertia racemosa DROSERACEAE Drosera erythrorhiza Drosera macrantha Drosera stolonzfera EPACRIDACEAE Astrolomapallidum Conostephiumpendulum Leucapogonparviflorus Leucopogonpropinquus EUPHORBIACEAE *Euphorbz'apeplus *Euphorbiaterracina Phyllanthus calycinus Poranthera microphylla FUMARIACEAE *Fumaria capreolata GERANIACEAE *Pelargonium capitatum GOODENIACEAE Scaevola canescens Scaevola repens var. repens MIMOSACEAE Acacia cyclops Acacia huegelii Acacia lasiocarpa Acaciapulchella Acacia rostellzfera Acacia saligna Acacia stenoptera Acacia willdenowiana MOLLUGINACEAE Macarthuria australis MYRTACEAE Calytrixfiuseri *Chamelaucium uncinatum Corymbia calophylla Eremaea beaufortioides Eucalyptus decipiens Eucalyptus gomphocephala Eucalyptusmarginata Hypocalymma robustum *Leptospermum laevigatum OXALIDACEAE *0xalispes-caprae PAPILIONACEAE Daviesia decurrens Daviesia divaricata Daviesia nudiflora Daviesia triflora Gompholobium tomentosum Hardenbergia comptoniana Hovea trisperma Isotropis cuneifolia Jacksoniafurcellata Jacksonia sericea (P3) Jacksonia stembergiana Kennediaprostrata *Lupinus consentinii *Lupinus mutabilis Nemciacapitata *0rnithopis sativus *Trifolium campestre POLYGALACEAE Comesperma cabzmega Banksia attenuata Banlcsiagrandis Banksia menziesii Banksiaprionotes Dryandra lindleyana Dryandra sessilis Hakeaprostrata Petrophile linearis Petrophile macrostachya Petrophile media Stirlingia latifolia Synapheapolymorpha Clematis microphylla Eriostemon spicatus Stylidium brunonianum Stylidium calcaratum Stylidium repens Pimelea sulphurea Hybanthus calycinus *indicates introduced species.
Recommended publications
  • Partial Flora Survey Rottnest Island Golf Course
    PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge
    [Show full text]
  • Restoration After Removal of Pines at Gnangara Final
    RESTORATION OF BANKSIA WOODLAND AFTER THE REMOVAL OF PINES AT GNANGARA: SEED SPECIES REQUIREMENTS AND PRESCRIPTIONS FOR RESTORATION A report prepared on behalf of the Department of Environment and Conservation for the Gnangara Sustainability Strategy Kellie Maher University of Western Australia May 2009 Restoration of Banksia woodland after the removal of pines at Gnangara: seed species requirements and prescriptions for restoration Report for the Department of Environment and Conservation Kellie Maher University of Western Australia Gnangara Sustainability Strategy Taskforce Department of Water 168 St Georges Terrace Perth Western Australia 6000 Telephone +61 8 6364 7600 Facsimile +61 8 6364 7601 www.gnangara.water.wa.gov.au © Government of Western Australia 2009 May 2009 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968 , all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Conservation and Environment. This document has been commissioned/produced as part of the Gnangara Sustainability Strategy (GSS). The GSS is a State Government initiative which aims to provide a framework for a whole of government approach to address land use and water planning issues associated with the Gnangara groundwater system. For more information go to www.gnangara.water.wa.gov.au 1 Restoration of Banksia woodland after the removal of pines at Gnangara: seed species requirements and prescriptions for restoration A report to the Department of Environment and Conservation Kellie Maher University of Western Australia May 2009 2 Table of Contents List of Tables ....................................................................................................................
    [Show full text]
  • BFS048 Site Species List
    Species lists based on plot records from DEP (1996), Gibson et al. (1994), Griffin (1993), Keighery (1996) and Weston et al. (1992). Taxonomy and species attributes according to Keighery et al. (2006) as of 16th May 2005. Species Name Common Name Family Major Plant Group Significant Species Endemic Growth Form Code Growth Form Life Form Life Form - aquatics Common SSCP Wetland Species BFS No kens01 (FCT23a) Wd? Acacia sessilis Wattle Mimosaceae Dicot WA 3 SH P 48 y Acacia stenoptera Narrow-winged Wattle Mimosaceae Dicot WA 3 SH P 48 y * Aira caryophyllea Silvery Hairgrass Poaceae Monocot 5 G A 48 y Alexgeorgea nitens Alexgeorgea Restionaceae Monocot WA 6 S-R P 48 y Allocasuarina humilis Dwarf Sheoak Casuarinaceae Dicot WA 3 SH P 48 y Amphipogon turbinatus Amphipogon Poaceae Monocot WA 5 G P 48 y * Anagallis arvensis Pimpernel Primulaceae Dicot 4 H A 48 y Austrostipa compressa Golden Speargrass Poaceae Monocot WA 5 G P 48 y Banksia menziesii Firewood Banksia Proteaceae Dicot WA 1 T P 48 y Bossiaea eriocarpa Common Bossiaea Papilionaceae Dicot WA 3 SH P 48 y * Briza maxima Blowfly Grass Poaceae Monocot 5 G A 48 y Burchardia congesta Kara Colchicaceae Monocot WA 4 H PAB 48 y Calectasia narragara Blue Tinsel Lily Dasypogonaceae Monocot WA 4 H-SH P 48 y Calytrix angulata Yellow Starflower Myrtaceae Dicot WA 3 SH P 48 y Centrolepis drummondiana Sand Centrolepis Centrolepidaceae Monocot AUST 6 S-C A 48 y Conostephium pendulum Pearlflower Epacridaceae Dicot WA 3 SH P 48 y Conostylis aculeata Prickly Conostylis Haemodoraceae Monocot WA 4 H P 48 y Conostylis juncea Conostylis Haemodoraceae Monocot WA 4 H P 48 y Conostylis setigera subsp.
    [Show full text]
  • A Multiscale Approach to Understanding Calcium Toxicity in Australian Proteaceae
    1489 Microsc. Microanal. 21 (Suppl 3), 2015 doi:10.1017/S1431927615008223 Paper No. 0743 © Microscopy Society of America 2015 A Multiscale Approach to Understanding Calcium Toxicity in Australian Proteaceae Peta L. Clode1, Patrick Hayes1,2, Nicolas Honvault1,2,3, and Hans Lambers2 1. Centre for Microscopy, Characterisation & Analysis, The University of Western Australia. Crawley, WA 6009 Australia. 2. School of Plant Biology, The University of Western Australia. Crawley, WA 6009 Australia. 3. Agriculture, Institut Polytechnique LaSalle Beauvais. Beauvais Cedex, 60026 France. The Proteaceae are a family of plants predominantly distributed within the Southern hemisphere, with >600 species in West Australia alone. They display staggering diversity and endemism but are highly restricted in their distibution by soil quality and type. In order to understand the role of calcium in influencing distribution patterns, we are sampling plant species that are soil-indifferent (few, grow across all environments) and calcifuge (common, grow in acidic, nutrient poor soils). From this, the distribution, form, and amount of calcium in leaves is being investigated at the cellular level using a variety of correlative techniques, including optical-based microscopies, Raman spectroscopy, X-ray microscopy, and quantitative EDS X-ray microanalysis. For optical based imaging and analysis, chemically fixed samples are either sectioned (100 um thickness) using a vibratome or embedded in ultra low viscosity resin and microtomed (1 um thickness). Samples are subsequently imaged using brightfield and ultraviolet techniques, and analysed via Raman spectroscopy (WITec alpha 300RA+). For X-ray microscopy (Xradia Versa XRM-520), chemically fixed samples are incrementally scanned over 360 degrees to produce 3-dimensional data sets, which are then reconstructured and quantitatively analysed using a variety of software packages.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Appendix 2 Flora and Vegetation Assessment
    FLORA AND VEGETATION ASSESSMENT OF CLOVERDALE LEASE AREA Prepared for: Iluka Resources Ltd Prepared by: Mattiske Consulting Pty Ltd December 2005 MATTISKE CONSULTING PTY LTD IRL0508/214/05 Mattiske Consulting Pty Ltd TABLE OF CONTENTS Page 1. SUMMARY .....................................................................................................................................1 2. INTRODUCTION...........................................................................................................................2 2.1 Declared Rare, Priority and Threatened Species...............................................................................2 2.2 Wetlands............................................................................................................................................4 2.3 Local and Regional Significance.......................................................................................................5 2.4 Vegetation .........................................................................................................................................5 2.5 Threatened Ecological Communities ................................................................................................6 3. OBJECTIVES .................................................................................................................................7 4. METHODS ......................................................................................................................................7 5. RESULTS ........................................................................................................................................8
    [Show full text]
  • A Multiscale Approach to Understanding Calcium Toxicity in Australian Proteaceae
    1489 Microsc. Microanal. 21 (Suppl 3), 2015 doi:10.1017/S1431927615008223 Paper No. 0743 © Microscopy Society of America 2015 A Multiscale Approach to Understanding Calcium Toxicity in Australian Proteaceae Peta L. Clode1, Patrick Hayes1,2, Nicolas Honvault1,2,3, and Hans Lambers2 1. Centre for Microscopy, Characterisation & Analysis, The University of Western Australia. Crawley, WA 6009 Australia. 2. School of Plant Biology, The University of Western Australia. Crawley, WA 6009 Australia. 3. Agriculture, Institut Polytechnique LaSalle Beauvais. Beauvais Cedex, 60026 France. The Proteaceae are a family of plants predominantly distributed within the Southern hemisphere, with >600 species in West Australia alone. They display staggering diversity and endemism but are highly restricted in their distibution by soil quality and type. In order to understand the role of calcium in influencing distribution patterns, we are sampling plant species that are soil-indifferent (few, grow across all environments) and calcifuge (common, grow in acidic, nutrient poor soils). From this, the distribution, form, and amount of calcium in leaves is being investigated at the cellular level using a variety of correlative techniques, including optical-based microscopies, Raman spectroscopy, X-ray microscopy, and quantitative EDS X-ray microanalysis. For optical based imaging and analysis, chemically fixed samples are either sectioned (100 um thickness) using a vibratome or embedded in ultra low viscosity resin and microtomed (1 um thickness). Samples are subsequently imaged using brightfield and ultraviolet techniques, and analysed via Raman spectroscopy (WITec alpha 300RA+). For X-ray microscopy (Xradia Versa XRM-520), chemically fixed samples are incrementally scanned over 360 degrees to produce 3-dimensional data sets, which are then reconstructured and quantitatively analysed using a variety of software packages.
    [Show full text]
  • WA Limestone Yanchep M70-1325 Mining Proposal 2014-05
    LEVEL 2 FLORA AND VEGETATION SURVEY OF THE YANCHEP RIDGES SURVEY AREA Prepared for WA LIMESTONE Prepared by Mattiske Consulting Pty Ltd May 2014 WAL1301/057/13 Disclaimer and Limitation This report has been prepared on behalf of and for the exclusive use of WA Limestone, and is subject to and issued in accordance with the agreement between WA Limestone and Mattiske Consulting Pty Ltd. Mattiske Consulting Pty Ltd accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party. This report is based on the scope of services defined by WA Limestone, budgetary and time constraints imposed by WA Limestone, the information supplied by WA Limestone (and its agents), and the method consistent with the preceding. Copying of this report or parts of this report is not permitted without the authorisation WA Limestone or Mattiske Consulting Pty Ltd. DOCUMENT HISTORY Prepared Reviewed Submitted to WA Limestone Report Version By By Date Copies Internal Review V1 DM JC - - Draft Report released for Client Review V2 DM/JC JC/EMM 05/02/2014 Email Final Report V3 JC EMM 31/05/2014 Email Mattiske Consulting Pty Ltd TABLE OF CONTENTS Page 1. SUMMARY ........................................................................................................................................ 1 2. INTRODUCTION ............................................................................................................................... 3 2.1 Location and Scope of Proposal ..................................................................................................
    [Show full text]
  • Floristics of the Banksia Woodlands on the Wallingup Plain in Relation to Environmental Parameters
    Edith Cowan University Research Online Theses : Honours Theses 2003 Floristics of the banksia woodlands on the Wallingup Plain in relation to environmental parameters Claire McCamish Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Environmental Monitoring Commons Recommended Citation McCamish, C. (2003). Floristics of the banksia woodlands on the Wallingup Plain in relation to environmental parameters. https://ro.ecu.edu.au/theses_hons/359 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/359 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • Early Cretaceous Lineages of Monocot Flowering Plants
    Early Cretaceous lineages of monocot flowering plants Kåre Bremer* Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyva¨gen 18D, SE-752 36 Uppsala, Sweden Edited by Peter H. Raven, Missouri Botanical Garden, St. Louis, MO, and approved February 14, 2000 (received for review October 1, 1999) The phylogeny of flowering plants is now rapidly being disclosed tionally complex and not feasible for dating large trees with by analysis of DNA sequence data, and currently, many Cretaceous several reference fossils. fossils of flowering plants are being described. Combining molec- Herein, the focus is on divergence times for the basal nodes of ular phylogenies with reference fossils of known minimum age the monocot phylogeny, and any precision in dating the upper makes it possible to date the nodes of the phylogenetic tree. The nodes of the tree is not attempted. To this end, mean branch dating may be done by counting inferred changes in sequenced lengths from the terminals to the basal nodes of the tree are genes along the branches of the phylogeny and calculating change calculated. Unequal rates in different lineages are manifested as rates by using the reference fossils. Plastid DNA rbcL sequences and unequal branch lengths counting from the root to the terminals eight reference fossils indicate that Ϸ14 of the extant monocot in phylogenetic trees, and the procedure of calculating mean lineages may have diverged from each other during the Early branch lengths reduces the problem of unequal rates toward the Cretaceous >100 million years B.P. The lineages are very different base of the tree.
    [Show full text]
  • Diversity and Evolution of Monocots
    Commelinids 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit • Lilioids (lilies, orchids, yams) – non-monophyletic . palms, spiderworts, bananas, and – petaloid • Commelinids pineapples . – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Commelinids Commelinids • largest group of monocots ranging from palms to grasses Dasypogonaceae • strongly monophyletic! • bound ferulic acid in cell walls (fluoresce under UV with ammonium hydroxide added) • this feature allowed placement of Dasypogonaceae 4 genera - W Australia Commelinids *Arecaceae - palms • theme: reduction of flower, loss of • the order has one family - also nectar, loss of zoophily, evolution of called Palmae bracts • 190 genera and 2400 species of trees and shrubs • tropics, subtropics, deserts, grass Mediterranean biomes pickeral weed rapatead bromeliad *Arecaceae - palms *Arecaceae - palms Malaysia • greatest center of diversity in • Rattan palms - a plant group that honors the Wallace Malay archipelago, then Biogeographic Line Amazonia • Asian distribution with few species passing through Sulawesi • depauperate in Africa, but or New Guinea diverse in Madagascar Rattan palm & generic distributions Madagascar *Arecaceae - palms *Arecaceae - palms Great morphological diversity: in stature Great morphological diversity: largest seed of seed plants Syagrus - lilliput palm of Paraguay Jubaea - Chilean wine palm Lodoicea maldivica - Seychelles palm or double nut This genus of 1 species endemic to the Seychelles has generated interest in having the largest seed, and in that the shape of the *Arecaceae - palms seed has suggested the devil's work or aphrodisiacal properties. Great morphological diversity: largest leaf What is unusual about how this species was first discovered? Corypha Raffia - rattan Lodoicea maldivica - Seychelles palm or double nut .
    [Show full text]
  • Liliales) Constantijn B
    Journal of Biogeography (J. Biogeogr.) (2015) ORIGINAL Ancient Gondwana break-up explains the ARTICLE distribution of the mycoheterotrophic family Corsiaceae (Liliales) Constantijn B. Mennes1,*, Vivienne K. Y. Lam2, Paula J. Rudall3, Stephanie P. Lyon4, Sean W. Graham2, Erik F. Smets1,5 and Vincent S. F. T. Merckx1 1Naturalis Biodiversity Center, Leiden ABSTRACT University, Leiden, The Netherlands, Aim Many plant families have a disjunct distribution across the southern Paci- 2Department of Botany, University of British fic Ocean, including the mycoheterotrophic family Corsiaceae, which provides Columbia, Vancouver, British Columbia V6T 1Z4, Canada, 3Royal Botanic Gardens Kew, a prime example of this biogeographical pattern. A better grasp of the family’s Richmond, Surrey, UK, 4Department of evolutionary relationships is needed to understand its historical biogeography. Botany, University of Wisconsin Madison, We therefore aimed to (1) test the uncertain monophyly of Corsiaceae, (2) Madison, WI 54706, USA, 5Section Ecology, define its phylogenetic position, and (3) estimate divergence times for the fam- Evolution and Biodiversity Conservation, KU ily, allowing us to assess whether the distribution of the family is the result of Leuven, BE-3001 Leuven, Belgium vicariance. Location Southern South America and Australasia. Methods We analysed various combinations of mitochondrial and nuclear data to address the monophyly, phylogenetic position and age of Corsiaceae. To test its monophyly, we used a three-locus data set including most monocot orders, and to infer its exact phylogenetic position, we used a five-locus extended data set. We corroborated these findings using an independent plas- tome dataset. We then used a two-locus dataset with taxa from all monocot orders, and a three-locus dataset containing only taxa of Liliales, to estimate divergence times using a fossil-calibrated uncorrelated lognormal relaxed-clock approach.
    [Show full text]