The Reproductive Biology of the Invasive Ferns Lygodium Microphyllum and L

Total Page:16

File Type:pdf, Size:1020Kb

The Reproductive Biology of the Invasive Ferns Lygodium Microphyllum and L American Journal of Botany 90(8): 1144±1152. 2003. THE REPRODUCTIVE BIOLOGY OF THE INVASIVE FERNS LYGODIUM MICROPHYLLUM AND L. JAPONICUM (SCHIZAEACEAE): IMPLICATIONS FOR INVASIVE POTENTIAL1 MICHAEL S. LOTT,2 JOHN C. VOLIN,2 ROBERT W. P EMBERTON,3 AND DANIEL F. A USTIN4 2Department of Biological Sciences, Florida Atlantic University, 2912 College Avenue, Davie, Florida 33314 USA; 3Invasive Plant Research Laboratory, USDA-Agricultural Research Service, 3205 College Avenue, Ft. Lauderdale, Florida 33314 USA; and 4Arizona±Sonora Desert Museum, 2021 N. Kinney Road, Tucson, Arizona 85743 USA The effect of culture system and population source on sexual expression and sporophyte production was examined for two invasive fern species in Florida, USA, Lygodium microphyllum and L. japonicum (Schizaeaceae). Both species are currently spreading through Florida. Long-distance dispersal of ferns is thought to rely on successful intragametophytic sel®ng. Given the rate of spread observed in both Lygodium species, we hypothesized that both species are capable of intragametophytic sel®ng. To test this hypothesis, game- tophytes of both species were grown in vitro as isolates, pairs, and groups. Both species were capable of intragametophytic sel®ng; 78% of L. microphyllum isolates produced sporophytes and over 90% of the L. japonicum isolates produced sporophytes. Lygodium microphyllum also displayed the ability to reproduce via intergametophytic crossing, facilitated by an antheridiogen pheromone. Spo- rophyte production was rapid across mating systems for both species, an advantage in Florida's wet and dry seasonal cycles. The high intragametophytic sel®ng rate achieved by both species has likely facilitated their ability to colonize and spread through Florida. The mixed mating system observed in L. microphyllum appears to give this species the ability to invade distant habitats and then adapt to local conditions. Key words: Florida; invasive species; Lygodium; reproductive biology; Schizaeaceae; sel®ng. Homosporous ferns have two free-living generations: a hap- less mature gametophytes (e.g., Hamilton and Lloyd, 1991; loid gametophyte and a diploid sporophyte. Because homo- Hau¯er and Welling, 1994). sporous ferns have bisexual gametophytes, intragametophytic This study examines mating systems in L. microphyllum sel®ng (i.e., the union of egg and sperm from the same ga- (Cav.) R. Br. (Schizaeaceae) and L. japonicum (Thunb.) metophyte) was long held to be an important mode of repro- Swartz. The genus Lygodium is relatively small, comprised of duction in populations of homosporous ferns (Soltis et al., up to 40 species, including one, L. palmatum (Bernh.) Sw., 1988). However, in controlled growth studies to examine re- native to North America (Pemberton, 1998). Lygodium is productive strategies in homosporous ferns, only a few species mostly found in tropical regions of the world. The native range had high intragametophytic sel®ng rates (e.g., Crist and Farrar, of L. microphyllum extends into moist habitats throughout the 1983; Korpelainen, 1996, 1997). The majority of studied fern tropical Old World. Lygodium japonicum also has a large na- species reproduce through intergametophytic crossing (Hed- tive range occurring in both temperate and tropical Asia (Pem- rick, 1987; Soltis and Soltis, 1992; Korpelainen and Kolkkala, berton, 1998). 1996; Hooper and Hau¯er, 1997). Mixed mating has only been Both species have a climbing habit and are nonindigenous observed in a few species, including Onoclea sensibilis (Kle- and invasive in Florida, USA. Currently, L. microphyllum is kowski, 1982) and Dryopteris expansa (Soltis and Soltis, expanding its range in southern Florida, while L. japonicum 1987). Therefore, both intragametophytic sel®ng and outcross- is expanding its range in northern Florida (Schmitz et al., ing may represent stable mating systems in homosporous ferns 1997; Pemberton and Ferriter, 1998). For example, the total (e.g., Crist and Farrar, 1983; Peck et al., 1990; Korpelainen, area infested by L. microphyllum was estimated to have ex- 1996). In addition, homosporous ferns have evolved both mor- panded from approximately 11 200 hectares in 1993 to ap- phological (e.g., asynchronous maturation of gametophytes) proximately 43 300 hectares in 1999 (Pemberton and Ferriter, and physiological mechanisms (e.g., the pheromone antheri- 1998; A. Ferriter, South Florida Water Management District, diogen) to promote outcrossing (e.g., Tryon and Vitale, 1977; personal communication). Both species are capable of smoth- Hau¯er and Welling, 1994). Antheridiogens are pheromones ering and displacing native understory vegetation, and in ex- that promote outcrossing in fern gametophytes (e.g., DoÈpp, treme infestations, shrub and canopy vegetation. This is par- 1950; Hau¯er and Welling, 1994). These compounds are typ- ticularly notable in L. microphyllum, which can form rachis ically secreted by meristematic female gametophytes and trig- mats up to a meter thick, effectively eliminating most under- ger precocious antheridial formation on neighboring smaller, story vegetation. Several reproductive life history characteristics in plants have been proposed that may facilitate the greater competitive 1 Manuscript received 9 January 2003; revision accepted 25 March 2003. ability of nonindigenous plant species, such as self- or wind The authors thank Dr. Dianne Owen for assistance with the statistical anal- yses and Allison Snow for her help in the laboratory and ®eld. This research pollination (fertilization), rapid growth to reproductive age or was supported by grants from the Florida Department of Environmental Pro- size, high and continuous seed (spore) production, adaptations tection and the South Florida Water Management District. for short- and long-distance seed (spore) or vegetative dis- 1144 August 2003] LOTTETAL.ÐREPRODUCTIVE BIOLOGY AND INVASIVE POTENTIAL 1145 Fig. 1. Location of collection sites of spores of Lygodium microphyllum and L. japonicum in Florida, USA. persal, and vegetative as well as sexual reproduction (Baker, in June and October 2000. Fertile fronds of L. microphyllum were collected 1974; Newsome and Noble, 1986; Roy, 1990; Reichard and from Jonathan Dickinson State Park and the Big Cypress Seminole Indian Hamilton, 1997; Sakai et al., 2001). In homosporous ferns, the Reservation, located in Martin and Hendry counties, respectively, Florida, ability to reproduce through intragametophytic sel®ng pro- USA (Fig. 1). Lygodium japonicum fronds were collected from Suwannee motes long-distance dispersal (Crist and Farrar, 1983; Peck et River Water Management District land in Suwannee County and at the Ala®a al., 1990). As discussed by Peck et al. (1990), spores trans- River Corridor Preserve in Hillsborough County (Fig. 1). Fertile fronds were ported long distances would be unlikely to establish gameto- collected from at least four individual plants from each population. phytes in close enough proximity to allow for intergameto- Fronds of both species were stored in sealed plastic bags and brought back phytic sel®ng or crossing. Therefore, long-distance dispersal to the laboratory. The bags were opened and stored at ambient temperatures and colonization may be dependent upon the successful estab- and allowed to dry for several weeks, allowing the spores to be released. Each lishment of sporophytes by single spores. This ability to re- bag was kept separated from the others to prevent cross contamination. After produce through intragametophytic sel®ng would promote the the spores were released, they were sieved to remove leaf material. Following naturalization of introduced fern species, such as Lygodium. sieving, spores were sterilized in a 1% bleach solution and rinsed in sterile, Both Lygodium species are unusual among ferns in Florida distilled water. While in solution, the spores were sown with a pipette onto in that they can climb into tree canopies. Lygodium micro- 100 3 20 mm plastic petri dishes containing modi®ed Parker/Thompson's phyllum, in particular, has been observed overtopping tree can- basal nutrient medium, containing both macro- and micronutrients, and solid- opies among tree islands in the Arthur R. Marshall Loxahatch- i®ed with 1% agar (Klekowski, 1969). The petri dishes were placed in a growth chamber under cool-white ¯uorescent illumination of approximately ee National Wildlife Refuge, Boynton Beach, Florida. This 22 21 vine-like growth should theoretically promote the long-dis- 100 mmol´m ´s photosynthetic photon ¯ux with a photoperiod of 13/11 tance dispersal of these species because spores released at or hours and a temperature of 258/208C, light/dark, respectively. After approxi- above the tree canopy could potentially be carried a consid- mately 14 d, individual and pairs of asexual gametophytes were transferred erable distance by prevailing winds. Given these factors, we using a dissecting microscope and a scalpel onto fresh medium in 65 3 10 have hypothesized that both Lygodium species are capable of mm plastic petri dishes. intragametophytic sel®ng. Experimental designÐTo investigate the reproductive biology of both Ly- MATERIALS AND METHODS godium species, a series of experiments was conducted. Experiments 1±3 were Plant materialÐFertile fronds from L. microphyllum were collected in the designed to test the three potential mating types, intragametophytic sel®ng, ®eld in October 1999 and May 2000, and L. japonicum fronds were collected intergametophytic sel®ng, and intergametophytic crossing. A fourth experi-
Recommended publications
  • Gametophyte Morphology and Development of Six Species of Pteris (Pteridaceae) from Java Island Indonesia
    THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 5, NO. 2, pp. 98-104, May, 2015 Gametophyte Morphology and Development of Six Species of Pteris (Pteridaceae) from Java Island Indonesia Dwi Sunarti Puspitasari1, Tatik Chikmawati2*, Titien Ngatinem Praptosuwiryo3 1Plant Biology Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia 2Department of Biology, Faculty of Mathematics and Natural Sciences Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia 3Center for Plant Conservation- Bogor Botanical Gardens, Indonesian Institute of Sciences, Bogor, West Java, Indonesia ABSTRACT The morphology of sporophyte, the type of reproduction, and cytology of Pteris had been reported, while the gametophyte morphology of Pteris in Java island has not been studied yet. The objective of this study was to describe the gametophyte morphology and development of P. biaurita, P. ensiformis, P. exelsa, P. longipinnula, P. tripartita, and P. vittata in Java island. Spores were obtained from fertile leaves of Pteris plants originated from several locations in Java island. The number of spores per sporangium was counted from fresh fertile leaves with mature sporangia. As much as 0.002 g spores was sown in a transparent box with sterile medium contain of ver- miculite, sphagnum moss, and perlite with ratio 2:2:1. The gametophyte development of each species was observed under a microscope every 7 days. The spores of P. ensiformis were germinated faster, ten days after sowing, while the spores of P. longipinnula were germinated slower, 18 days after sowing. The pattern of spore germination is Vittaria-type.
    [Show full text]
  • Profiling Gene Expression During Early Gametophyte Development and Sex Determination in Ceratopteris Richardii Nadia Atallah Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Spring 2015 Profiling gene expression during early gametophyte development and sex determination in Ceratopteris richardii Nadia Atallah Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Bioinformatics Commons, Developmental Biology Commons, and the Plant Sciences Commons Recommended Citation Atallah, Nadia, "Profiling gene expression during early gametophyte development and sex determination in Ceratopteris richardii" (2015). Open Access Dissertations. 417. https://docs.lib.purdue.edu/open_access_dissertations/417 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated 1/15/2015 PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Nadia Atallah Entitled PROFILING GENE EXPRESSION DURING EARLY GAMETOPHYTE DEVELOPMENT AND SEX DETERMINATION IN CERATOPTERIS RICHARDII For the degree of Doctor of Philosophy Is approved by the final examining committee: Jo Ann Banks Olga Vitek Chair Joseph Ogas Milos Tanurdzic Michael Gribskov Peter B. Goldsbrough To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s
    [Show full text]
  • Reproduction and the Pheromonal Regulation of Sex Type in Fern Gametophytes
    REVIEW ARTICLE published: 06 March 2015 doi: 10.3389/fpls.2015.00100 Reproduction and the pheromonal regulation of sex type in fern gametophytes Nadia M. Atallah and Jo Ann Banks* Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA Edited by: The fern life cycle includes a haploid gametophyte that is independent of the sporophyte Dazhong D. Zhao, University of and functions to produce the gametes. In homosporous ferns, the sex of the gametophyte Wisconsin-Milwaukee, USA is not fixed but can vary depending on its social environment. In many species, the Reviewed by: Elena M. Kramer, Harvard sexual phenotype of the gametophyte is determined by the pheromone antheridiogen. University, USA Antheridiogen induces male development and is secreted by hermaphrodites once they Keiko Sakakibara, University of become insensitive to its male-inducing effect. Recent genetic and biochemical studies of Tokyo, Japan the antheridiogen response and sex-determination pathway in ferns, which are highlighted *Correspondence: here, reveal many similarities and interesting differences to GA signaling and biosynthetic Jo Ann Banks, Department of Botany and Plant Pathology, Purdue pathways in angiosperms. University, 915 West State Street, West Lafayette, IN 47906, USA Keywords: antheridiogen, sex determination, ferns, GA signaling, GA biosynthesis e-mail: [email protected] INTRODUCTION 1979). By optimizing the conditions for inducing apospory in The fern life cycle, illustrated in Figure 1, features two distinct Ceratopteris richardii gametophytes, a recent study has established body types: the large diploid sporophyte and the tiny haploid C. richardii as a useful experimental system for studying this gametophyte. From a reproduction point of view, the sole func- phenomenon (Cordle et al., 2007).
    [Show full text]
  • Comprehensive Investigation of Spore Germination and Antheridiogen Chemistry in Anemia Mexicana Klotzsch Joan Elizabeth Nester Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1985 Comprehensive investigation of spore germination and antheridiogen chemistry in Anemia mexicana Klotzsch Joan Elizabeth Nester Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Nester, Joan Elizabeth, "Comprehensive investigation of spore germination and antheridiogen chemistry in Anemia mexicana Klotzsch " (1985). Retrospective Theses and Dissertations. 12090. https://lib.dr.iastate.edu/rtd/12090 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Effect of Nutrients on Environmental Sex Determination and Size of Gametophytes in Culcita Macrocarpa
    J. Life Earth Sci., Vol. 7: 109-113, 2012 ISSN 1990-4827 http://banglajol.info.index.php/JLES © 2012, JLES, RU EFFECT OF NUTRIENTS ON ENVIRONMENTAL SEX DETERMINATION AND SIZE OF GAMETOPHYTES IN CULCITA MACROCARPA Lipika Ghosh*1, Ares Jiménez1, Luis G. Quintanilla1 1Departamento de Biologíay Geología, ESCET, Universidad Rey Juan Carlos, E-28933 Móstoles, Madrid, Spain. * Department of Botany, University of Rajshahi, Rajshahi-6205, Bangladesh. E-mail: [email protected] Abstract : In environmental sex determination (ESD) gender is decided after conception, depending on the environment, rather than being genetically fixed. ESD has rarely been studied in homosporous ferns. In the present study, Culcita macrocarpa gametophytes were cultured under varying nutrient conditions. Initially, most of the gametophytes of Culcita macrocarpa were male and subsequently hermaphrodite under different nutrition. The result indicates that its sex determination is protandry. All nutrient conditions were favourable for developing male prothalli but only good environment (high nutrient) was favourable for female gametophyte growth. In all respects, female gametophytes were much larger, than the other types of gametophytes. Hermaphroditic gametophytes were larger than male gametophytes, which were larger than asexual gametophytes. Key Words: Environmental sex determination, homosporous fern, Culcita macrocarpa, protandry, hermaphroditic. mvivsk t cwi‡ekxq wj½ wba©vi‡Yi(ESD) †¶‡Î Mf©avi‡Yi ci wj½ wba©viY RxbMZ wba©vi‡Yi †P‡q cwi‡ekxq wba©vi‡Yi Dci ‡ekx wbf©ikxj| mg‡iYycÖm~ dv‡Y © cwi‡ekxq wj½ wba©viY m¤ú‡K© wKQy M‡elYv n‡q‡Q| eZ©gvb M‡elYvq wewfbœ cyw󇶇ΠCulcita macrocarpa Gi Pvl Kiv n‡q‡Q| cÖv_wgK ch©v‡q wewfbœ cywóMZ Ae¯’vq C.
    [Show full text]
  • Pheromonal Interactions Among Gametophytes of <I>Osmundastrum
    Grand Valley State University ScholarWorks@GVSU Peer Reviewed Publications Biology Department 2012 Pheromonal Interactions among Gametophytes of Osmundastrum Cinnamomeum and the Origins of Antheridiogen Systems in Leptosporangiate Ferns Stephanie N. Hollingsworth North Carolina State University Eric A. Andres Grand Valley State University Gary K. Greery Grand Valley State University, [email protected] Follow this and additional works at: https://scholarworks.gvsu.edu/biopeerpubs ScholarWorks Citation Hollingsworth, Stephanie N.; Andres, Eric A.; and Greery, Gary K., "Pheromonal Interactions among Gametophytes of Osmundastrum Cinnamomeum and the Origins of Antheridiogen Systems in Leptosporangiate Ferns" (2012). Peer Reviewed Publications. 35. https://scholarworks.gvsu.edu/biopeerpubs/35 This Article is brought to you for free and open access by the Biology Department at ScholarWorks@GVSU. It has been accepted for inclusion in Peer Reviewed Publications by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. Int. J. Plant Sci. 173(4):382–390. 2012. Ó 2012 by The University of Chicago. All rights reserved. 1058-5893/2012/17304-0005$15.00 DOI: 10.1086/664717 PHEROMONAL INTERACTIONS AMONG GAMETOPHYTES OF OSMUNDASTRUM CINNAMOMEUM AND THE ORIGINS OF ANTHERIDIOGEN SYSTEMS IN LEPTOSPORANGIATE FERNS Stephanie N. Hollingsworth,1,* Eric A. Andres,2,y and Gary K. Greery *Department of Plant Biology, North Carolina State University, Box 7612, Raleigh, North Carolina 27695, U.S.A.; and yBiology Department, Grand Valley State University, Allendale, Michigan 49401, U.S.A. Antheridiogen systems, whereby notch-bearing, archegoniate gametophytes induce maleness in ameristic neighbors, have been detected in many core leptosporangiate ferns. Previous studies have failed to detect an antheridiogen system in Osmundales, which is sister to all other extant leptosporangiates; hence, antheridiogen systems are thought to have evolved after their divergence.
    [Show full text]
  • Reproductive Biology of Three Fern Species May Contribute to Differential Colonization Success in Post-Agricultural Forests1
    American Journal of Botany 93(9): 1289–1294. 2006. REPRODUCTIVE BIOLOGY OF THREE FERN SPECIES MAY CONTRIBUTE TO DIFFERENTIAL COLONIZATION SUCCESS IN POST-AGRICULTURAL FORESTS1 KATHRYN M. FLINN2 Cornell University, Department of Ecology and Evolutionary Biology, Corson Hall, Ithaca, New York 14853 USA Because selfing enables a single individual to reproduce in a new location, the ability to self-fertilize should enhance plants’ capacity for colonization. This study examined whether selfing ability correlated with successful migration in three fern species, Dryopteris carthusiana, Dryopteris intermedia, and Polystichum acrostichoides, which vary in their ability to colonize forests on abandoned agricultural lands in central New York, USA. Polystichum acrostichoides is much more frequent in forests that were never cleared for agriculture, D. carthusiana is more frequent in forests that developed on former fields, and D. intermedia is equally frequent in the two forest types. To test the hypothesis that better-colonizing species and post-agricultural forest populations have greater selfing ability, I assessed the sporophyte production of gametophytes grown in isolation and in pairs of varying relatedness. Dryopteris carthusiana had the highest reproductive success and selfing ability and P. acrostichoides the lowest. These results support the hypothesis that selfing may facilitate colonization in these species. They also exemplify the general pattern that polyploid fern species have higher rates of self-fertilization than related diploids, as the allotetraploid D. carthusiana had greater selfing ability than both diploid species. Key words: Baker’s Law; Dryopteridaceae; genetic load; inbreeding depression; land-use history; New York; polyploidy; self-fertilization. Understanding how life history traits relate to colonizing 1974; McMullen, 1987; Webb and Kelly, 1993; Anderson et ability can reveal the processes underlying natural patterns of al., 2001).
    [Show full text]
  • Isolation and Analysis of Ceratopteris Richardii Antheridiogen C
    City University of New York (CUNY) CUNY Academic Works Student Theses Baruch College 1-1-2012 Isolation and analysis of Ceratopteris richardii Antheridiogen C Adham Alifarag Baruch College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/bb_etds/2 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Isolation and Analysis of Ceratopteris richardii Antheridiogen C 1 ISOLATION AND ANALYSIS OF Ceratopteris richardii ANTHERIDIOGEN C ADHAM ALIFARAG Submitted to the Committee on Undergraduate Honors of Baruch Honors College of the City University of New York in partial fulfillment of the requirement for the degree of Bachelor of Arts in Biological Sciences with Honors Submitted Fall Semester 2012 Approved by the Department of Natural Sciences: __________________________________ Dr. Edward B. Tucker Mentor and faculty sponsor ________________________________ ______________________________ Dr. Helene Eisenman Dr. Chester Zarnoch Committee member Committee member Isolation and Analysis of Ceratopteris richardii Antheridiogen C 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS ..........................................................................................................4 ABSTRACT ....................................................................................................................................8 CHAPTER ONE: INTRODUCTION ..........................................................................................9
    [Show full text]
  • A New Antheridiogen from the Fern <Emphasis Type="Italic
    Proc. lndian Acad. Sci. 0alant Sci.), Vol. 95, No. 3, October 1985, pp. 173-179 Printed in India. A new antheridiogen from the fern Pityrogramma calomelanos (L.) Link J P DUBEY* and S K ROY Department of Botany, Banaras Hindu University, Varanasi 221 005, India Present address: Department of Botany, D B S College, Kanpur 208 006, India MS received 25 October 1979; revised 40ctober 1985 Abstract. A new antheridiogen from Pityrogramma calomelanos ofthe family Polypodiaceae (Sensu Bower) has been extracted and tested on Pityrooramma calomelanos, Onychium siliculosum (Desv) C. chr, and Onychium japonicum (Thbg) Kze. The antheridiogen, here designated as Apit, did not produce uniform effect on the species tested, li promotes dark germination in all, but induces antheridia only in Pityrogramma calomelanos and Onychium siliculosum under light and dark conditions. The antheridium-inducing capacity of Apit is markedly different on the two ferns, being more vigorous under light condition in Pityrogramma calomelanos and less in Onychium siliculosum. Contrary to this, more antheridium-bearing prothalli have been counted in the latter under darkness. Higher dilutions are less effective in both. Dark germination has been found most effective in case of Onychium japonicum. The results indicate that the intensity of the effect of antheridiogen va¡ under different conditions and between species of the same genus. Also, an antheridiogen is not specific in the induction of antheridia or dark germination of spores, but it may initiate any of the two or both. Keyword$. Antheridiogen; Apit; Apt. 1. Introduction Since the discovery of antheridium-inducing substance in Pteridium aquilinum by D6pp (1950) several leptosporangiate ferns have been reported to contain such substances which are capable of inducing antheridia 0N/if 1956, 1959, 1960, 1965, 1969; Pringle 1961; N al 1969; Schedlbauer and Klekowski 1972).
    [Show full text]
  • Investigations Into Gametophyte Morphology and Population Sex
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Investigations into gametophyte morphology and population sex ratios through direct comparisons between laboratory-grown and field-grown fern gametophytes Chanda Lee Skelton Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Botany Commons, and the Horticulture Commons Recommended Citation Skelton, Chanda Lee, "Investigations into gametophyte morphology and population sex ratios through direct comparisons between laboratory-grown and field-grown fern gametophytes" (2007). Retrospective Theses and Dissertations. 15062. https://lib.dr.iastate.edu/rtd/15062 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Investigations into gametophyte morphology and population sex ratios through direct comparisons between laboratory-grown and field-grown fern gametophytes by Chanda Lee Skelton A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Botany Program of Study Committee: Donald R. Farrar, Major Professor James Colbert Philip Dixon Iowa State University Ames, Iowa 2007 Copyright © Chanda Lee Skelton, 2007. All rights reserved. UMI Number: 1446061 UMI Microform 1446061 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O.
    [Show full text]
  • Sex Determination in Plants Cristina Juarez and Jo Ann Banks∗
    68 Sex determination in plants Cristina Juarez and Jo Ann Banks∗ Sex determination is an important developmental event in the mined by sex chromosomes (reviewed in [4,5•]). Plants life cycle of all sexually reproducing plants. Recent studies producing only female ¯owers have 22 autosomes and of sex determination in many plant species, from ferns to two X chromosomes; plants producing only male ¯owers maize, have been fruitful in identifying the diversity of genetic have 22 autosomes, one X and one Y chromosome. and epigenetic factors that are involved in determining the As in humans, the sex chromosomes are cytologically sex of the ¯ower or individual. In those species amenable distinct. Since plants with one Y chromosome and up to genetic analysis, signi®cant progress has been made to three X chromosomes are predominantly male [7,8], toward identifying mutations that affect sex expression. By the Y chromosome is thought to contain the dominant studying the interactions among these genes, pictures of how determinants of sex type. sex-determining signals are perceived to activate or repress male- or female-speci®c genes are emerging. During the early stages of ¯oral organ development, all ¯oral organ primordia form in male, female and mutant hermaphroditic ¯owers. In males, the gynoecium develops Addresses as a sterile, undifferentiated rod, while in females, anther Department of Botany and Plant Pathology, Lilly Hall, Purdue University, West Lafayette, IN 47906, USA development arrests soon after the anther primordia form, Correspondence: Jo Ann Banks then the anthers degenerate [9]. The observation that ∗email: [email protected] the MADS-box ¯oral homeotic selector genes of Silene, Current Opinion in Plant Biology 1998, 1:68±72 or the SLM (for S.
    [Show full text]
  • A Novel Phytochrome Sequence in Ceratopteris Richardii by Brian
    A Novel Phytochrome Sequence in Ceratopteris richardii By Brian Stonaker Plants rely upon environmental cues such as light in order to acclimatize to constantly changing environmental stressors. Light is a major cue that directs patterns of gene expression in plant development, metabolism, and morphology. Solar tracking, chloroplast movement, stomatal opening, photomorphogenesis, photoperiodism, nyctinasty, and photonasty are all actions taken by plants in response to light conditions. In order for light to induce physiological changes, chromoproteins known as photoreceptors must use light energy to initiate signal transduction pathways that result in changes in gene expression (Castillon et al., 2007). One such photoreceptor class, the phytochromes, respond to red and far-red light. The molecular biology of phytochrome in angiosperms and mosses is well documented however little is still understood of the role of phytochrome in ferns and gymnosperms. Previous studies into the photobiology of ferns using the model Ceratopteris richardii have identified five phytochrome sequences: CrPHY1A, CrPHY1B (partial cDNA), CrPHY2, CrPHY4A, and CrPHY4B. This study attempted to confirm the sequence of the previously isolated CrPHY2 and consequently discovered a possible novel phytochrome in Ceratopteris richardii. Analysis suggests the sequence in this study is a possible CrPHY1 paralog. The phytochrome family of genes in ferns is the result of several gene duplication events. Previous phylogenetic analysis indicates the divergence between PHY1 and PHY2 in vascular plants predates the advent of seeded plants. A more recent gene duplication event in ferns resulting in homologues PHY2 and PHY4 correspond to the diversification of angiosperms. The novel sequence isolated in this study may have resulted from a more recent gene duplication event.
    [Show full text]