Breeding Bird Survey 2009: Summary Purpose
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecology of Feral Pigeons: Population Monitoring, Resource Selection, and Management Practices Erin E
Chapter Ecology of Feral Pigeons: Population Monitoring, Resource Selection, and Management Practices Erin E. Stukenholtz, Tirhas A. Hailu, Sean Childers, Charles Leatherwood, Lonnie Evans, Don Roulain, Dale Townsley, Marty Treider, R. Neal Platt II, David A. Ray, John C. Zak and Richard D. Stevens Abstract Feral pigeons (Columba livia) are typically ignored by ornithologists but can be found roosting in the thousands within cities across the world. Pigeons have been known to spread zoonoses, through ectoparasites and excrement they produce. Along with disease, feral pigeons have an economic impact due to the cost of cleanup and maintenance of human infrastructure. Many organizations have tried to decrease pigeon abundances through euthanasia or use of chemicals that decrease reproductive output. However, killing pigeons has been unsuccessful in decreasing abundance, and chemical inhibition can be expensive and must be used throughout the year. A case study at Texas Tech University has found that populations fluctu- ate throughout the year, making it difficult to manage numbers. To successfully decrease populations, it is important to have a multifaceted approach that includes removing necessary resources (i. e. nest sites and roosting areas) and decreasing the number of offspring through humane techniques. Keywords: birth control, nest sites, nuisance, rock doves, zoonoses 1. Introduction Of the 7.53 billion people that live on Earth, over half inhabit cities [1, 2]. Increase in development has altered biodiversity through an increase in fragmenta- tion and invasive species abundance. Urban areas are highly susceptible to invasions of nonnative species [3], which can increase threat to native species and increase economic costs due to environmental and structural damage [4, 5]. -
Poland: May 2015
Tropical Birding Trip Report Poland: May 2015 POLAND The Primeval Forests and Marshes of Eastern Europe May 22 – 31, 2015 Tour Leader: Scott Watson Report and Photos by Scott Watson Like a flying sapphire through the Polish marshes, the Bluethroat was a tour favorite. www.tropicalbirding.com +1-409-515-0514 [email protected] Page1 Tropical Birding Trip Report Poland: May 2015 Introduction Springtime in Eastern Europe is a magical place, with new foliage, wildflowers galore, breeding resident birds, and new arrivals from Africa. Poland in particular is beautiful this time of year, especially where we visited on this tour; the extensive Biebrza Marshes, and some of the last remaining old-growth forest left in Europe, the primeval forests of Bialowieski National Park, on the border with Belarus. Our tour this year was highly successfully, recording 168 species of birds along with 11 species of mammals. This includes all 10 possible Woodpecker species, many of which we found at their nest holes, using the best local knowledge possible. Local knowledge also got us on track with a nesting Boreal (Tengmalm’s) Owl, while a bit of effort yielded the tricky Eurasian Pygmy-Owl and the trickier Hazel Grouse. We also found 11 species of raptors on this tour, and we even timed it to the day that the technicolored European Bee-eaters arrived back to their breeding grounds. A magical evening was spent watching the display of the rare Great Snipe in the setting sun, with Common Snipe “winnowing” all around and the sounds of breeding Common Redshank and Black-tailed Godwits. -
American Robin
American Robin DuPage Birding Club, 2020 American Robin Appearance A chunky, heavy-bodied bird with a relatively small dark head. Sexually dimorphic, meaning the male and female look different. American Robins are a uniform dark gray with a brick red breast. Female Male Females are a lighter gray with a lighter breast. Males tend to be darker with a brighter red breast. Males are larger than females. Photos: Elmarie Von Rooyen (left), Jackie Tilles (right) DuPage Birding Club, 2020 2 American Robin Appearance American Robins are a medium-size bird with a length of about ten inches. They are so common that they are a good bird to compare size with when you come across an unknown bird. Is the bird bigger than an American Robin or smaller than an American Robin? Judging the size of a bird is very helpful in identifying an unknown bird. Chart: The Cornell Lab, All About Birds https://www.allaboutbirds.org/guide/American_Robin/id DuPage Birding Club, 2020 3 American Robin Appearance Juvenile American Robins have a speckled breast with a tint of rusty red. Photos: Natalie McFaul DuPage Birding Club, 2020 4 American Robin Sounds From The Cornell Lab of Ornithology: https://www.birds.cornell.edu/home/ SONGS The musical song of the American Robin is a familiar sound of spring. It’s a string of 10 or so clear whistles assembled from a few often- repeated syllables, and often described as cheerily, cheer up, cheer up, cheerily, cheer up. The syllables rise and fall in pitch but are delivered at a steady rhythm, with a pause before the bird begins singing again. -
Wallcreeper and the Camargue
Wallcreeper and The Camargue Naturetrek Tour Report 19 – 23 November 2018 Firecrest Western Swamphen Stripeless Tree Frog Spoonbill Report compiled by Matt Collis Images courtesy of Neil McMahon Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Wallcreepers and The Camargue Tour participants: Matt Collis & Neil McMahon (leaders) with 16 Naturetrek clients Summary A short birding trip to the very special Camargue district of southern France provides an excellent opportunity to experience good views of typical waterbirds of the west Mediterranean. Utilising a family-run hotel on the outskirts of the ancient city of Arles as our base, the itinerary provided an easy opportunity to look for flamingoes, herons and wading birds using the shallow waters and reed-fringed lagoons as a breeding area or a suitable stop-over for migrants. The mountainous areas attract different and more localized species and we located special birds such as Wallcreeper, Rock Sparrow and Booted Eagle, together with a selection of other stunning species that call the Camargue home. Day 1 Monday 19th November Arriving in the early evening, leaders Neil and Matt met 15 of the 16 clients at Marseille airport, before collecting the minibuses and beginning the journey to the hotel. French protests and road blocks meant the route was more cross country but after just over an hour or so we arrived at our destination, Hotel des Granges. We were greeted by Bruno and Marie-Jo, our wonderful hosts and owners of this classically French Hotel, and a lone Black Redstart, the first bird for our trip, sat roosting over the entrance porch. -
Phylogeography of Finches and Sparrows
In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls. -
Ohio Birding Checklist with Difficulty Codes Daily/Year/Life
Ohio Birding Checklist with ____ Common Merganser 2 ____ Belted Kingfisher 1 ____ Louisiana Waterthrush 2 ____ Red-breasted Merganser 1 ____ Red-headed Woodpecker 2 ____ Northern Waterthrush 2 Difficulty Codes ____ Ruddy Duck 1 ____ Red-bellied Woodpecker 1 ____ Blue-winged Warbler 1 ____ Wild Turkey 2 ____ Yellow-bellied Sapsucker 2 ____ Black-and-white Warbler 1 Daily/Year/Life ________________ ____ Pied-billed Grebe 1 ____ Downy Woodpecker 1 ____ Prothonotary Warbler 2 ____ Horned Grebe 1 ____ Hairy Woodpecker 1 ____ Tennessee Warbler 2 This checklist is arranged in three sections, each ____ Rock Pigeon 1 ____ Northern Flicker 1 ____ Nashville Warbler 1 corresponding to a pair of difficulty codes. The ____ Mourning Dove 1 ____ Pileated Woodpecker 1 ____ Kentucky Warbler 2 six codes/descriptions are based primarily on the ____ Yellow-billed Cuckoo 2 ____ American Kestrel 1 ____ Common Yellowthroat 1 collective experience of Greg Miller and Dan ____ Common Nighthawk 2 ____ Eastern Wood-Pewee 2 ____ Hooded Warbler 1 Sanders. Overall abundance and ease of ____ Chimney Swift 1 ____ Acadian Flycatcher 2 ____ American Redstart 1 identification have been factored into each of the ____ Ruby-throated Hummingbird 1 ____ Willow Flycatcher 2 ____ Cape May Warbler 2 six codes and are as follows: ____ Virginia Rail 2 ____ Least Flycatcher 1 ____ Cerulean Warbler 2 ____ Sora 1 ____ Eastern Phoebe 1 ____ Northern Parula 2 Easier to See Birds ____ Common Gallinule 2 ____ Great Crested Flycatcher 1 ____ Magnolia Warbler 1 1. Readily found within expected habitat ____ American Coot 1 ____ Eastern Kingbird 1 ____ Bay-breasted Warbler 2 during at least one season of the year. -
Beyond Fish Edna Metabarcoding: Field Replicates Disproportionately Improve the Detection of Stream Associated Vertebrate Specie
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437227; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 2 3 Beyond fish eDNA metabarcoding: Field replicates 4 disproportionately improve the detection of stream 5 associated vertebrate species 6 7 8 9 Till-Hendrik Macher1, Robin Schütz1, Jens Arle2, Arne J. Beermann1,3, Jan 10 Koschorreck2, Florian Leese1,3 11 12 13 1 University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141 Essen, 14 Germany 15 2German Environmental Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany 16 3University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 17 3, 45141 Essen, Germany 18 19 20 21 22 Keywords: birds, biomonitoring, bycatch, conservation, environmental DNA, mammals 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437227; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 24 Abstract 25 Fast, reliable, and comprehensive biodiversity monitoring data are needed for 26 environmental decision making and management. Recent work on fish environmental 27 DNA (eDNA) metabarcoding shows that aquatic diversity can be captured fast, reliably, 28 and non-invasively at moderate costs. -
Red and Fallow Deer Determine the Density of Ixodes Ricinus Nymphs Containing Anaplasma Phagocytophilum
Red and Fallow Deer Determine the Density of Ixodes Ricinus Nymphs Containing Anaplasma Phagocytophilum Katsuhisa Takumi ( [email protected] ) Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands Tim Hofmeester Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Hein Sprong Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands Research Keywords: Ixodes ricinus nymphs, Anaplasma phagocytophilum, phagocytophilum, anaplasmosis Posted Date: October 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-96286/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 19th, 2021. See the published version at https://doi.org/10.1186/s13071-020-04567-4. 1 Red and fallow deer determine the density of Ixodes ricinus 2 nymphs containing Anaplasma phagocytophilum 1, 2 1 3 Katsuhisa Takumi ✉, Tim R. Hofmeester , and Hein Sprong 4 1 Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control 5 National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands 6 2 Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural 7 Sciences Skogsmarksgränd 7 907 36 Umeå Sweden 8 ✉ Correspondence: Katsuhisa Takumi <[email protected]> 9 1 10 Abstract 11 Background: The density of Ixodes ricinus nymphs infected with Anaplasma phagocytophilum 12 is one of the parameters that determines the risk for humans and domesticated animals to 13 contract anaplasmosis. -
Developing Methods for the Field Survey and Monitoring of Breeding Short-Eared Owls (Asio Flammeus) in the UK: Final Report from Pilot Fieldwork in 2006 and 2007
BTO Research Report No. 496 Developing methods for the field survey and monitoring of breeding Short-eared owls (Asio flammeus) in the UK: Final report from pilot fieldwork in 2006 and 2007 A report to Scottish Natural Heritage Ref: 14652 Authors John Calladine, Graeme Garner and Chris Wernham February 2008 BTO Scotland School of Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA Registered Charity No. SC039193 ii CONTENTS LIST OF TABLES................................................................................................................... iii LIST OF FIGURES ...................................................................................................................v LIST OF FIGURES ...................................................................................................................v LIST OF APPENDICES...........................................................................................................vi SUMMARY.............................................................................................................................vii EXECUTIVE SUMMARY ................................................................................................... viii CRYNODEB............................................................................................................................xii ACKNOWLEDGEMENTS....................................................................................................xvi 1. BACKGROUND AND AIMS...........................................................................................2 -
Common Name Spring Summer Fall Winter Greater White-Fronted Goose
Illinois River NWFR Bird Checklist Legend: A = Abundant - Common species that is very numerous C = Common - Certain to be seen in suitable habitat U = Uncommon - May be present but not certain to be seen O = Occasional - Seen only a few times during season R = Rare - Seen at intervals of 2 to 5 years X = Extremely Rare - (Same as Accidental) * = Nesting species # = State threatened or endangered species Common Name Spring Summer Fall Winter Swans, Geese, and Ducks Greater White-fronted Goose O O O Snow Goose U U Ross's Goose R R Canada Goose * C C A U Cackling Goose U O O Mute Swan R R R Tundra Swan O U U Trumpeter Swan O O O Wood Duck * A A A O Gadwall U O C O American Wigeon C R C R American Black Duck C R C O Mallard * A A A C Blue-winged Teal * C U A R Cinnamon Teal R R Northern Shoveler C C Northern Pintail C R A O Green-winged Teal C O A R Canvasback C C O Redhead U U O Ring-necked Duck C C U Greater Scaup R O Lesser Scaup A C O Surf Scoter R R White-winged Scoter R R Black Scoter R R Long-tailed Duck R R Bufflehead U U O Common Goldeneye U U U Hooded Merganser * C O C O Common Merganser C O C Red-breasted Merganser O O Ruddy Duck C R C U Upland Game Birds Ring-necked Pheasant O O O O Wild Turkey * O O O O Northern Bobwhite * U U U U Loons, Grebes, Pelicans, and Cormorants Red-throated Loon R Common Loon O O Pied-billed Grebe * C O U Horned Grebe U U Eared Grebe R R Western Grebe R American White Pelican A A O Double-crested Cormorant A O A O Bitterns, Herons, and Vultures American Bittern # R R R Least Bittern * # R R R Great Blue -
Progress in the Development of an Eurasian-African Bird Migration Atlas
CONVENTION ON UNEP/CMS/COP13/Inf.20 MIGRATORY 10 February 2020 SPECIES Original: English 13th MEETING OF THE CONFERENCE OF THE PARTIES Gandhinagar, India, 17 - 22 February 2020 Agenda Item 25 PROGRESS IN THE DEVELOPMENT OF AN EURASIAN-AFRICAN BIRD MIGRATION ATLAS (Submitted by the European Union of Bird Ringing (EURING) and the Institute of Avian Research) Summary: The African-Eurasian Bird Migration Atlas is being developed under the auspices of CMS in the framework of a Global Animal Migration Atlas, of which it constitutes a module. The African-Eurasian Bird Migration Atlas is being developed and compiled by the European Union of Bird Ringing (EURING) under a Project Cooperation Agreement (PCA) between the CMS Secretariat and the Institute of Avian Research, acting on behalf of EURING. The development of the African-Eurasian Bird Migration Atlas is funded with the contribution granted by the Government of Italy under the Migratory Species Champion Programme. This information document includes a progress report on the development of the various components of the project. The project is expected to be completed in 2021. UNEP/CMS/COP13/Inf.20 Eurasian-African Bird Migration Atlas progress report February 2020 Stephen Baillie1, Franz Bairlein2, Wolfgang Fiedler3, Fernando Spina4, Kasper Thorup5, Sam Franks1, Dorian Moss1, Justin Walker1, Daniel Higgins1, Roberto Ambrosini6, Niccolò Fattorini6, Juan Arizaga7, Maite Laso7, Frédéric Jiguet8, Boris Nikolov9, Henk van der Jeugd10, Andy Musgrove1, Mark Hammond1 and William Skellorn1. A report to the Convention on Migratory Species from the European Union for Bird Ringing (EURING) and the Institite of Avian Research, Wilhelmshaven, Germany 1. British Trust for Ornithology, Thetford, IP24 2PU, UK 2. -
Ecology of Feral Pigeon (Columba Livia) in Urban Areas of Rawalpindi/ Islamabad, Pakistan
Pakistan J. Zool., vol. 45(5), pp. 1229-1234, 2013 Ecology of Feral Pigeon (Columba livia) in Urban Areas of Rawalpindi/ Islamabad, Pakistan Sakhawat Ali,*1 Bushra Allah Rakha,1 Iftikhar Hussain,1 Muhammad Sajid Nadeem2 and Muhammad Rafique3 1Department of Wildlife Management, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi-46300, Pakistan 2Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi-46300, Pakistan 3Zoological Division, Pakistan Museum of Natural History, Islamabad, Pakistan Abstract.- This study was designed to study the ecology of feral pigeon (Columba livia) in the urban areas of Rawalpindi/Islamabad, Pakistan. Seasonal changes in population density, sex ratio, age group, roosting sites, nesting sites, food and water points of pigeons were recorded in Rawalpindi/Islamabad. Higher population density of the pigeon in Islamabad was recorded in winter season followed by autumn, spring and summer season (0.13, 0.13, 0.10 and 0.09 individuals/ha respectively) whereas the higher population density of the pigeon in Rawalpindi was found in summer season followed by winter, spring and autumn (0.13, 0.11, 0.11 and 0.10 individuals/ha, respectively). The male and female sex ratio of the pigeon population confirms 1:1 sex ratio, both in Rawalpindi/Islamabad in different seasons. However, adult and juvenile numbers in the pigeon population did not follow 1:1 ratio; adults were more than juveniles in Rawalpindi/Islamabad in all seasons. The roosting sites, nesting sites, food and water points did differ in different seasons in Islamabad. Highest population of the pigeon was recorded in old buildings (0.30 individual/ha) and lowest in parklands (0.008 individual/ha).