Seawater Carbon and Strontium Isotope Variations Through the Late Ediacaran to Late Cambrian in the Tarim Basin

Total Page:16

File Type:pdf, Size:1020Kb

Seawater Carbon and Strontium Isotope Variations Through the Late Ediacaran to Late Cambrian in the Tarim Basin This is a repository copy of Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim Basin. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/160491/ Version: Accepted Version Article: Zhang, Y, Yang, T, Hohl, SV et al. (6 more authors) (2020) Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim Basin. Precambrian Research. 105769. p. 105769. ISSN 0301-9268 https://doi.org/10.1016/j.precamres.2020.105769 © 2020, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Seawater carbon and strontium isotope variations through the late Ediacaran to late 2 Cambrian in the Tarim Basin 3 Yinggang Zhang1, Tao Yang1*, Simon V. Hohl2*, Bi Zhu3, Tianchen He4,5, Wenqing Pan6, 4 Yongquan Chen6, Xizhu Yao1, Shaoyong Jiang1,7 5 6 1State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, PR 7 China; 8 2State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji 9 University, Shanghai, PR China; 10 3School of Earth Sciences and Engineering, Hohai University, Nanjing, PR China; 11 4School of Earth and Environment, University of Leeds, Leeds, UK; 12 5State Key Laboratory of Palaeobiology and Stratigraphy & Center for Excellence in Life 13 and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of 14 Sciences, Nanjing, PR China; 15 6Research Institute of Exploration and Development, Tarim Oil Field Company, PetroChina, 16 Korla, PR China; 17 7State Key Laboratory of Geological Processes and Mineral Resources, School of Earth 18 Resources, China University of Geosciences, Wuhan, PR China; 19 20 * Corresponding authors: Tao Yang and Simon V. Hohl 21 Emails: [email protected] and [email protected] 22 Postal address: Nanjing University Xianlin Campus, No.163 Xianlin Avenue, Qixia District, 23 Nanjing, 210046, PR China. 24 25 26 2nd Revised version for submission to Precambrian Research April 2020 27 Abstract 28 The radiation of early animals during the Cambrian explosion was accompanied by 29 widespread perturbations in oceanic and atmospheric conditions. However, the cause-effect 30 relationships between evolutionary innovations, carbon (C) cycling, and continental 31 weathering are still a matter of debate. Further paleoenvironmental reconstructions of poorly 32 studied paleo-continents covering the Precambrian/Cambrian (PC/C) transition may improve 33 the correlation of the events and their impact on the Earth system on a global scale. The Tarim 34 Basin was presumably located proximal to the well-studied South China craton during the 35 Ediacaran-Cambrian boundary and is expected to contribute equally to our 36 paleoenvironmental reconstructions. Here we apply carbon and strontium (Sr) isotope records 37 (δ13C and 87Sr/86Sr) obtained from well-preserved marine carbonates spanning the late 38 Ediacaran to the late Cambrian from the Keping region in the northwestern Tarim Basin, NW 39 China. By comparison to other carbonate successions from various paleo-continents, our 40 obtained seawater 87Sr/86Sr curve in this study shows a stepwise first-order increase to more 41 radiogenic values superimposed by second-order presumably regional variations. Our 42 obtained δ13C variations exhibit four prominent negative and three positive excursions 43 identical to the global δ13C record. Based on existing paleontological evidence and our new 44 Tarim δ13C and 87Sr/86Sr curves, we propose a stratigraphic correlation from the late Ediacaran 45 to the late Cambrian between the Tarim Basin and other paleo-continents. Besides, our 46 paleoenvironmental reconstruction reveals both regional and global sea-level changes that 47 may have controlled the influx of radiogenic Sr and presumably the influx of nutrients 48 controlling primary production and the rate of organic carbon burial in the Tarim Basin at the 49 time of deposition. These feedbacks may have ultimately influenced the rapid diversification 50 of metazoans and the oxygenation of the Cambrian ocean and atmosphere approaching- 51 present pO2 levels. 52 Keywords: Carbon isotopes, Strontium isotopes, Ediacaran-Cambrian, Tarim Basin, 53 Paleoenvironment 54 55 1. Introduction 56 57 The transitional interval between the terminal Proterozoic and the early Paleozoic is 58 marked by the sudden appearance of abundant and diverse metazoans (Valentine et al., 1999; 59 Conway-Morris, 2003; Maloof et al., 2010; Kouchinsky et al., 2011). This early animal evolution 60 was accompanied by extensive perturbations to climate, carbon (C) cycling, continental 61 weathering and changes to the composition of the oceans (Shields-Zhou and Zhu, 2013). 62 However, the cause-effect relationships between this evolutionary innovation and these 63 environmental perturbations are still a matter of broad scientific debate and 64 paleoenvironmental reconstructions of less studied paleo-continents covering the 65 Precambrian/Cambrian (PC/C) transition can help this situation. Most studies from China 66 covering this interval focus on sedimentary successions in South China. For instance, Li et al. 67 (2013) suggested that muted continental weathering during the early Cambrian was indicated 68 by decreasing seawater strontium isotope ratios (87Sr/86Sr). Ediacaran-Cambrian marine 69 carbonate successions outcropping in the Tarim Basin were deposited on a shallow-water 70 continental shelf, which was presumably situated close to the South China craton and at a 71 similar low-middle latitude position (Fig. 1A) (McKerrow et al., 1992; Merdith et al., 2017; 72 Huang et al., 2000; Zhan et al., 2007). In the past, Ediacaran-Cambrian Tarim Basin sediment 73 successions have only received minor attention (Zhou et al., 2018; Zhu et al., 2019) but a few 74 recent chemo-stratigraphic studies provided some preliminary results on their stratigraphic 75 subdivision and paleoenvironmental conditions. He et al. (2007) and Guo et al. (2017) provided 76 the first C isotope stratigraphic correlations for the late-Ediacaran Cambrian strata in the Tarim 77 Basin between the Sugetbrak, the Penglaiba, the Wushi phosphorite and the Dongergou 78 sections, while Wang et al. (2011b) presented paired C and Sr isotope trends from the 79 Cambrian Series 2 to Series 3 at the Penglaiba section. However, there is still a chemo- 80 stratigraphic gap (especially in regard of the Sr isotope stratigraphy) spanning the late- 81 Ediacaran to the late-Cambrian time interval, which limits the stratigraphic correlation of the 82 Tarim Basin with other parts of the world. 83 C and Sr isotope compositions obtained from well-preserved (i.e. low diagenetic fluid flow 84 overprinted) ancient carbonate rocks may retain primary compositions of the 85 contemporaneous seawater and provide constraints on the isotope-based chemo- 86 stratigraphic correlation (DePaolo and Ingram, 1985; Montañez et al., 1996; Montañez and 87 Banner, 2000; Zhu et al., 2007; Wang et al., 2011b; McArthur et al., 2012; Li et al., 2013; Zhou 88 et al., 2018; Zhu et al., 2019). For instance, the first appearance datum of small shelly fossils 89 (SSFs) is globally accompanied by a negative δ13C excursion and a declining trend in seawater 90 87Sr/86Sr ratios (Cowie and Glaessner, 1975; Landing, 1989; Zhu et al., 2006; Li et al., 2013; Zhu 91 et al., 2019), although there are still debates about the exact boundary definition between the 92 Ediacaran and the Cambrian (Geyer and Landing, 2017). 93 Secular variations in seawater 87Sr/86Sr ratios have been widely applied to reflect 94 continental uplift, silicate weathering and variations in atmospheric carbon dioxide 95 concentration (Burke et al., 1982; Keto and Jacobsen, 1987; Kaufman et al., 1993; Derry et al., 96 1994; Montañez et al., 1996; Denison et al., 1998; Montañez and Banner, 2000; Ebneth et al., 97 2001; Thomas et al., 2001; Melezhik et al., 2009; Sawaki et al., 2010). The 87Sr/86Sr ratio of 98 seawater is controlled by a balance between continental weathering-derived Sr, hydrothermal 99 Sr input and seafloor weathering (Palmer and Edmond, 1989). Continental source generally 100 yields more radiogenic 87Sr/86Sr ratios due to the more radiogenic 87Sr resulting from the excess 101 decay of incompatible 87Rb (rubidium) in evolved differentiated crustal rocks, while 102 hydrothermal and seafloor weathering origin Sr deplete in radiogenic 87Sr and therefore low 103 87Sr/86Sr ratios. Neglectable isotopic fractionation of the Rb/Sr system occurs during marine 104 authigenic carbonate formation (Banner and Kaufman, 1994), together with its long residence 105 time in the modern oceans, Sr is homogeneously distributed in the oceans and the seawater 106 87Sr/86Sr ratio ideally represents a global signature
Recommended publications
  • Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
    MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic
    [Show full text]
  • Felix Gradstein, Lames Ogg and Alan Smith 18 the Jurassic Period J
    Felix Gradstein, lames ogg and Alan smith 18 The Jurassic Period J. G. OGG iographic distribution of Jurassic GSSPs that have been ratified (ye Table 18.1 for more extensive listing). GSSPs for the honds) or are candidates (squares) on a mid-Jurassic map base-Jurassic, Late Jurassic stages, and some Middle Jurassic stages PNS in January 2004; see Table 2.3). Overlaps in Europe have are undefined. The projection center is at 30" E to place the center kured some GSSPs, and not all candidate sections are indicated of the continents in the center of the map. basaurs dominated theland surface. Ammonites are themain fossils neously considered his unit to he older. Alexander Brongniart rmrrelatingmarine deposits. Pangea supercontinent began to break (1829) coined the term "Terrains Jurassiques" when correlat- h md at the end of the Middle Jurassic the Central Atlantic was ing the "Jura Kalkstein" to the Lower Oolite Series (now as- m. Organic-rich sediments in several locations eventually became signed to Middle Jurassic) of the British succession. Leopold t source rocks helping to fuel modern civilization. von Buch (1839) established a three-fold subdivision for the Jurassic. The basic framework of von Buch has been retained as the three Jurassic series, although the nomenclature has var- 8.1 HISTORY AND SUBDIVISIONS ied (Black-Brown-White, Lias-Dogger-Malm, and currently L1.1 Overview of the Jurassic Lower-Middle-Upper). The immense wealth of fossils, particularly ammonites, in hc term "Jura Kalkstein" was applied by Alexander von the Jurassic strata of Britain, France, German5 and Switzer- bmholdt (1799) to a series ofcarhonate shelfdeposits exposed land was a magnet for innovative geologists, and modern con- the mountainous Jura region of northernmost Switzerland, cepts of hiostratigraphy, chronostratigraphy, correlation, and d he first recognized that these strata were distinct from paleogeography grew out of their studies.
    [Show full text]
  • Diversity Partitioning During the Cambrian Radiation
    Diversity partitioning during the Cambrian radiation Lin Naa,1 and Wolfgang Kiesslinga,b aGeoZentrum Nordbayern, Paleobiology and Paleoenvironments, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; and bMuseum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany Edited by Douglas H. Erwin, Smithsonian National Museum of Natural History, Washington, DC, and accepted by the Editorial Board March 10, 2015 (received for review January 2, 2015) The fossil record offers unique insights into the environmental and Results geographic partitioning of biodiversity during global diversifica- Raw gamma diversity exhibits a strong increase in the first three tions. We explored biodiversity patterns during the Cambrian Cambrian stages (informally referred to as early Cambrian in this radiation, the most dramatic radiation in Earth history. We as- work) (Fig. 1A). Gamma diversity dropped in Stage 4 and de- sessed how the overall increase in global diversity was partitioned clined further through the rest of the Cambrian. The pattern is between within-community (alpha) and between-community (beta) robust to sampling standardization (Fig. 1B) and insensitive to components and how beta diversity was partitioned among environ- including or excluding the archaeocyath sponges, which are po- ments and geographic regions. Changes in gamma diversity in the tentially oversplit (16). Alpha and beta diversity increased from Cambrian were chiefly driven by changes in beta diversity. The the Fortunian to Stage 3, and fluctuated erratically through the combined trajectories of alpha and beta diversity during the initial following stages (Fig. 2). Our estimate of alpha (and indirectly diversification suggest low competition and high predation within beta) diversity is based on the number of genera in published communities.
    [Show full text]
  • Stuttgarter Beiträge Zur Naturkunde
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie B [Paläontologie] Jahr/Year: 1977 Band/Volume: 26_B Autor(en)/Author(s): Ziegler Bernhard Artikel/Article: The "White" (Upper) Jurassic in Southern Germany 1- 79 5T(J 71^^-7 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Herausgegeben vom Staatlichen Museum für Naturkunde in Stuttgart Serie B (Geologie und Paläontologie), Nr. 26 .,.wr-..^ns > Stuttgart 1977 APR 1 U 19/0 The "White" (Upper) Jurassic D in Southern Germany By Bernhard Ziegler, Stuttgart With 11 plates and 42 figures 1. Introduction The Upper part of the Jurassic sequence in southern Germany is named the "White Jurassic" due to the light colour of its rocks. It does not correspond exactly to the Upper Jurassic as defined by the International Colloquium on the Jurassic System in Luxembourg (1962), because the lower Oxfordian is included in the "Brown Jurassic", and because the upper Tithonian is missing. The White Jurassic covers more than 10 000 square kilometers between the upper Main river near Staffelstein in northern Bavaria and the Swiss border west of the lake of Konstanz. It builds up the Swabian and the Franconian Alb. Because the Upper Jurassic consists mainly of light limestones and calcareous marls which are more resistent to the erosion than the clays and marls of the underlying Brown (middle) Jurassic it forms a steep escarpment directed to the west and northwest. To the south the White Jurassic dips below the Tertiary beds of the Molasse trough.
    [Show full text]
  • Proposed Global Standard Stratotype-Section And
    PROPOSED GLOBAL STANDARD STRATOTYPE-SECTION AND POINT FOR THE DRUMIAN STAGE (CAMBRIAN) Prepared for the International Subcommission on Cambrian Stratigraphy by: Loren E. Babcock School of Earth Sciences The Ohio State University, 125 South Oval Mall Columbus, OH 43210, USA [email protected] Richard A. Robison Department of Geology, University of Kansas Lawrence, KS 66045, USA [email protected] Margaret N. Rees Department of Geoscience University of Nevada, Las Vegas Las Vegas, NV 89145, USA [email protected] Peng Shanchi Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences 39 East Beijing Road, Nanjing 210008, China [email protected] Matthew R. Saltzman School of Earth Sciences The Ohio State University, 125 South Oval Mall Columbus, OH 43210, USA [email protected] 31 July 2006 CONTENTS Introduction …………………………………………………………………………. 2 Proposal: Stratotype Ridge, Drum Mountains (Millard County, Utah, USA) as the GSSP for the base of the Drumian Stage ……………………………………………………. 3 1. Stratigraphic rank of the boundary …………………..…………………………… 3 2. Proposed GSSP – geography and physical geology ……………………………… 3 2.1. Geographic location …………………………………………………...….. 3 2.2. Geological location ………………..……………………...…………...….. 4 2.3. Location of level and specific point ……………………..……………...… 4 2.4. Stratigraphic completeness ………………...……………………………… 5 2.5. Thickness and stratigraphic extent …………………...……………...……. 5 2.6. Provisions for conservation, protection, and accessibility ……………..…. 5 3. Motivation for selection of the boundary level and of the potential stratotype section ………………………………………………………………………………. 6 3.1. Principal correlation event (marker) at GSSP level ………...…………..… 6 3.2. Potential stratotype section …………………………………………....….. 7 3.3. Demonstration of regional and global correlation ………………………... 8 3.3.1. Agnostoid trilobite biostratigraphy ………………………………… 9 3.3.2. Polymerid trilobite biostratigraphy …………....…………….…….
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • The Ediacaran–Cambrian Transition: the Emerging Record from Small Carbonaceous Fossils (Scfs)
    38 The Ediacaran–Cambrian transition: the emerging record from Small Carbonaceous Fossils (SCFs) Ben J. Slater1, Thomas H.P. Harvey2, Romain Guilbaud3, Sebastian Willman1, Graham E. Budd1, Nicholas J. Butterfield4. 1Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden ([email protected]) 2School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK 3Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK. 4Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK Abstract.––The most profound change in the fossil record is centered on the Ediacaran–Cambrian transition. Sediments deposited near to this boundary record the first complex trace fossils, the first animal biomineralizers and the earliest fossils of the major animal groups that came to define the subsequent Phanerozoic fossil record. Here we discuss how the emerging record of small carbonaceous fossils (SCFs) is shedding new light on unmineralized aspects of the biota from this critical evolutionary transition. The new SCFs record complements currently established records from trace fossils and biomineralized shelly-remains in reconstructing the broader scale macroevolutionary patterns of this transition, but via an entirely different taphonomic window. SCFs extend the record of multiple major animal groups, improve our picture of protistan diversity from this interval, and reveal new data on elements of the biota that span the Ediacaran–Cambrian boundary. Key words: small carbonaceous fossils; bilateria; Burgess Shale-type preservation; Ediacaran; Terreneuvian. The dramatic changes in the fossil record across subsequent Cambrian radiation (Butterfield, the Ediacaran–Cambrian transition seemingly 2003; Slater et al., 2018a).
    [Show full text]
  • Ediacaran and Cambrian Stratigraphy in Estonia: an Updated Review
    Estonian Journal of Earth Sciences, 2017, 66, 3, 152–160 https://doi.org/10.3176/earth.2017.12 Ediacaran and Cambrian stratigraphy in Estonia: an updated review Tõnu Meidla Department of Geology, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; [email protected] Received 18 December 2015, accepted 18 May 2017, available online 6 July 2017 Abstract. Previous late Precambrian and Cambrian correlation charts of Estonia, summarizing the regional stratigraphic nomenclature of the 20th century, date back to 1997. The main aim of this review is updating these charts based on recent advances in the global Precambrian and Cambrian stratigraphy and new data from regions adjacent to Estonia. The term ‘Ediacaran’ is introduced for the latest Precambrian succession in Estonia to replace the formerly used ‘Vendian’. Correlation with the dated sections in adjacent areas suggests that only the latest 7–10 Ma of the Ediacaran is represented in the Estonian succession. The gap between the Ediacaran and Cambrian may be rather substantial. The global fourfold subdivision of the Cambrian System is introduced for Estonia. The lower boundary of Series 2 is drawn at the base of the Sõru Formation and the base of Series 3 slightly above the former lower boundary of the ‘Middle Cambrian’ in the Baltic region, marked by a gap in the Estonian succession. The base of the Furongian is located near the base of the Petseri Formation. Key words: Ediacaran, Cambrian, correlation chart, biozonation, regional stratigraphy, Estonia, East European Craton. INTRODUCTION The latest stratigraphic chart of the Cambrian System in Estonia (Mens & Pirrus 1997b, p.
    [Show full text]
  • PHYLOGENY and DISTRIBUTION by LARS E
    [Papers in Palaeontology, 2019, pp. 1–17] CAMBRIAN RHYNCHONELLIFORM NISUSIOID BRACHIOPODS: PHYLOGENY AND DISTRIBUTION by LARS E. HOLMER1,2 , MOHAMMAD-REZA KEBRIA-EE ZADEH3, LEONID E. POPOV4, MANSOUREH GHOBADI POUR2,4,5,J.JAVIERALVARO 6, VACHIK HAIRAPETIAN7 and ZHIFEI ZHANG1 1Shaanxi Key Laboratory of Early Life & Environments, State Key Laboratory for Continental Dynamics, Northwest University, Xi’an, 710069, China 2Department of Earth Sciences, Palaeobiology, SE-752 36, Uppsala, Sweden; [email protected] 3Department of Geology, Payame Noor University, Semnan, Iran; [email protected] 4Department of Earth Sciences, National Museum of Wales, Cathays Park, Cardiff, CF10 3NP, UK; [email protected] 5Department of Geology, Faculty of Sciences, Golestan University, Gorgan, 49138-15739, Iran; [email protected] 6Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, Madrid, 28040, Spain; [email protected] 7Department of Geology, Khorasgan (Isfahan) Branch, Islamic Azad University, PO Box 81595-158, Isfahan, Iran; [email protected] Typescript received 18 July 2018; accepted in revised form 6 November 2018 Abstract: A comprehensive review and phylogenetic analy- an early separation of the lineages of spinose and non-spi- sis of genera and species presently assigned to the rhyn- nose nisusiids. The non-spinose nisusiids probably evolved chonelliform superfamily Nisusioidea and family Nisusiidae in Laurentia by the end of Cambrian Series 4. The new suggests that this short-lived but important group of bra- nisusiid genus Bellistrophia is described. The new species chiopods first appeared in peri-Gondwana during the second Nisusia multicostata represents the first documented rhyn- half of the Cambrian Series 2, before going extinct by the chonelliform (kutorginide) brachiopod from the Miaolingian end of Drumian times.
    [Show full text]
  • Systematics, Biogeography and Palaeoecology of Cambrian Series 3 Trilobites and Agnostids from East Gondwana
    University of New England SYSTEMATICS, BIOGEOGRAPHY AND PALAEOECOLOGY OF CAMBRIAN SERIES 3 TRILOBITES AND AGNOSTIDS FROM EAST GONDWANA by Lee Ann Hally B. Ed (Charles Sturt Uni., Bathurst. July 1977) B. Sc (Macquarie Uni., Sydney. March 1984) M. Sc (Macquarie Uni., Sydney. March 1989) This thesis is submitted to fulfill the requirements for the degree of Doctor of Philosophy from the University of New England. October 2015 Declaration All work submitted is solely for a PhD at University of New England, Armidale. NSW. All assistance for this PhD and all sources used in its preparation are duly acknowledged. Signature Lee Ann Hally October 2015 i Acknowledgements I am ever grateful to my supervisor, Dr. J.R. Paterson, for his phronesis in the art of palaeontology and his love of teaching his craft. He has been an inspiration and his guidance always caused me to reflect and grow in my own way. I am forever grateful for his support and guidance, as well as his friendship. I thank my assistant supervisor, Dr. I. Metcalfe, for his valuable comments and discussions and Dr. N. Vickery for her support in many ways over the four years of my PhD. I owe the initial inspiration for this research to my undergraduate and postgraduate lecturers at Macquarie University, Prof. John Talent and A. Prof. Ruth Mawson. They created a passion in me which drove me to greater heights and I am forever grateful. I owe much of my development over the period of undertaking my PhD, to my husband Steve’s tolerance, humour and good cooking! His knowledge of all animals, even agnostids, is amazing! I thank Drs.
    [Show full text]
  • Chemostratigraphic Correlations Across the First Major Trilobite
    www.nature.com/scientificreports OPEN Chemostratigraphic correlations across the frst major trilobite extinction and faunal turnovers between Laurentia and South China Jih-Pai Lin 1*, Frederick A. Sundberg2, Ganqing Jiang3, Isabel P. Montañez4 & Thomas Wotte5 During Cambrian Stage 4 (~514 Ma) the oceans were widely populated with endemic trilobites and three major faunas can be distinguished: olenellids, redlichiids, and paradoxidids. The lower–middle Cambrian boundary in Laurentia was based on the frst major trilobite extinction event that is known as the Olenellid Biomere boundary. However, international correlation across this boundary (the Cambrian Series 2–Series 3 boundary) has been a challenge since the formal proposal of a four-series subdivision of the Cambrian System in 2005. Recently, the base of the international Cambrian Series 3 and of Stage 5 has been named as the base of the Miaolingian Series and Wuliuan Stage. This study provides detailed chemostratigraphy coupled with biostratigraphy and sequence stratigraphy across this critical boundary interval based on eight sections in North America and South China. Our results show robust isotopic evidence associated with major faunal turnovers across the Cambrian Series 2–Series 3 boundary in both Laurentia and South China. While the olenellid extinction event in Laurentia and the gradual extinction of redlichiids in South China are linked by an abrupt negative carbonate carbon excursion, the frst appearance datum of Oryctocephalus indicus is currently the best horizon to achieve correlation between the two regions. Te international correlation of the traditional lower–middle Cambrian boundary has been exceedingly difcult primarily due to apparent diachroniety of the datum species used to defne the boundary refecting the endemic faunas.
    [Show full text]
  • Trace Elements in Marine Sediments from the Oxfordian (Late Jurassic)
    Send Orders of Reprints at [email protected] 32 The Open Geology Journal, 2012, 6, 32-64 Open Access Trace Elements in Marine Sediments from the Oxfordian (Late Jurassic): Implications for Seawater Chemistry, Erosional Processes, Changes in Oceanic Circulation and More Barbara Müller* Geological Institute, Swiss Federal Institute of Technology, 8092 Zürich, Switzerland Abstract: The Oxfordian, first stage of the late Jurassic, is remarkably variable in terms of deposited sediments, geochemical tracers, and climate. The climate changed during the Middle Oxfordian from humid to arid with a temperature rise of more than five degrees. During this time, the 13C reached maximum values. The positive excursion in 13C of carbonates from the Oxfordian (with an amplitude of more than 1‰) was reproduced in hemipelagic sections from southeastern France. Analysis of major and trace elements of these carbonates were carried out by LA-ICP-MS in order to verify their application as palaeoproxies in conjunction with the changes mentioned in climate. As a novel approach 36 elements were measured with regard to establish a complete and comprehensive analysis of the geochemical situation. Concentration peaks of P, Sr, Mn, Fe, Ba point to a more oligotrophic setting within the lower part of the sediment profile from southeastern France. Conversely, the positive 13C excursion with 13C values rising from 2 to 3 ‰ within the uppermost part of the profile coincide with more elevated concentrations of V, Fe, Mn, U arguing for an ocean-wide anoxia (Oceanic Anoxic Events OAE). High detrital input during this arid period is recorded by enhanced concentrations of elements like Ti, Mn, Fe, Zr, Nb and W.
    [Show full text]