-3. GC 856 .0735 of OCEANOGRAPHY

Progress Report The Development of Methods for Studying Physical and BiologicalProcessesinthe Nearshore Zone on the Pacific Coast of the United States. Reference 73-3 March 1973 OREGON STATE UNIVERSITY THE DEVELOPMENT OF METHODS FOR STUDYING PHYSICAL AND

BIOLOGICAL PROCESSES IN THE NEARSHORE ZONE

ON THE PACIFIC COAST OF THE UNITED STATES

Principal Investigator: Robert L. Holton Co-Principal Investigator: William P. Elliott

L School of Oceanography, Oregon State University,

Corvallis, Oregon 97331

PROGRESS REPORT 1 June1972 through 28 February 1973

Submitted to Eugene Water and Electric Board, Portland general Electric Pacific Power & Light

Reference 73 -3

March 1973 STAFF

Robert L. Holton, Ph.D. Principal Investigator WilliamP. Elliott, Ph.D. Co-Principal Investigator

Janice Crawford, B.S. Kenneth Johnson, B.S.

Carolyn Mullikin, B.S. Graduate Students Walter Pearson, M.S. Linda Smith, B.S.

Leo Kowalski, Boat Operator

In addition to the abovethe followingassisted at various in the conduct of thefieldwork and data analysis but didnot receive financial support from thisproject. Their assistanceis gratefullyacknowledged here.

Norman Farrow William Gilbert

Vernon Johnson Donald Keene Jan Naidu PROGRESS REPORT

Introduction

The following progress report presents a summary of the work conducted through January of 1973 as specified in our proposal, "The Development of Methods for Studying Physical and Biological Processes in the Nearshore Zone onthe Pacific Coast of the United States," supported by the Eugene Water and Electric Board, Portland General Electric Company and the Pacific Power and Light Company. Although we started this program in the early summer of 1978 without adequate lead to order equipment and hire personnel we have been able to make a meaningfulstart at achieving the goal of developing study methods for the nearshore zone. However, the progress is spotty. In the areas of sampling fish and benthic organisms a limitation on boats available, equipment on hand, and number of personnel hired resulted in little effort being expended in this area. The studiesof surface currents and of phytoplanktonand zooplankton distribution have been initiated and significantprogress has been made. In these cases the studies have been adequate to enableus to do a more effective job of planningfor futureneeds in thesestudyareas. We anticipate having significant programs in all areas during the 1973 working season. The logistic problem was difficult during the first 's operation. We plan to reduce this problem greatly during 1973 by shiftingour opera- tions to Newport andbasing most of our personnel there for the summer. This will increase our efficiency by allowingus to utilize both the existing weather and the time of our personnel more effectively. We feel that in general the only way to develop adequate methods is to take a particular method, use it to gather data under field conditions, and evaluatethe adequacy of the method by a careful examination of the data collected. This approach is reflected in the following discussion of the individual subprojects. 2

Working Vessels

The experience that we had during the 1972 workingseason indicates that the Pacific City-style dory isa satisfactory vessel for working in this zone. It allows us to come through the surf and to the shore during many of the working days during the summer. It does not, however, allow us this ability on days when the swell is running high. It also is capable of handling the various types of sampling rigs thatwe need for this pro- gram. Although the dory itself is capable of doing the type of work that we desire, we find that the dory as equipped last summer did not give us as full and versatile a range of operation as we desire.In particular, we find two areas.in the dory operation that were less than completely satisfactory.The use of a conventional outboard engine, ina well, neces- sitates the use of an extra man for handling the doryas we are coming through the surf to the beach.This extra man is necessary to lift the motor to keep it from hitting on the sandas we are coming to the beach. This type of motor also leavesus without power when we are inside the surf zone and this requires extra manpower to hold the dory in place. The area of deficiency was the lack of navigational equipment.This proved to be a safety problem on days whenwe were caught in a fog. We also find that we were unable to locate and replicatea station with any degree of accuracy without the help ofa triangulation from shore. To remedy this situation and to reduce theman power requirement imposed by such triangulationwe feel that a radar and fathometer system will aid us greatly in making the bestuse of the dory.We will also pro- pose the use of a jet powered dory to increase the efficiency ofour opera- tion. Although we did not haveany largeeffort directedtoward large animal sampling last summer, we did do enoughwork with the doryin the surf to deter- mine that it would bepossible toset a beach seine with the dory and then move the doryout of theway and pull the beach seine from the shore. We will use thedory for this typeof operation during the coming summer. We will also usethe dory topull conventionalottertrawls and bottom sampling devices throughthe surfzone underfavorableconditions. 3

Phytoplankton

The data presented in AppendixI are representative of the phytoplankton data that were collected during the 1972 period. The procedure for the collection of these datais as follows: An NIO water sampling bottleis used for collection of one liter water samples. The use of this bottle allows sampling to occur at any depth from thesurface to the bottom within the nearshore zone. The bottle is an adaptionof the Nansen type reversing water sampler, which reverses and locks in place ata particular depth to take the desiredsample. The water sample so obtained is then processed in the followingway. The water from the NIObottle is placed ina one liter plastic bottle and the one liter plastic bottle is submerged in a water bathon the boat to maintain it at its correct temperature. The water bath is also designed to reproduce the approximate light intensity that the phytoplanktonwould be encountering at their depth of collection. This light intensity is reduced for lower samples by the successive additionof screens to the top of the water sampling container. The phytoplankton samplesare then trans- ferred to a shore-based station for filtering. Only six to eight samples are collected at one time before the trip to the shore-based facility. The samples typically spend about one between the timeof collection and the time of filtration. On the shore the water samples are processed ina tent, where we are able to filter them througha specially developed one liter filtering apparatus using a 0.8 micron filter. This filter willremove essentially all of the larger diatoms, which appear to makeup the majority of the plankton in this area. The filtering device isa pressure filter and in the work last summernitrogen gas was used to developthe pressure to push the liter of material through the filter. The filter, thus attained, is then frozen using dry ice in the field and retained inthis frozen condition until time for analysis.

The processing of the frozen filtersin the laboratory is started by grinding them in a mixer ina solution of 90% double distilled acetone. The solution is then placed ina refrigerated centrifuge and spun down for 20 . During this processing,care is taken to keep the samples constantly refrigerated and in the dark. This is necessary since both 4

light and heat will tend to alter the pigments. The supernatant liquid is then read in a spectrophotoneter at six different wave lengths. This raw data is then analyzed by a computer program to determine the pigment values as presented in Appendix I. The program calculates chlorophyll values based on two different methods that have been used by other investi- gators. The values given in Appendix I after the analysis are values for the chlorophyll content of the particular sample. Although, the chlorophyll content is not a direct measure of primary production in a marine ecosystem, it is in fact, a measure of the potential production fora system and is widely used in this way. The advantage to using this type of measurement lies in the fact that one is able to get a great number of measurements in a relatively short period of time. If a person is measuring the actual production by the various light bottle-dark bottle techniques it will be much more difficult to obtain a survey of a broad areaover a short period of time, since each sample requires a considerable incubation time andre- quires a longer time for analysis than the samples measured in theway we are measuring.

Therefore, we propose to test the validity of this method asa survey method for primary production in a given region and to validate this method against measurements of primary productivity bya carbon-14 method during . The data that we have at this time illustratesome difficulties en- countered with this type of measurement. The greatest difficulty at this stage is our inability to obtain replicate samples thatare showing a consistent value. At this time we blame this on the fact that we have not had enough development time to standardizeour methods to allow us to operate more accurately in this area. Therefore, a first effort in the future year's work will be to use this method and to develop greaterpre- cision in its use so that we can get the variations between replicate samples taken at the same time and the same place down toa much lower level.

Since we did not make measurements of productivity,we will plan to develop the techniques for making such measurements during thecoming work period. We will also develop counting abilities to determine population sizes for various major species during thisseason as well. 5

Zooplankton Sampling

The data collected during the working yearon zooplankton are pre- sentedin Appendix II. All of these data were collected by the following method. A Clark-Bumpus zooplankton sampling device witha five inch dia- meter mouth and a number6 mesh net was used to collect allsamples. This sampler has a rotor on the front that allows water to turn the blades of a meter. This meter has been calibrated in a known environment (such as a swimmingpool) and with this calibration it allows calculation of the numberof cubic meters of water that flowed through your sampling device. Therefore, it is possible to count theanimals andknowing the number of cubic meters that have passed through the device, itis then pos- sible to determinethe number of organisms in each cubic meter of water. A sample thus collected is diluted down to permit taking 3-4 aliquots which,whencombined, comprise a subsample containing 400-500 individuals. This definedsample is thencarefully counted and identified by species, sex, and stagein the life cycle. The raw data so collected are then pro- cessed bymeans of acomputer program to give the results as demonstrated in AppendixII. The use of this computer program saves a great deal of time in the calculationof densities of organisms in this nearshore zone. Our studiesfor the last summer have allowed us to develop thenecessary techniquesfor collecting and processing this type of data. We havelearned that the dory is in fact an excellent platform for the collection of zooplankton data. The dory used lastsummer waslimited in that it hadno power winchfor the precise and rapidlowering andrecovery of the zooplankton net. Future work in this area will be greatly facili- tated by the use of a dory that has thepower winch available for these studies.

Although this area of the coastal ecosystem has not beenpreviously studied orsampled, we have confirmed the species distribution with respect to time anddistanceto shore could have been predicted from previous studies bothwithin the Yaquina Bay and from farther offshore. The data indicatethe occurrence of sampling errors on the replicatesamples that are largerthan we arewilling to accept at this time. Therefore, it will 6

be necessary for us to devotea great deal of attention to methods of reducing error between replicate samoles and secondlyto providing reliable estimates of the amount oferror that is inherent in this sampling method. Only by having information that indicatesthe size of the expected error will we be able to set confidence limitson future samples that are associ- ated with a particular location.

One component of the observed variability isundoubtedly the result of patchiness in distribution of the organisms. Future efforts must include a sizable effort to determine the nature of such patchiness. Sampling methods must then be developed which willtake this patchiness into account and which will reduce the replicate sample variationdue to patchiness. This effort will have a high priority for the1973 working year. A summary of the data showed thatwe noted a total of 50 different species in the plankton samples during this study'speriod. The number of species and the species of maximum abundance variedboth with distance from shore and with the time of sampling. Dominant in this analysis were Acartia clausi, Acatia lo ngiremis, various speciesof Pseudocalanus, Podon leuckarti, and various barnacle life stages. Acartia clausi was most abundantnear shore and increased in numbers from July to mid-August and then decreasedto mid-September in our sampling. Acartia longiremis was most abundantfarther offshore with a rather sizable fluctuation in abundance during the time of thestudy. Pseudocalanus species were consistently ofa higher abundance near shore and relatively stable at all near shore stations witha slight decrease in August. Podon and the barnacle stages became abundant at erratic intervalsand especially abundant in September. They are found in all stations from Auguston and were in the largest numbers on the days of the roughestseas. Studies of zooplankton abundance with depth,indicated that we were finding a maximum in abundance and diversityof species about 15 meters in depth. Therefore, this depth was usedas a standard depth for towing our sampling device for the remainder of the sampling period. There is some variation with the abundance of individual specieswith depth. This variation which has been noted requires further evaluation. This type of 7

information will, of course, become extremely important in the planning for any possible cooling water intake in the marine environment. The specific design of such an intake should take into account the death distribution of all of the various nearshore marine species to trv to select an intake depth thatminimizesthe pumping of such organisms through the industrial operation of interest. The distribution of species and abundance of species in the direction parallelto the shore was noted. Since the meaning of this variation is as yetundetermined, it obviously must be studied in greater detail. This variationcould againbecome important in determining our location of cooling water intake designs. We will make additional studies to try to tie down the differences that have been noted. For example, the differences could be related to towing direction in terms of towing the sampling net or they might be due to varying sea conditions and the influence of the headlands on the organismin particular areas. Therefore, we will repli- cate our efforts and try to determine the importance of towing pattern and headlandsunder varying wind conditions with the relative abundance of samples attainedat different locations parallel to the beach. Additional efforts will be devoted to checking the inherent capabil- ities of the sampling instruments in producing accurate replicate samples as opposed to short term variations in the population which give the appearance of nonuniform sampling techniques. Several devices will be built and tested during thecoming summerto try to reduce the variationwe seein this type of program. A good deal of further effort is required along these lines to enable us toplan intelligently future sampling programs in this area. Certain other physical problems happened that reduced our sampling efficiency; for example, on four sampling dates we found a great deal of difficulty in obtaining reliable samples of zooplankton due to a clogging of the net with either phytoplankton or with jelly fish. As a result of these difficulties we plan to use a sampling screen which will run in front of the zooplankton sampler and allow us to screen out the jelly fish that were cloggingthe Clark-Bumpus net. The problem with phytoplankton is of coursenot so easily solved and it appears to be a problem we are forced to live with. 8

In conjunction with the zooplankton sampling program we took data on various physical parameters at each sampling date. We determined the salinity at the surface and at the bottom in all of our samples. We con- ducted the salinity sampling with the NIO water sampling bottle taking a small aliquot from the bottle in a salinity sampling jar and reading the value in the laboratory on an inductive salinometer. These salinity data are presented in Appendix II. We also measured the transparency of the water with a secchi disk reading, measuring the visibility by determining when the disk was no longer visible from the surface. This turbidity or visibility measurement is also tabulated in Appendix II. We also obtained data on the color of the water by the use of the Forel scale. This scale is used to compare the color of a sample of water with a series of color comparitors that are provided as a part of the read- ing device. In general a yellow green to yellowish color in the water is indicative of a high level of plankton and hence probably a high level of productivity, while a blueish color in the water is an indication of the absence of particulate matter in the water and probably ,a low productivity in that region. Again we have provided the Forel scale readings in Appendix

II. The final physical parameter that was measured was the temperature of the water at the surface and the bottom. The surface temperature was obtained from a bucket thermometer hung overboard at approximately one foot depth. The bottom temperature was read from a reversing thermometer attached to the NIO water sampling bottle. Again these temperature measure- ments are provided in Appendix II. At this time we have not had enough time and experience with the measurement of the physical parameters to ascertain fully their value in this type of program. Therefore, we proposed to continue making this series of measurements which are not expensive or time consuming and developing means for determining the meaning of these physical parameters in terms of the samples of zooplankton that we obtain in a given region. It will be especially easy to obtain these samples if we are able to equip a dory with a hydraulic system that includes two winches. One winch would 9

be used to handle the zooplanktonsampling itselfand the second winch would be used to obtain waterfor the measurement for thevarious physical parameters.

Behavioral Studies

During the summer of1972 we attempted to dive several times to deter- mine the feasibility of makingbehavioral observationsof various marine organisms in thisarea. Our attempt was touse scubagear and to record visually some of the behaviorparametersof importance. We foundthat this does,not appear to bea practical working modeat this time. Our difficul- ties weretwofold. In many of thenearshore areas we foundthat it was impossible to work safely duringthe time that the oceanwas at all rough. The surge produced by the swellcould throw a diver into a rock orotherwise injure him while working in thiszone. However, a much moredifficultproblem wasvisibility. It is our estimate that you would be able toseeadequately to conductbehavioral studies something less than10% of the time during thebetter summermonths. At all other times thevisibility appearsto be less than 20feetand makes it very difficultto conductany direct behavioralstudies inthisenviron- ment. Since we cannot plan aprogram based only on observations that can be made10%of thetime,we feelthat we must exploreother modesof opera- tion or set up special laboratory studiesto conductthe needed behavioral studiesthat are relevant in the nearshorezone. We are continuing to search for a protected areathatprovidesthe specialconditionsnecessary for the conduct of such fieldstudies. However, the prospectsdo not appear to be particularly encouragingat this time.

Large Animal Sampling

Due to the lateness of startingour work in the summer of 1972 and due to the difficulty in obtaining equipment for suchsampling we did not get started with this work during thatyear.We have used the time since then to obtain equipment and to design additional equipmentfor these specific studies.We also hope to have a dory that will be equipped witha winch large enough to handle this equipmentfor our studies. 10

We did have one of experience in handlinga beach seine and in using a dory to set the seine outside of the surf zone. The method appears to be workable. That is, the dory is very successful in coming ashore, leaving a line on shore, going out and setting a seine parallel to the beach, and returning to shore with the other line. Our method of operation would be to then have the dory leave the area to minimize disturbance of the fish in the area and then at a time after the dory has leftwe would pull the seine from the shore. However, we also learned that pullinga beach seine from the shore is in fact a massive undertaking. It will be impossible to pull such a seine by hand. It will be necessary to have some type of a shore based winch that will allow us to properly fish a seine in this area. We now have also obtained the necessary permits from the Oregon Fish Commission that will enable us to sample in this area with any type of sampling device, including a gill net, if we desire. We feel that the gill net will be necessary to obtain samples of some of the faster moving species in thisarea. Our otter trawls and mid water trawls will be too slow to capture these animals and we feel it is doubtful if we will be able to capture such species as salmon in a beach seine. We will also consider the feasibility of sampling organ- isms such as salmon by a typical sport fishing rig. At least we will study the statistics necessary to determine how often we would have to fish ina region to obtain the data about the catch per hour effort. If the feasibility studies prove good we will plan to incorporate suchan experimental fishing program into our 1974 program. We will plan to obtain physical data at thesame time we are making our large animal samples. We will be particularly interested in temperature and salinity measurements, the stage of the tide, and the time of the day,as well as the turbidity. It will be important to correlate our catches of fish with these factors. A major emphasis will be placed upon the large animal sampling program during the summer of 1973 and at that timewe will be able to assess our position in this field. 11

Benthic Sampling

We will begin a program to study both the infauna and the epifauna in this nearshore region. We will use crab pots to study the epifauna and will modify the crab pot to a finer mesh size than that which is used by the commercial fishermen. We will also use various bottom dredges to study and obtain samples of the infauna. We realize the difficulties in these studies but we also realize that they must be done. We will attempt to pull a dredge through the surf zone to obtain samples in thatarea and we will also usethe dredge farther offshore to examine the benthic popu- lations in that region. We again can make little comment about our success in that area, since our efforts will not start until thesummer of 1973.

Introduction to Current Studies

The problem of nearshore circulation is complicated by the number of forces that can cause water movement in this region.Wind, tides, wave transport and offshore current systems can all produce local currents and obviously do not all need to be moving in the same direction andcan change quickly with time. The bulk of the current study effort to date has been concerned with developing techniques to measure the surface water movement and to determine the causes of these movements. Working as close to shore as we do means that large vessels cannot be used and also that there are times when the sea is too rough for the small

boats to operate safely. Therefore, techniques for observing from shoreor light aircraft are most desirable and we have spentsome time considering these possibilities.

The standard method of measuring currents employs current metersof various types. We did not spend time in our observation period with them partly because the technology of current meters iswell known and we wished to experiment with other- less expensive - methods. This is not to say we feel they would not be useful or even necessary in a final survey, but one should have a fair idea of where they should be placed before deploying a network. That idea can be gained most inexpensively by employing free floating objects whose path can be followed. Thus we experimented with a variety of devices designed to give an overall view of the surface current patterns. 12

Drift Bottles and Bags

A drift bottle is simply a transparent bottle, in our case beverage

bottles of 10-12 oz capacity, with a card inside which is numberedso the position and time of release can be recorded. The bottle is weighted with sand so it will float properly witha minimumarea exposed to the wind and capped in the conventional manner. The bottles were released from our vessel at various distance from shore but all were released from within two miles of the beach. The card inside instructs the finder to return part of the card to the School after noting the time and place of recoveryon the card. Obviously we cannot tell the trajectory of the bottle, only the starting and end points but the generalmovementof the water can be determined and we can gain some idea of the speed of movement if we can recover the bottles promptly.

To get a good idea of the time elapsed between drop and recoveryon shore we searched the beaches ourselves for the bottlesso we did not have to rely on returns from the public. We dividedMoolackand BeverlyBeaches into1/8 mile zones sothe recovery positions could be easily recorded. If the bottles come ashore at other beachesalongthe coast we had to rely on the public. Besides giving us an estimateof the time it takes surface water to appear on the shore immediately landward of the drop we can also determine whether the surface flow is predominantlyonshore, alongshore or offshore and whether there is a separation of these flows by distance off- shore.

We also experimented with small plastic sandwich bags partly filled with water to give some weight and with only an identifyingnumberin them. This precludes returns from the public but isa less expensive way of operating. However, we found, from simultaneous drops of bottles and bags, that the bags came ashore slightly sooner than the bottles. This fact, coupled with observations of this behavior from the boat makesus feel that they are more affected by the wind directly and, therefore, a less satisfactory tracer of the surface water movement. Also the lack of public returns prevents us from learning aboutmovementsaway fromour imme- diate area. Therefore, we did not use these much after the middle of August. 13

TableI summarizesthe returns from all our dropsexcept those made in January1973. The returns from which are not yetcomplete.

Date (1972) NumberDropped % returned 10 June 240 7 26 June 108 84 6 July 120 76 19 July 110 63 9 August 120 70 17 August 24 50 18 August 24 58 7 October 48 41

Exclusive of the drop of 10 June this gives an overall recovery rate of 69%, a very high return rate. The 10 June drops were made further off- shore than usual and with an east (offshore) wind. Some preliminary inter- pretations of these results will be given in the Result section. This data is found in Appendix III.

Drogues Followed From Shore

To gain a better idea of the actual water trajectorieswe designed some surface drogues (devices designed to follow thecurrents and whose position can be determined at any time by one of several methods). These consisted of circular plywood disks, paintedorange, with crossed vanes beneath them to be pushed by the water. We experimented with severalsizes and vane depths and found 3-foot diameter surfacesgave adequate visibilityand 6-inch deep vanes were fine. We launched a number with differingvane depths from the same location on one day to determine ifwe could detect any difference in movement due to current changes with depth. Although the drogues did not maintain their original orientationwe concluded this was due to diffusion and did not indicate any noticeable effectof variable currents. We determined positions of these droguesby observing them with surveyors instruments from the shore. We found the standard meteorological theodolite (an instrument likea transit that gives elevationangles as well as azimuth) insufficiently accurate since itcan be read to only 0.1° of arc. We used a surveyors theodolite, loaned by the Civil Engineering Dept.,which could be read easily to 20" ofarc and this proved sufficient. We were able to 14

obtain readings as fast as every one if the speed of the drogue required it and could follow then for several hoursat this rate although the observer began to be fatigued about then.

We generally tried to recover the drogues from thesea before they became entrapped in the surf andcame ashore. On several occasions we let them come ashore and tried to follow them but they tumble in the surf and their motion there is no longer representative of the water motionso little is gained by this.

In the Results section we will discusssome of the implications of these measurements together with the drift bottle data. As a technique for

determining the nearshore currents in detail the methodseems admirable. It is inexpensive and gives quite good detail. We have developed a computer program which gives the velocities each minute and can smooth out some of the irregularities. The program can be expanded to give statistical details of the motion if this should appear worthwhile later. Furthermore, the technique can be adapted to determine other details of the flow using mul- tiple drogues whose positionsare not recorded so often. This data is found in Appendix IV.

Die Markers Dropped From Aircraft

Because weather conditions sometimes prohibit small boat operation, particularly in winter, we experimented with dropping die markers into the ocean from a small aircraft and following them from the airplane. We did this in a particularly severe weather condition- 40 knot winds from the south and rain. Nevertheless we were able to drop two markers which could be followed for over an hour from the plane. Deriving quantitative data from this operation is more difficult because aerial photography, while possible, could give only the relative position of the markers since it was not possible to keep a known point always in the picture. However if some object that could be jettesoned from the plane that also could be tracked from shore could be developed we could be muchmore independent of the weather. We did try following die markers from the shore but this was not successful: they cannot be seen at the angles even from the bluffs. 15

Drogue Study From Ship

From 2-5 Jan. 1973 we were able to use R/V YAQUINA to studythe near- shore circulation by using regular ship launcheddrogues (The ship was available for this purpose because another study conductedby WPE for NSF could be combined with drogue studies: therefore there was no cost to this particular project.) This method consists of launchinga drogue consisting of a float carrying a mast witha radar reflector with a parachutesuspended underneath. The parachutehas somuch more drag in the water than the mast in the air that the whole thing follows thewater. The parachute can be deployed at any designed depth. For the most part we opened ours just beneath the surface so we followed the integratedcurrent in about the first 5 meters of water. The ship's radar is then used to determine the position of the drogues every fifteen minutes with referenceto some fixed location - either an anchored buoy ora point of land if close enough. In this case we laid out a line starting from 1 mile off Yaquina Head with 6 drogues spaced at 1/2 mile intervals. We followed the drogues for about 40 or until they disapppeared from radar range (one came ashore and two drifted out of range but we were able to geta final point when we recovered it). This is much longer than is usual for thistype of operationand we were fortunate to collect some of the best data taken thisclose to shore. Computer programs are available to reduce, plotand perform some preliminary analysis of these data. At this writing we have not completed the analysis but some preliminary conclusionscan be made and will be discussed under Results. This data is found in Appendix V.

Electromagnetic Current Meter

On 19 October we tested an electromagneticcurrent meter owned by the School to see if it could giveus some useful data. The probe is mounted on a 15' pole on the side of a small boat and the probecan be read while the ship is underway. This of course includes the ship's motion but timechanges in the current can be noted and the absolutecurrent calculated if the boat's velocity is known. While data can be easily recorded the analysis is not simple and must be doneon acomputer. To date only preliminary printouts have been obtained andso no more can be saidof the data. The instrument 16 might well be useful in conjunction with other measurements but theanalysis time will have to be considered against other factors, particularly since it gives too much information forour particular purposes.

CUE Data

Much of the data produced by the CUE program is of interest to us. We have the complete summary of the meteorological data which is in a large format book plus the hydrographic data.Some special drogue measurements were made during the period by groups from California and Connecticut which will be available to us as soon as they have been analyzed by the scientists who directed this part of the program.This should be in a matter of from this writing. We list below some of the special observations which will be available and one of particular interest to our program.

Vertical current meters moored in 70-80 m of water 10-18 July, 1972 Hydrographic data from Depoe Bay line 5-17 July KAPPA buoy-moored currentmeters,10 miles offshoreFrom 15 April 1972 Aircraft measurements of atmospheric conditions surface temperature, surface chlorophyll 25 milesoffshoreof Newport August 10-17 Tide recorders mid July -mid August Drogue trackings 2-3 miles offshore LincolnBeach 7 August, 1972

We have notyet incorporated all the CUEdata into our analysis program but they willbe useful in interpreting our description of the nearshore circulation. Also the overall CUE program results on the reaction of the water to changesin wind velocitywill guide our subsequent analysis even though notdirectly observedin ourarea. It should be mentioned in passing that some of ourdrift bottledata have been quite useful to the CUE program as well.

Results ofCurrent Studies

The most obvious impressionwe get froman overall view of our data is that thenearshorecurrentsystem is quite variablefrom day-to-day. It is difficult to extractgeneralstatementsabout the circulation and consequently impliesthata given site cannot begin to be understood on the basis of a few 17

measurements. In general the wind seems to be the most importantsingle feature: all our data show good correlation with the winddirection. Both the drift bottles and the drogues go downwindwhen the wind ismore or less parallel to the shore. In one case (10 June)we dropped a number of bottles with east (offshore) winds and foundnone on our beach and onlya 7% return from the public overall. In view of our usual experiencewe have to conclude that these were blown well out to sea and probablydrifted South subsequently. Because we dropped these farther out than subsequentdrops (we were using R/V CAYUSE which couldnot approach nearer than 1 mile from shore) we don't know what happens quiteclose. In general the water movements closer than 1/4 milefrom shore almost invariably are toward shore even if the windsare parallel to it. Almost all bottles and drogue observations indicatea long-shore drift with a slight component inshore. There is some evidencethat seaward of 1/4- 1/2 mile the drift is slightly offshore since bottles droppedthere are generally recovered North or South of our beach. Once the droguesor bottles are caught in thesurf zone they come ashore quickly and as might beexpected their motion becomes less dependent on wind andmove dependent on the surf and the set of the tide. It is not always true, however,that the bottles come on shore only withan incoming tide. Furthermore, the tidal currents have considerable effectonthe speed and direction of flow and can be the main cause of motion if thewinds are light. We have yet to see motion against the wind but this doesnot seem impossible.

In general then there is someevidence that the nearshorezone may divide into two regions. In the closestone the probability that the surface water has a strong on-shore component and that material releasedat the sur- face there will be found on the shore within a few hoursand within a few miles of the release point. Seaward of this zone materialwould drift along shore for much greater distance and times. At times the boundarybetween the zones appears to be quite sharp- less than 1/4 mile thick. At we cannot say whether this is a feature typical of all coastsor whether the presence of headlands to the north & south contributeto this apparent pattern. Thissame pattern was noted inour January data. All the drogues showed the influence of the tidal motions but thedrogues launched furthest 18

from the shore showed a net drift toward thesouthwest whereas the middle two drogues showed a net drift to thenorthwest and the inshore paira very slight drift toward the west.

Some mention should be made of thefate of those bottles which did not come ashore in the immediate vicinity of the drifts. For the most part they were recovered, whether northor south, within 15 miles of the release points but some travelled as far north as Cape Kiwanda and some as far southas Waldport or beyond.

One bottle, dropped 11/2 miles offshore, was recovered off themouth of San Francisco Bay 500 miles south. This has receivedsomenotoriety because heretofore itwas not expected that waters that close to shore would drift that fast (ti 1/3 knot average). We also received returns from as far south as Bandon, Oregon. There were indications thatsome clusters would drift south with the wind and thenturn north as the wind shifted and pass the beach and end up around Pacific City. These data have been of much

interest to the CUE study and will beof help to them in their analysisas well as indicating tous that considerable offshore drift can occur from distance fairly close to the beach.

One further observation should be discussedbecause of its implication for biological sampling as wellas for its suggestion about water movements. When we dropped a die marker from the airplane one of the markers spenta great deal of time following alonga foam line. Judging from the known size of the package the foam linewas only about 1foot wide and yet remained

intact with the marker floating in itfor some distance even though thesea was quite rough and the wind very strong. Foam lines havebeenthought to be areas of convergence where thesurface waters come together and sink leaving the floating materialat the surface. Our chance observations would seem to confirm this and also to suggest thatthere may well be a number of regions where convergence and divergenceexist. The same phenomenon was seen, on a larger scale, duringone of the CUE tests where drogues laid out perpendicular to the shorewere found subsequently in a line parallel to the shore. Such regions of convergence and divergencecould quite possibly affect the distribution of planktonand, therefore, those organisms that feed on them. Thus it seems imperative to investigatethese regions since this could lead tovery uneven distribution of organisms in these waters and increases the difficultyof obtaining representative population samples. APPENDIX I

Appendix I showsan example of the data collectedon one day's run. Only the results ofa single days measurements are shown, sincethe vari- ability encountered during thisfirstyears operation was so great that we have little confidence inthe actual meaning of the numbers.Both the field data and lab work-upanalysis are presented. The following pages contain the results of the spectrophotometric determination of chlorophylls, phaeopigments and carotenoids in phyto- plankton crops.The procedures and equations may be found in Strickland and Parsons A Practical Handbook of Seawater Analysis.

DEPTH is given in meters.

P. S. denotes Parsons and Strickland.

S/U) denotesSCOR/UNESCO. CHLOROPHYLL is given inmg/m3 PHAEOPHYTIN is given in millispecified plant pigment unit approximating the milligram. Chi. A/Carot is given in mg/millispecified plant pigment unit. CRUISE IDEtlfIFiCAT {ON - OBSERVER Glp DATE

station no. time pi ments or flu., of bottle no e filtervol. time coordinates day depth no. r d' no. Mt. filt. remarks F100hc !Q 5 D. 2 Sdozoo Q O /2 /o.0 3 'goo-leo7 /041 L6 /O.o gool2/9 /0-1-6 Q /0 /6,4 'T 'gooleel G /0 50 D li TOO J Z08 S 3 O, 'goolez)6 0 8 5 2 o B goo/29/ leg 1-4- o B /O,,CS Soo/249 / n G /200 ,S J /0 2,00/238 /2O D A, 5P // Soo13C6- 1208 p /2,0 /2 $oo/3/G /eO? D /17 /2,5 /3 or. 1314 let?/6 3, /4 SOD1339 /5 $oo139$ /6 8,00135G z 1--e 1310 10. 17 'too140e T, 16 / S /,D I t Too/ 08 /vo 2 3 1-4 O /Q X00/413 3 r»' /3 s 3. 20 loo/ 2 1,6 2 7009 /-0,5 ez $oO 0 13 S 5 //, 9 23 $oo S /339 /O / 3, O 2 too/ 3J l33 D /3. 23' 800J,a`oo 5o me &r 6 2S mekr a ere k / 40;c%r C srcens- `4e-rs,4 were "-"Wee2 ac vev? , Pigment Content of a PhytoplanktonCrop ca / 4,4&i,_- Cruise Identification kkj StatioIdntifitionca Date

+erfc4d - Nominal Volume *'_t Extinction Found Corrected Extinction vPie-et /: :entc`: Filtered 750 665 645 630 ^ 510480 665 645630 510480 CaCb CC ant i:;al i (1) (Z (o-rO`5 r ---1-- Carot Carat . 1 _50 '360 I oos002 5622024Q3Z/09 _oi4 --ID 940303611ass 031610 Do/Go i $o0 039 Cot - 00 IQ IS 407OpS0ae ---5o S©o.b2- agoOe4Oz6oz? g0002 0536ti'0750elpalGza044

L; - ?0_--0 °1280320M6411a3 goo O 1 oasasGoLot9 - ). _l ! 2J T O O 070 635Oe OZ503O083

1300--Ole-6150030026C6023 _ 13 0 _goo- 010 of I 009Cos61? 1-l IS OC7003 623M033M7W4616090 _Ly_ 1J B'a0- b93--65?013oiIcel654 -_ ----10 TooW4 6U 02610p90loez4 . O $00 & oo dl 006605C c&0 /7 TOO bl016OCOOwCoyooq6?-3 4 9001 - 8-012 OM00&01 19 4 wo mG 5014900-Z 602009 X20 6O 70 D%3d8603)ED0,3z D4o/42 Remarks:

Analyst C Pigment Content of a Phytoplankton Crop Cruise IdentificationA rAo fffk Station Identification Date A Xu c; 2r3 a:..p1eNominal Volume Gel! Extinction Found Corrected Extinction Pi Pi rent/i-75 Plant Ar-:i: T i s. :_"enth FilteredIlk 750 665 645 630 510480 665 645 630 510480 CaCb Cc 0) D GGS Ca. rot.Carot. Oc3 640059139 _~ C3_._ 159M 1 211 `t 04rA- a all016002003 3- 2 5 d6/o r , bo 10 031oz /os ,os3 r+ u e 9 ' - QD003 0 fo2G 5pDOob o2z -Ql 005oasc'o91o2q

i -J -)

Remarks: Analyst Ci_ PIGMENT ANALYSIS Station: North of Moolack Date: 8/21/72

C'SU 1450 -- CNcaOP Yt-1T _- __PHAEoPHY1'QA) F14TE/t NUMBER.l P.S. : K p, s Sk 'Dam

R : 6 A _'6 H fH1 ME7

_0.70 o38:1. lp?- 0 f4 _3.3_ /7_ x_1:10---0S/--1_L__ _ , -1911 7 5T-47-`!.',_4/,l_°5%-3 1 11Q

-o 9P. 79_! 3s ---_ --.7 =.-- -; :.*6'q.9fv; i_7 3/l_7J.c43.'04,31,x2,96_3. 18.0 7: -0,V3Po0!J7J orrL _u' : 0«20/.. 3_

- /o //4 -o.oP _!sS_L/ 5' 0,103;_5 it, -31. Al --- 1 - - --- 1 _-0l5-o,ll I_./ -o oil.-w"ft_ / o t-1 0. 3_Gk 3I--I -i°- - -__ __-.! t _-.7.7.1 3 f --3-x G J. 2z .o_ 70,39:. 0 .0_+0.5'0 _-!t~ 3.z ._o,! fv_.._..------! ---!. !.o _-o,9S o.fj ' !/ x'0,9/' 0,5fvt I0 ,93-0.0711 /_--.Q._7r.1'1q- -_ 0-- o t-s.! _10.9 , -3.1 _ D , PI s _ _ . j- 33, 3 f_le-/ 0 JZ4 9L1 1 --+ 7 4Q,53f ?/-.toL ------Q7p_ -0,83 fit p. D_ -0-44_I ---! 7" .T 7.3-

.._ o.% -0.37.1 1.1__A0 ' 3p - s-A570f/'/.3 :-Odxs, As TE-70--

I

I i I 1 APPENDIX II

Zooplankton were sampledat varyingstations throughout the summer. These stationswere all coded based on distance from shoreand are indicated in the attached drawing.Station coding foran individual sample was set- up for the computer and is explainedin the keyto theappendix. Indications may be made for distancefrom shore, relative position betweenthe rocks, depth, and replicatetows &counts. The computerprintouts tabulate the data for eachsampling day.Each table containsthe data forfour stations giving either absoluteabundances or percentagesfor the adultmales and females and the immaturespresent. Thephysical datais also tabulated and the units are indicatedin the key to theappendix. Key To The Appendix

General Station Designation:

ex: 1.50 indicates the station 1.5 miles offshore

.2N indicates the station 0.2 miles offshoreon the North end of the study region .2C .2 miles offshore on the central sampling track .2S .2 miles offshore on the South end of the study region

Special Designations:

July26, 1972 - Replicate tow designation .4N1 = first tow towing to the North at .4 mi. offshore .4N2 = second tow towing to the North at .4 mi. offshore S = South

W = West SS = Station at south end of study area NN = Station at North end of study area August 1, 1972 Depth series designation 2.25A = tow at 2.25 miles offshore at depth of 3 m 2.25B =15 m death,2.25 mi. offshore 2.25C =30 m depth,2.25 mi. offshore

2.25D =9 m depth,2.25 mi. offshore

2.25EE =9 midepth,2.25 mi. offshore August 8, 1972 Replicate counts .4R1: .4 = .4 mi. offshore R = replicate count

1 = first count made on sample

Data Print-out:

ex: Datum .2C (Station Number) (from 8-8-72) SurfaceTemp. 10.500 (in ° C) Surface Salinity 33.7600 (in %o ) Bottom Temp. 9.800 (in ° C) Bottom Salinity 33.7770 (in %o ) Forel No. 7 (pure number) Secchi Reading 5.5 (in meters) Forel Number Interpretation:

1-2 = blue water

3-4 = blueish-green

5-7 = green 8-10 =yellowish-green Zooplankton Station Location

X 5.00

N

X 4.00

Key x Station Rock Surf -----Shoreline

(not drawn to scale) STATIONSON 07/26/72

DA TUM .4N1 .4N2 .4,3 .4S4

SURFACETEMP. 9.8J0 9.800 9.810 9.800 SURFACESALINITY 33.5660 33.5661 33.5060 33.5660 BOTTOMTEMP. 8.500 8.500 8.500 8.500 BOTTOMSALINITY 33.6120 33.6120 33.b120 33.6120 FOREL NO. 9 9 6 SECCHI READING 8.6 8.0 7.1i 3.0 THE FULLOWIJG TABLE LISTS ABSJLUTE ABUNDANCES (NUMBER OFINDIVIDUALS PER CUBICMETER OF WATERFILTLREC)

FEMALES MALES IMMS FEMALES MALES IMMS FEl ALEES MALES IMMS F_MALEi MALES IMMS

ACARTIA CLAUSI 50.8 36.6 73.2 74.2 31.7 91.7 99.5 31.8 95.5 124.5 59.7 107.9 ACARTIA LONGIREM 48.3 34.1 23.3 74.2 29.2 28.4 97.5 39.8 77.6 110.5 53.3 68.6 CALANUS SP 0 0 2.5 1.7 0 2.5 6.0 0 0 1.3 1.3 3.8

CENTROPASES MCMU 0 .8 U C. U 0 2.U 2.6 0 0 0 1.3 EUCALANUS SP 0 0 0 0 G .3 G 0 0 0 1.3 OITHONA SIMILIS 00.7 0 7.5 118.4 0 3.3 240.8 0 0 174.0 0 2.5 OITHONA SPINIROS 0 0 0 0 U 0 G G 0 3.8 0 0 PSE000CALANUS 6.7 7.5 36.6 31.7 10.0 46.7 29.9 8.0 49.8 27.9 26.7 49.5 COPEPOD NAUPLIUS 0 0 0 G 0 0 2.0 G 0 1.3 0 0 GAMMARIO AMPHIPO 0 U 0 1.7 0 0 0 G 0 J 0 0 BARNACLE CYPRIS 1.7 U 0 0 G a 0 G G 0 0 0 BARNACLENAUPLIU 0 0 0 0 0 0 0 0 G 7.6 0 0 CHAETOGNATHA 0 U 0 1.7 0 0 G G 0 1.3 0 0 CRAB ZOEA .5 0 0 0 0 0 0 0 0 0 0 0 HERMIT CRAB LARV 0 0 0 .8 0 0 C 0 C 1 0 0 PORCELAIN CRAB Z U G U 1.7 0 0 2.0 0 0 0 G CRUSTACEAN EGGS 1.7 0 0 G U 0 C G 0 0 U 0 DECAPOD LARVAE 3.3 0 0 7.5 u 0 6.0 0 0 14.3 0 0 MEDUSAE 2.5 0 0 .8 0 D 2.0 0 0 1.3 0 0 MYSID LARVAE 3.3 0 0 12.5 0 1 6.0 0 0 2.5 0 0 THE FOLLOWING TABLE LIbTSTHE FRACTIJN OFTOTAL STATION ABUNSANCc

ACARTIA CLAUSI .1259 u 3J7 .1514 .1297 .055'. .1563 .1241 .0397 .1131 .1469 .0705 .1274 ACARTIA LONGIREM .1196 .0545 .0577 .1297 .0510 .0496 .12 i6 .0496 .0968 .130'. .0630 .0810 CALANUS SP 0 0 .0662 .0029 0 .004. .0074 0 0 .0015 .0015 .0045 CENTROPAGES MCMU 0 .u021 U 0 0 6 .0u25 .0025 G 0 0 .0015 EUCALANUS SP 0 u u 0 U .6015 G 0 0 OITHONA SIMILIS .1505 0 0 .0015 0 .U186 .2070 0 .0053 .3002 0 .005L .2054 0 .0030 OITHONA SPI 141ROS 0 d u 0 6 PSEUDUCALANUS .0165 0 6 0 .0045 0 0 .313o .0907 .0554 . . 0175 U81n .0372 .0099 .0620 .0330 .0315 .0585 COPEPOD NAU?LIUS u u 0 0 G 0 .0025 0 U .0015 0 0 GAMMARIDAMPHIPO 0 G 0 .0029 0 0 0 BARNACLE CYPRIS .0641 0 U 0 0 0 G 0 0 0 0 0 0 0 G 0 0 BARNACLE NAUPLIU 0 0 0 0 0 0 0 7 .0390 0 G CHAETOGNATH4 0 U 0 .0029 0 0 CRAB ZOEA .0021 u 0 0 .0015 0 0 0 0 0 0 3 6 G 6 0 0 HERMIT CRAB LARV 0 0 .0015 u 0 0 0 0 u 0 0 PORCELAIN CAB Z U 0 U .0029 G G .6025 CRUSTACEANEGGS .0041 0 0 0 0 0 0 0 u 0 0 0 0 G 0 0 DECAPOD LARVAE .0082 0 0 .0131 0 0 .0074 MEDUSAS .0062 0 0 .0165 0 0 0 0 .0015 0 7 .0025 MYSID LARVAE .0032 0 u .0015 0 G u 0 .0219 0 0 .0074 0 u .0033 0 0 STATIONSON 37/2o/72

DATUM .4W5 .4W6 .2 .75

SURFAC.TEMP. 9.830 9.800 9.600 0 SURFACESALINITY 33.5660 33.5660 0 0 BOTTUMTLMP. 3.533 8.501 0 BOTTOMSALINITY 33.6120 33.6120 0 0 FOREL NO. 5 5 7 7 SECCHI READING 7.5 7.5 4.5 9.5 THE FOLLOWIVG TALE LISTS ABSOLUTE ABUNDANCES (NUMBE,t OF INDIVIDUALS PER CU3IC MLTER OF WATER FILTERED)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS ACARTIA CLAUSI 295.9 69.9 209.6 138.3 20.3 99.4 50.2 21.9 56.4 257.4 152.1 334.6 ACARTIA LONuIREM 408.9 220.6 145.3 249.6 67.0 0 53.3 29.3 38.7 119.3 81.9 77.2 CALANUS SP 2.7 0 5.4 L 0 12.2 0 0 2.1 0 0 7.0 GENTROPAGES '$CMU 2.7 2.7 8.1 C 0 0 0 0 0 0 2.3 2.3 OITHONA SIMILIS 67.3 0 5.4 42.6 0 0 96.1 0 5.2 103.0 0 0 OITHONA SPIAIRUS 5.4 0 0 6.1 0 2.0 3.1 0 2.1 2.3 0 0 PSEUOOGALANUS 72.6 35.0 153.3 67.0 26.4 105.5 14.6 6.3 27.2 147.4 72.5 517.1 COPEPODNAU°LIUS 2.7 u G 2.0 0 0 1.u 0 0 0 C 0 UNIDENTCALANOID u 0 0 0 0 J C 3 0 2.3 0 0 HARPACTICOID 0 U 3 0 0 0 1.C 0 D 0 0 0 SAMMARIOAMPHIPO U 0 J 0 0 J 2.1 0 0 0 0 0 BARNACLECYPRIS 0 0 0 0 0 0 1.0 0 3 0 0 0 BARNACLENA!JPLIU 0 3 0 0 0 0 2.1 G. 0 4.7 0 0 CRAB ZOEA 0 0 0 0 0 0 0 u 0 2.3 0 0 PORCELAIN CRAB Z 2.7 U 3 C 0 3 0 0 0 9.4 0 0 CRUSTACEAN EGGS 0 0 0 0 0 0 G 0 0 2.3 0 0 DECAPOD LARVAE 2.7 0 0 0 0 0 1.G 0 0 18.7 0 0 GASTROPOD LARVAE 0 0 0 0 0 0 1.0 0 0 0 0 0 MEOUSAE 0 0 0 0 0 1 2.1 0 0 2.3 0 0 MYSIO LARVAE 8.1 0 0 0 0 1 0 0 0 4.7 0 0 THE FOLLOWING TA3LE LISTSTHE FKACIIUN OFTOTAL STATION ABJNUANCE

ACARTIA CLAUSI .1713 .u4J5 .1015 .1b43 .32Y2 .1184 .1200 .0525 .1353 .1333 .0791 . ACARTIA LUNGIKL'1 .2368 1740 .1277 .0841 .2971 .0797 u .1275 .0700 CALANUS SP .3925 .0620 .0426 .0401 .0016 u .6631 0 .0145 6 0 .0050 CENTRUPAGES MCMU 3 0 .0036 .3016 .0016 .0347 0 0 0 u u .6012 .0012 OITHONA SIMILIS .0389 0 .OC31 0 .0507 0 .2300 0 .0125 .0535 OITHONASFINIROS .0031 0 0 0 G .6097 C .0024 .0075 0 .0050 PSEUOOCALANUS .6012 0 0 .0421 .0202 .6688 .0797 .3314 .1256 .0356 .0150 COPEPOD NAUPLIUS .0650 .0766 .0377 .2689 .0016 0 0 .6024 0 0 .0025 6 C 0 0 0 UNIDENI CALANUID 0 0 0 0 0 HARPACTICUID 0 0 6 6 .0012 0 0 0 0 0 0 0 0 .0025 0 0 0 GAIMARIO AMPHIPO 0 0 0 U u G 6 0 .0050 0 u 0 0 0 BARNACLE CYPRIS 0 0 0 0 0 0 .OU25 0 C O 0 0 BARNACLE NAJPLIU 0 0 0 0 0 3 .0056 0 C .C024 0 0 CRAB ZOEA 0 G J 0 O 6 u O .0012 0 0 PORCELAIN CRAB Z .0016 0 u 0 0 0 0 0 CRUSTACEAN EGGS 0 .0049 0 0 0 0 0 0 0 DECAPOD LARVAL 0 G 0 .0012 0 0 .0016 0 0 0 C 0 .0025 0 0 .0097 0 0 GASTROPOD LARVAE 0 0 0 G 0 0 . 0 0 2 5 0 0 MEDOSAE 0 0 0 0 0 0 G 3 J .0050 MYSID LARVAE 0 0 .0012 0 0 .0047 0 0 6 C 0 G 0 0 . 0 0 2 4 0 0 NATIONSON 07/26/72

DATUM 1.0 1.25 1.56 1.75 SURFACETcMP. 0 6 I U SURFACESALINITY 0 C 0 0 30TTOMTEMP. 0 0 0 0 BOTTOMSALINITY 0 0 FOREL NO. 8 8 10 SECCHI READING 11.0 9.5 10.3 7.5

THEFOLLOWINGTABLELISTS ABSJLUTCABUNDANCES (NUMBER OF INDIVIDUALS PER CU3IC METER OF WATER FILT=R=D)

FEMALES MALES IMMS FLhALES MALES IMMS FEMALES MALES IM'IS FEMALES MALES IMMS

ACARTIA CLAUSI 109.6 44.7 69.u 33.6 37.1 48.7 1.7 5.0 1.7 2.9 11.7 5.3 ACARTIA LONGIREM 174.6 65.0 77.2 410.8 183.4 58.U 355.3 102.2 48.6 751.1 237.7 184.8 GALANUS SP 0 4.1 8.1 0 0 37.1 16.8 0 36.9 111.: 0 58.7 CENTROPAGES MCMU 0 0 0 0 0 4.6 0 1.7 0 0 0 0 OITHONASIMILIS 61.2 0 20.3 125.3 0 0 73.7 0 C 14.7 0 0 OITHONA SPINIROS 5. 1 U u 2.3 0 u 6 0 0 0 0 0 PSEUDOCALANUS 437.3 73.1 1647.7 55.7 4.6 153.3 3.4 0 8.4 8.8 0 5.9 COPEPOD NAUPLIUS 4. 1 0 u 0 C 1 3.4 0 C 2.9 0 0 HLRMIT CRAB LARV 0 0 6 2.3 6 0 0 0 0 0 0 0 PORCELAIN CRAB Z 20.3 0 0 6 0 0 L 0 C 0 0 C CRUSTACEAN EGGS 0 0 0 2.3 0 3 C 0 0 8.8 0 C DECAPOD LARVAE 8.1 0 S 0 13.9 0 0 U 0 0 0 0 0 GASTROPOD LARVAE 0 0 0 4.6 L 0 1.7 0 0 2.9 0 6 MEUUSAE 0 0 0 2.3 G 0 0 0 0 U 0 0 THE FOLLOWIAu TABLE LISTSTHE FrtACTIuN OFTOTAL STATION A0UNUANCL

ACARTIA CLAUSI .0476 .0194 .0300 .0681 .3302 .0397 .0025 .0376 .0025 .0021 .0083 2C+2 ACARTIA LONGIREM .0758 .0282 .0335 .3340 .1493 .0473 .5381 .1548 .0736 .5333 .1638 .1312 CALANUS 3P 0 .3018 .0035 0 0 .0302 .0254 0 .0558 .0792 0 .3.17 CENTROPAGES MCMU G 0 0 0 0 .0038 G .0;;25 0 0 G 0 OITHONA SIMILIS .0353 0 .0688 .1021 0 J .1117 0 0 .0104 C OITHONH SPINIRO5 C .0035 0 u .0019 0 U C 0 U 0 3 PSZUOCCALANUS .2116 .u317 .4551 .0454 .3038 .1229 .Ou51 3 .0127 .0063 0 2 COPEPOD NAUPLIUS .0018 0 0 0 0 0 .GG51 U 0 .0021 0 0 HERMIT CRAB LARD J G 0 .0019 G 0 0 0 0 0 C 0 PORCELAIN CRAB Z 3u 5 G U 0 0 0 U U 0 U 0 0 CRUSTACEAN EGGS 3 0 0 .0019 G 0 C C 0 .0063 0 0 DECAPOO LARVAE .0035 0 U .0113 0 0 C 0 0 0 0 0 GASTROPOD LARVAE 0 U 0 .G038' 0 0 .GC25 0 0 .0021 0 MEOUSAE J 0 U .0019 6 U 0 0 0 0 0 STATIONS ON 07/26/72

DATUM 2.0 2.25 .4NN .4SS

SURFACE TEMP. 0 10.700 10.000 10.300 SURFACE SALINITY 0 33.0680 33.5560 33.5640 BOTTOM TEMP. 0 0 8.400 8.500 BOTTOM SALINITY 0 33.6680 33.6060 33.6220 FUREL NO. 10 IC 9 9 SECCrII READING 7.5 7.5 3.0 3.0 THE FOLLOWING TABLE LISTS ABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALS PEk CUBIC MLTER OF WATER FILTERED)

FEMALES MALES IMMS FEPALLS MALES IMMS FEMALES MALES IMMS FEMALES MALES IAMS

ACARTIA CLAJSI 6.4 0 4.8 C 0 J 9.8 6.5 9.8 283.9 155.3 308.0 ACARTIA LONGIREM 378.3 132.0 54.7 959.3 211.7 69.5 32.1 11.4 8.0 262.4 174.1 115.2 CALANUS SP 30.6 0 32.2 23.2 3.3 46.3 0 C 1.0 0 0 0 CENTROPAGES MCMU 0 3.2 0 0 0 0 0 0 u 2.7 0 0 EUCALANUS SP 0 C 0 0 0 3.3 u 0 0 J 0 0 OITHONA SIMILIS 4.8 0 u 9.9 0 0 .5 0 0 18.7 0 0 PSE000CALANOS 4.8 0 8.1 9.9 0 6.6 5.4 u 12.9 10.7 5.4 61.6 COPEPOD NAUPLIUS 1.6 0 0 0 0 0 0 0 0 C 0 0 HYPERIID AMPHIPO 1.6 0 0 u 0 J C 0 0 0 0 0 CABMEGALOPS 0 0 0 3.3 0 0 0 0 0 J 0 0 DECAPOO LARVAE 1.6 0 0 3.3 0 0 0 0 J 3 0 0 GASTROPOD LARVAE 0 0 1 0 0 0 .3 0 0 0 0 0 THE FOLLOWING TABLE LISTS THE FRACTION OFTOTAL STATION ABUNDANCE

ACARTIA CLAJSI .0097 u .6073 C C J .10C .6661 .1005 .2031 .1111 .2203 ACARTIA LONjIREM .5690 .1385 .0823 .7168 .1569 .0515 .3230 .1164 .0820 .1877 .125 .082,+ CALANUS 3P .0460 0 .0484 .6172 .0625 .0343 U 0 .u106 J G 0 CENTROPAGES MCMU U .U048 0 0 0 0 C 0 0 .0019 C 0 EUCALANUS SP 0 0 0 0 0 .6025 C U 0 G 0 0 OITHONA SIMILIS .0073 0 0 .0674 6 0 .0053 0 0 .U134 6 0 PSEJJOCALAN'JS .0u73 u .0121 .0074 0 .6049 .0556 0 .1323 .0077 .0638 .0441 COPEPOJ NAUPLIUS .U024 0 G 0 0 0 C C 0 0 0 0 MYPERIIO AMPHIPO .UU24 0 0 0 0 0 0 0 0 u 0 0 CRAB MEGALOaS 0 0 0 .0025 0 u 0 U 0 0 0 0 OECAPOJ LARVAE .1024 U u .0025 u 0 G 0 U C GASTROPOD LARVAE 0 0 0 0 0 0 .0 .26 0 O u 0 O STATIO'4S ON 39/01/72

DATUM 2.25A 2.25 2.25 2.25 SURFACE TEMP. 9.4J0 9.400 9.400 9.400 SURFACE SALINITY 33.6076 33.6070 33.6070 33.6070 BOTTOMTEMP. 0 9.406 8.900 0 BOTTOMSALINITY 0 33.7430 33.8140 33.3270 FOREL NO. 10 1G 13 10 SECCHIREADING 6.u 8.0 8.0 8.0

THE. FOLLUWI4G TABLE LISTSABSOLUTEABUNJANCES (NUMBER JFINDIVIDUALS PER CUBICMETER OFWATER FILTcKED)

FEMALES MALLS 1MMS FEMALES MALES IMIS FEMALES MALES IMMS FEMALES MALES IMMS

3 ARTI4 CLAJS1 8.9 0.9 11.8 19.9 9.9 44.8 6.1 6.1 42.4 6.3 2..2 18.1 ACARTIA LONSIREM 539.9 253.7 168.2 353.1 179.0 139.2 200.1 78.8 103.1 380.5 197.2 199.3 CALANUS SP 11.8 6 5.9 34.8 0 104.4 42.4 0 175.8 24.2 0 108.7 CENTROPAGES MCMU 14.8 11.8 5.9 5.0 5.9 3 6.1 0 0 u 6.0 U OITHONASIMILIS 44.3 0 3.u 29.8 0 0 200.1 0 G 12.1 6 0 OITHONASPIAIROS 0 U 0 0 G 0 12.1 0 0 u 0 0 PSE'JDGCALANJS 35.4 :i.9 383.5 119.4 19.9 875.2 533.5 127.31339.9 223.7 0 978.5 COPEPOD NAUPLIUS 29.5 0 u 24.9 0 3 12.1 U 0 18.1 0 U HYPERIIO AMPHIPO U 0 0 5.0 0 u G 0 0 u 0 0 ANNELID LARVAE 0 U 0 G 0 7 6.1 0 0 0 0 0 BARNACLE NAUPLIU 3.0 0 0 5.0 0 3 12.1 0 0 u- 0 u CHAETOGNATHA 0 0 0 5.0 0 9 0 0 0 0 0 0 PODON LEUCKARTI 0 u 0 24.9 0 J 6.1 0 0 12.1 0 0 CRUSTACEAN EGGS 8.9 0 0 94.5 0 7 48.5 0 0 151.0 0 0 DECAPOD LARVAE 0 0 0 5.0 0 3 G 0 0 u 0 0 GASTROPOD EGGS 0 U 0 0 0 0 6.1 0 0 0 0 G GASTROPOD LARVAE 3.0 0 0 24.9 0 0 0 0 0 36.2 0 0 ISOPOOA 0 0 0 9.9 0 0 u 0 0 J 0 0 MEDUSAS 0 0 u 5.0 0 1 1, 0 0 0 0 0 THE FCLLOWI`JG TABLE LISTSTHz FRACTION OFTOTAL STATION ABUNDANCE

ACARTIA CLAUSI .0057 0,::?7 .007b .0092 .0046 .0206 .3023 .0020 .0141 .0025 .0130 .3075 ACARTIA LONGIREM .3466 .1629 .1080 .1625 .0824 .061.1 .0667 .0263 .3343 .1573 .0777 .0827 CALANUS SF .0076 0 .0038 .0160 0 .0491 .0141 0 .0586 .0100 U .0451 CENTROPAGES MCMU .0095 .3076 .0038 .0023 .u046 .0C20 0 C 3 .0025 0

UITHONA SIMILIS .0284 C .OU19 .0137 0 3 .0667 0 C. .0050 0 0 OITHJNA SPINIROS 0 0 0 0 0 JCv0 0 0 3 C 0 PSEUOOCALANUSS .0227 .J3S8 .2462 .0549 .0092 .4027 .1776 .0424 .4465 .0927 0 .4060 COPEPOD NAUPLIUS .0189 u u .0114 0 .G4C 0 G .0075 0 0

HYPERIID AMPHIPO U U 0 .0023 0 3 0 0 0 J 0 G

ANNELIO LARVAE 0 0 0 0 0 - .:020 0 0 0 0 u BArrNACLE NAUPLIU .0019 C u .0023 0 040 0 0 1 C G

CHAETOGNATHA 0 1 0 .0023 0 0 0 0 0 0 C.

U. PJDUN LEUCKARTI 0 - .0114 0 .x020 G 0 .0059 0 0 CKUSTACEAN EGGS .0057 0 .0435 u 102 0 0 .0627 0 0 DEGAPOJ LARVAE 0 C O .JG23 0 L u 3 0 J GASTROPOD ESGS 0 0 0 0 0 .3020 0 0 u 0 0 GASTROPOD LARVAE .0019 0 0 .0114 0 C 0 u .0150 0 0 ISOPuOA 0 C u .0046 0 0 U 0 U 0 J MEOUSAE 0 0 0 .0023 0 L 0 0 0 0 STATIONS ON 03/01/72

uATUM 2.25t

SURFAC TEMP. 9.4u0 SURFACESALINITY 33.bJ7U

BOTTOM TcMP. U BOTTOM SALINITY 33.j270 FOREL NO. 10 SECCHI R AOING 8.0 THE FOLLOWING TABLE LISTS A3SOLUTE ABUNDANCES (NUMBER OF INDIVIDUALSPEF. CUBIC MLTLR OF WATER FILTcREC)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS

ACARTIACLAUSI 11.3 11.3 11.3 ACARTIA LONJ-IREM 420.0 288.8 97.5 CALANUS SP 7.5 0 26.3 CENTROPAGES MCMU 3.8 3.8 3.8 OITHONA SIMILIS 26.3 0 0 PSEUDOCALANUS 82.5 3.8 551.3 COPEPOD NAUPLIUS 20.3 0 J BARNACLE NAJPLIU 7.5 U 0 CRUSTACEAN EGGS 108.8 G 0 THE FULLOWINL TA3LL LISTS THE FRACTIuN OF TOTAL STATION AEUNDANCE

ACARTIA CLAUSI .0066 .JJ66 .0066 ACARTIA LONGIRc.M .2479 .1704 U575 CALANUS SP .0044 0 0155 CtNTROPAGES MCMU .OG22 .GU22 .0022 OITHONA SIMILIS .0155 G 0 PSEUDOCALANJS .487 .JU22 .3252 COPEPOD NAUPLIUS .6155 G 0 BARNACLENAJPLIU .0044 6 0 CRUSTACEAN EGGS 0642 0 0 STATIONS J.4 03/08/72

DATUM .4R1 .4R2 .4R3 1.0

SURFACETEMP. 16.400 10.4J0 10.400 10.350 SURFACESALINITY 33.7640 33.7640 33.7640 33.7710 BOTTOMTEMP. 9.400 9.40G 9.400 8.600 BOTTOMSALINITY 33.78-)0 33.7890 33.7390 33.8120 FOREL NO. 7 7 7 6 SECCHI READING 7.u 7.0 7.0 6.0

THE FOLLOWI.40 TABLE LISTS ABSULJTtABUNDANCES (NUMBER OF INDIVIDUALS PE( CUBIC METER OF WATER FILTERED)

FEMALES MALES IMMS FEMALE MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS

AGARTIA JLAJSI 419.6 173.3 711.5 695.4 136.8 786.6 056.6 109.4 76b.1 356.9 389.3 324.4 ACARTIA LONoIREM 155.1 173.3 209.8 205.2 125.4 171.0 191.5 136.6 259.9 48.7 40.5 8.1 CALANUS SP 0 C 54.7 0 G 68.4 0 0 109.4 0 0 56.8 CENTROPAGES .'1CMU 0 9.1 0 0 0 0 C G 0 0 0 0 OITHONA sIMILIS 18.2 J 0 34.2 u a 13.1 0 0 16.2 0 0 PSEUDOCALANJS 1322.7 173.3 1696.7 1333.8 91.2 1755.o 1272.2 150.5 1942.6 811.0 162.2 786.7 COPEPOD NAU?LIUS 282.3 u u 296.4 U 7 437.8 G 0 +70.4 0 0 ANNELIJ LARVAE 9.1 0 0 11.4 0 0 C G 0 16.2 0 C BARNACLE CYPRIS 0 0 J G 0 a L G 0 8.1 0 0 BARNACLE NAJPLIU 9.1 0 U G u u 13.7 L 0 308.2 0 0 PODON LEUCKA2TI 9.1 0 0 0 0 3 41.0 0 0 97.3 0 C CRAB ZJEA 9.1 0 0 G 0 0 C 0 0 16.2 0 0 HERMIT CRAB LARV 0 0 u 0 0 0 u 0 0 64.9 0 0 PORCELAIN CRAB Z 0 0 0 C 0 3 C 0 G 16.2 0 0 CRUSTACEAN EGGS 216.9 0 0 148.2 0 0 123.1 0 0 64.9 0 0 OECAPOO LARVAE 0 G 0 0 0 0 G C 0 40.5 0 J GASTROPOD LARVAE 0 G 0 0 0 0 C C 0 16.2 0 0 MEOUSAE 0 0 0 0 0 0 C 0 0 8.1 0 0 THE FOLLOWING TAaLE LISTSTHE FRACTION OFTOT,L STATION ABUNOANCL

ACARTIA CLAUSI .0742 .0306 .1253 .1187 .0233 .1342 .1055 .G176 .1231 .C83u .0906 .0755 ACARTIA LONGIREI .6274 .6306 .0371 .0350 .6214 .0292 .03J8 .0220 .0418 .6113 .0094 .0019 CALANUS SP G U .0697 G G .0117 0 0 .0176 G 0 .0132 CENTROPAGES 'ICMU 0 .0016 0 0 0 0 G 0 J 0 0 0 OITHONA SIMILIS .OG32 0 0 .0058 C 0 .0022 G 0 .0038 0 0 PSEOOOCALANJS .2339 .6306 .3u0u .2276 .6156 .2996 .2644 .0242 .3121 .1687 .0377 .1830 CUPEPOD NAUPLIUS .0500 G u .0506 L G .0703 C 0 .109+ 0 0 ANNELID LARVAE .0016 0 0 .0019 0 U 0 G 3 .0038 0 0 BARNACLE CYPRIS 0 U 0 0 0 0 0 0 0 .6019 0 0 BARNACLE NAJPLIU .0016 0 0 0 0 0 .0022 0 0 .6717 0 0 PODON LEUCKARTI .0016 0 G 0 0 0 OObb 0 0 .022b 0 0 CRAB ZOEA .0016 0 0 0 G 0 0 0 3 .0038 0 O HERMIT CRAB LARV J U U 0 0 J 0 0 0 .0151 0 0 PORCELAIN CKAB Z 0 0 U 0 0 J U G 0 .0038 0 0 CRUSTACEAN =SGS .0387 0 0 .0253 G G .0198 0 O .0151 G 0 DECAPOD LARVAE 0 0 0 0 0 U 0 0 0 .6094 0 0 GASTROPOD LARVAE J 0 0 0 0 G 6 0 0 .0039 0 0 MEDUSAE 0 U 0 C 0 1 0 G 0 .0019 G 0 STATIONSON 63/09/72

DATUM 1.5 2.0 2.5 .2N

SURFACcTEMP. 10.400 10.450 10.300 10.400 SURFACESALINITY 33.7570 33.7610 33.7740 33.7330 BOTTOMTEMP. U 7.9u0 0 9.500 BOTTOMSALINITY 33.315C 33.8160 33.8140 33.7920 FOREL NU. 6 6 6 7 SECCHI READING 5.0 4.5 6.0 6.0 THE FOLLOWING TABLE LIS1S ABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALS PER CUBIC METER OF WATER FILTcREO)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS

ACARTIA CLAJSI 170.5 62.0 155.0 95.3 57.2 152.4 27.4 10.9 65.7 79.4 5.0 29.8 ACARTIA LONGIREM 31.0 62.U 62.0 38.1 19.0 U 16.4 5.5 16.4 44.7 54.6 39.7 ACARTIA SP - 0 0 108.5 0 0 38.1 0 0 16.4 0 0 64.5 CALANUS SP 0 0 93.0 0 0 133.3 27.4 G 76.6 0 0 39.7 EPILABIDOCERA 0 0 0 C 0 19.3 0 C 0 0 5.0 0 OITHONA SIMILIS 62.0 U U 19.0 0 J 87.6 0 0 19.9 0 0 PSEUDOCALAN'JS 1674.1) 176.5 1813.5 4210.6 342.9 2228.8 75.4 60.2 355.8 983.1 94.3 908.6 COPEPUDNAOPLIUS 573.5 0 0 20-9.5 0 0 32.1 G 0 99.3 0 0 GAMMARIO AMPHIPO 0 0 0 C 0 0 5.5 0 0 0 0 0 HYPERIID AM3HIPO 0 6 0 0 0 0 5.5 0 0 u 0 0 ANNELID LARVAE 62.0 0 0 38.1 0 0 ,.5 0 0 u 0 0 BARNACLE CYPRIS 31.0 0 0 0 0 0 1u.5 0 0 u 0 0 BARNACLE NAUPLIU 465.0 0 0 114.3 0 0 142.3 G 0 0 G 0 CHAETOGNATHA 0 0 0 6 0 0 5.5 0 0 0 0 0 PUDON LEUCKARTI 31.0 0 0 38.1 G J 16.9 0 0 0 0 0 HERMIT CRAB LARV 15.5 0 0 57.2 0 0 5.5 0 0 0 C 0 CRUSTACEAN EGGS 232.5 0 0 190.5 0 0 186.1 0 0 19.9 0 0 DECAPOD LARVAE 62.0 0 0 304.8 0 0 229.9 0 0 5.0 0 0 GASTROPOD LARVAE 108.5 0 0 76.2 0 0 32.8 0 0 0 0 0 MEDUSAE 0 U 19.0 0 0 16.4 0 0 0 0 0 THE FOLLUWINS TABLE LISTS THE FRACTION OFTOTAL STATION ABUNDANCE-

ACARTIACLAUSI .0274 .0130 .0249 .0112 .0067 .0181 .0120 .0048 .0288 .0319 .3320 .0120 ACARTIALONGIREH .0050 ulu0 .0103 .0045 .0022 J .0072 .0024 .0072 .0179 .0219 .0159 ACARTIA SP - 0 0 .0174 0 0 .004b c G .0072 C 0 .0259 CALANUS SP 0 G .0149 u 0 .0157 .0120 0 .3336 0 0 .0159 EPILABIDJCERA 0 0 0 0 0 .6022 0 0 0 0 .0026 0 OITHONA SIMILIS .0106 u 0 .0022 0 0 .0384 0 u .0080 0 0 PSEUDOCALANJS .2687 .3274 .2910 .4966 .u404 .22629 .3309 .0264 .1559 .394- .0378 .3645 COPEPOB NAUDLIUS .0920 0 3 .0247 0 3 .0366 0 0 .0398 0 0 GAMMARID AMPHIPO 0 0 0 0 0 0 .0024 0 C 3 0 0 HYPERIID AMPHIPO 0 0 0 G U 3 .0024 0 0 0 0 ANNELID LARVAE .0100 0 J .0045 0 0 .3C2. 0 0 0 C 0 BARNACLE CY?RIS .JC50 0 C 0 0 0 .0048 G 0 0 0 3 BARNACLE NAJPLIU .0746 0 0 .0135 0 0 .0o24 0 0 0 0 0 CHAETOGNATHA J 0 C 0 0 3 .0024 0 0 3 P000N LEUCKARTI 0 .0050 0 .0045 0 0 .3046 0 0 3 0 0 HERMIT CRAB LARV .0025 V 0 .0067 0 J .6024 G 0 0 0 0 CRUSTALEAN EGGS .0373 0 0 .0225 0 3 .0815 G 0 .0093 0 0 DECAPOO LARVAE .3100 0 u .0360 0 0 .1007 C 0 .0020 u

GASTROPOD LARVA- .0174 U 0 .0090 0 0 .0144 C 0 0 MEDUSA` 0 0 G 0 .6022 0 0 .0072 0 0 C 0 0 STATIONS Ov 03/08/72

DATUM .2C .2S SURFACc TEMP. 10.500 10.800 SURFACE SALINITY 33.7obu 33.7480 BOTTOMTEMP. 9.d0U 9.800 BOTTOM SALINITY 33.7770 33.7820 FOREL NO. 7 7 SECCHI RcADING :.5 5.u THE FOLLOWING TABLE LISTS ABSOLJTE AUUNOANCES (NUMBER JF INDIVIDUALS PER CUBIC 4LTER OF WATER FILT_RcD)

FEMALES MALES 1MM5 FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALLS IMMS

ACARTIA CLAJSI X40.3 64.6 144.1 381.6 267.1 279.1 ACARTIA LONuIREM 86.4 14.4 100.9 10.9 38.2 16.4 ACARTIA SP - 0 0 43.2 G 0 27.3 CALANUS SP 0 7.2 36.1 C u 16.4 CENTROPASES MCMU 0 7.2 u 0 u 0 OITHONA SIMILIS 21.6 0 U 27.3 u 0 PSEUDOCALANJS 1462.4 223.3 y72.:i 691.5 147.2 065.1 COPEPOD NAUPLIUS 43.2 G 0 38.2 0 0 BARNACLEGYPRIS 3 0 0 16.4 u u BARNACLE NAUPLIU 0 0 0 43.b u 0 PODON LEUCKARTI 14.4 0 0 60.0 0 CRAB ZOEA 0 0 0 5.5 0 9 CRUSTACEAN EGGS 50.w 0 0 0 0 0 GASTROPOD LARVAE 7.2 0 0 0 G 3 THE FOLLOWING TABLE LISTSTHE FZACTION OFTOTAL STATION ABUNDANCE

ACARTIACLAUSI .1407 .0109 .0375 .1397 .1978 .1018 ACARTIALON,IRt1 .0225 .3u38 .0263 .0040 .0140 .0060 ACARTIASP - 0 0 .0113 0 0 .0100 CALANUSSP 0 .0019 .0694 0 0 .6001 CENTROPACESMCMU 0 .3u19 0 L 0 1 OITHONASIMILIS .3355 u .0100 0 0 PSEUDOCALANLJS .3809 .0532 .2533 .2495 .0539 .2435 COPEPODNAUPLIUS .0113 0 0 0140 0 J BARNACLECYPRIS 0 0 u :0060 0 0 BARNACLENAJPLIJ 0 0 0 .u160 0 u PUDUN LEUCKARTI .7038 0 u .0220 0 J CRAB ZOEA J u. a .0020 0 0 CRUSTACEAN :GGS .u131 0 C C 0 J GASTROPOD LARVAE .0019 0 3 0 0 0 SAMPLE AT STATION .4 NOT QUANTITATIVE STATIONSON 03/17/72

DATUM .4 1.u 1.5 2.0 SURFACETEMP. 12.li0 12.100 12.100 12.100 SURFACESALINITY 33.6080 33.5910 33.5840 33.5750 BOTTOMTEMP. 11.940 11.850 11.700 0 BOTTOMSALINITY 33.6340 33.5976 33.593u 33.5820 FOREL NO. 8 9 7 7 SECCHI READING 4.6 4.3 4.5 4.5 THE FOLLOWING TABLE LISTS ABSOLUTE ABUNUANCES (NUMBER OF INOIVIUUALS PEk CUBIC0 METER OF WATER FILTERED)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS

ACARTIACLAUSI 30.0 11.0 34.0 137.6 86.9 119.5 173.9 112.5 201.2 153.7 202.3 226.5 ACARTIA LONGIREM 33.0 30.0 24.0 47.1 68.8 133.3 61.4 51.1 68.2 153.7 2,42.7 129.4 ACARTIA SP - 0 0 1.0 0 0 57.9 0 0 30.7 u 0 4.0 CALANUS SP 0 0 7.0 0 C 29.0 0 0 17.0 0 0 12.1 OITHONA SIMILIS 8.0 0 0 25.3 0 0 85.3 0 u 60.7 0 0 OITHONA SPINIROS 0 0 0 7.2 0 J 3.4 0 0 0 0 0 PSEUDOCALANUS 6.0 3.0 1*.0 3.6 0 21.7 3.4 10.2 37.5 28.3 4.u 52.6 COPEPOD NAUPLIUS 3u.0 0 J 119.5 0 0 64.8 0 0 32.4 0 0 HARPACTICOID 1.0 0 0 3.6 0 0 3.4 0 3.4 0 0 0 GAMMARID AMPHIPO 0 C 0 3.6 0 0 3.4 0 0 0 C 0 ANNELID LARVAE 1.0 0 0 3.6 0 u 6.8 0 0 4.0 0 0 BARNACLE CYPRIS 15.0 0 0 108.6 0 0 78.4 0 0 64.7 0 0 BARNACLE NAUPLIU 58.0 0 0 159.3 G u 150.0 0 0 186.1 0 0 CHAETOGNATHA 1.0 0L 0 0 G 0 u 0 G u 0 0 P000N LEUCKARTI 49.0 0 u 195.5 0 J 95.5 0 0 101.1 0 0 CRAB ZOEA 0 G 0 18.1 0 u 27.3 G C 4.0 0 0 HERMIT CRAB LARV 0 G 0 0 0 0 u 0 0 8.1 0 0 PORCELAIN CRAB Z 2.0 0 0 10.9 0 0 10.2 0 0 16.2 0 0 CRUSTACEAN EGGS 18.0 0 0 14.5 G 0 37.5 G 0 12.1 0 0 DECAPOD LARVAE 1.0 0 0 0 0 0 0 0 0 8.1 0 0 EUPHAUSIID NAUPL 3.0 G 0 65.2 0 D 27.3 0 0 32.4 0 0 EUPHAUSIIDCALYT 0 0 0 0 G 0 3.4 0 0 0 0 0 GASTROPODLARVAE 31.0 0 G 83.3 6 0 36.7 0 0 32.4 G 0 MEDUSAE 2.0 0 0 36.2 0 0 40.9 0 0 16.2 0 0 MYSID LARVAE 0 0 0 0 0 0 3.4 0 0 0 0 0 THE FOLLOWING TA3Lc LISTSTHc FRA3TIUN OFJJTAL STATION ABUNDANCE

ACARTIA 3LAJSI .333 .u273 .0774 .0844 .u533 .0733 .117. .0757 .1353 .0841 .1116 .1250 ACARTIA LON ;IREM .3752 .3683 .0547 .0289 .0422 .0800 .0413 .3344 .0459 .084d .1339 .0714 ACARTIA3P - 0 0 .0023 G 0 .0356 0 G .3206 0 G .0022 CALANUS SF 0 0 .0159 0 0 .0173 0 0 .0115 3 U .0067 OITHONASIMILIS .3182 0 0 .0156 G J .0573 C 0 .0335 0 0 OITHONA 3PINIRCS 0 0 6 .0044 0 J .GL23 0 J 0 0 PSEUDOCALANUS 0 .0137 L3od .6319 .0022 a .0133 .0323 ..069 .0252 .0150 .2022 .0290 COPEPOD NAUPLIUS .0683 U U .0733 0 0 .043E 0 0 .0179 0 0 HARPACTICOIO .0323 U u .0022 0 U .G023 u .0023 u 0 0 GAMMARIOAMPHIPO 0 C 0 .0022 0 0 .0023 0 G u 0 0 ANNELID LARJAE .3023 0 O .0022 0 0 .0046 0 0 .0022 0 0 BARNACLE CYPRIS .342 C u .3667 0 u .0528 0 G .0357 0 0 BARNACLE NAJPLIU .1321 U 0 .0978 0 J .1639 C 0 .1027 0 0 CHAETOvNATHA .0023 0 3 6 u J G 0 0 PODON LEUCKARTI 0 0 .1110 0 u .1260 0 0 .Ub42 0 0 .0558 0 O GRABZUEA 0 6 0 .3111 C 1 .3183 0 C .0022 0 0 HERMIT CRAB LARV 0 0 0 G C u G 0 0 .0045 0 0 PORCELAIN CRAB Z .0045 0 U .0067 C 0 .6069 0 0 .0089 0 0 CRUSTAUEAN EGOS .0410 0 0 .0089 G 0 .6252 0 6 .0067 0 0 OECAPOO LARVAE .OG23 u u G G 0 C 0 0 .3C+ EUPHAUSIID NAUPL 0 0 OOb8 0 0 .0400 0 J .0183 0 0 .0179 0 0 LUPHAUSIIU U4LYT 0 6 J 0 u J .0023 0 0 0 0 GASTROPOD LARVAL G .0706 0 0 .0511 0 0 .0206 0 0 .0179 0 0 MEDUSAE .OU46 0 0 .0222 0 0 .0275 0 0 .0089 0 0 MYSID LARVAE 0 0 U. 6 G J .0023 0 1 3 C 0 SAMPLE AT STATION 3.0 NOT QUANTITATIVE STATIONS ON 03/17/72

DATUM 2.5 3.0 .2N .2C

SURFACE TEMP. 12.130 11.850 12.100 12.100 SURFACE SALINITY 33.5340 33.549u 33.6363 33.6040 BOTTOM TEMP. 11.oUC 8.400 11.900 11.803 BOTTOM SALINITY 33.5676 33.6640 33.6,;36 33.6013 FOREL NO. 6 6 7 7 SECCHI READING 5.0 o.G 3.5 4.', THE FULLOWING TABLE LISTS ABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALS PEP CUOICMETER OF WATER FILT_PED)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS

ACARTIA CLAUSI 282.2 190.5 254.0 1C.G 10.0 8.0 35.1 24.3 91.8 197.6 139.8 351.9 ACARTIA LONuIREM 437.5 412.8 '+09.2 43.3 44.0 38.0 78.3 48.6 145.8 43.4 24.1 192.8 ACARTIA SP - 0 U 35.3 0 0 12.0 0 0 21.6 0 6 9.6 CALANUS SP 0 U 21.2 G 0 4.3 6 G -21.6 0 0 38.6 CENTROPA6ES MCMU 0 0 0 G G U 2.7 6 2.7 0 4.8 4.9 OITHONASIMILIS 77.6 0 0 13.u 0 J 16.2 G 0 67.5 0 0 PSEJOOCALANUS 77.6 35.3 12G.u 30.0 5.0 34.0 13.8 2.7 13.5 J 4.8 33.7 COPEPOJ NAU!3LIUS 112.9 0 0 13.0 C 0 167.4 0 0 115.7 0 0

GAMMARIO AMPHIPO 0 0 0 0 0 0 C. 0 0 4.3 G 0 HYPERIID AMPHIPJ 0 0 J 0 0 0 2.7 0 0 9 0 ANNELID LARVAE 0 0 6 0 3 0 8.1 3 0 9.6 0 0 BARNACLE CYPRIS 42.3 0 0 2.0 u J 10.8 0 0 139.3 C 0 BARNACLE NAUPLIU 134.1 0 0 5.6 0 0 108.0 0 0 149.4 0 0 POOON LEUCKARTI 204.6 0 3 15.0 0 0 56.4 0 0 197.6 0 0 CRAB ZOEA 14.1 0 0 1.6 0 J 6 0 0 33.7 3 G HERMIT CRABLARV 42.3 6 G 1.0 0 0 G G 0 C 0 0 PORCELAIN CRAB Z 0 0 0 1.0 0 0 C G 0 0 0 0 CRUSTACEANEGGS 29b.4 0 0 100.0 0 0 2.7 0 0 19.3 0 0 DECAPOO LARVAE 7.1 0 0 4.0 0 J G 0 0 4.8 0 0 EUPHAUSIIO NAUPL 35.3 0 u 7.0 0 0 37.8 0 0 120.5 0 0 EUPHAUSIIOCALYT 0 0 0 1.0 0 0 0 0 0 0 0 0 GASTROPOD EGGS 0 0 0 G 0 0 u 0 0 43.4 0 0 GASTROPOD LARVAE 42.3 0 0 2.L 0 0 32.4 0 0 57.8 0 0 MEDUSAE 56.4 0 0 3.0 0 0 37.8 0 0 43.4 0 0 THE FOLLOWING TABLt LISTSTHE FwACTIUN OFTOTAL STATION ABUNDANCE

ACARTIA ;:LAJSI .0826 .-» 8 .0144 .0245 .u245 .6196 .0342 .G237 .0895 .0928 .0656 .i 52 ACARTIA L0NCIRE1 .1281 .13i- .1198 .1654 .1078 .69.1 .0763 .0474 .1421 .0204 .0113 .0905 ACARTIA SP - J u .0103 0 u .0294 0 0 .0211 U 0 .6045 CALANUS SP 0 .0062 C u .0093 6 6 .0211 U 6 .0181

CENTROPAGESMCMU 0 C. 0 0 C 0 .0026 0 .0026 0 .0023 .0023 OITHONA SIMILIS .0227 6 J .3319 0 J .0155 0 0 .6317 0 0 PSEUJOCALANUS .0227 . .,,3 .0351 .3735 .6123 .0833 .3105 .0026 .3132 u .0023 .0158 C3PEPOD NAUPLIUS .0331 6 0 .0319 6 J .1632 0 .6543 6 0 GAMMARIDAMPHIPO 0 0 0 0 C 0 6 0 0 .0023 0 0 HYPERIID AMPHIPO J 0 0 U 0 0 .0626 6 0 o 6 AN'JELIO LARVAE 0 0 J U 0 0 .0679 0 u .0045 0 3ARNACLE CYPRIS .3124 u 0 .0649 J .0105 6 0 .ObSc 0 3 BARNACLE NAUPLIU .G393 G 6 .0123 6 G .1053 C .0701 0 P3)UN LEJCKARTI .3599 0 U .0368 0 .3642 0 3 .6923 0 G CRAB ZOEA .0041 L 0 .0025 0 0 0 0 3 .0158 0 6 HERMIT CRAB LARV .0124 0 U .GG25 C 0 0 0 0 i 0 0 PORCLLAIN CRAB Z a 6 U .0025 0 0 u 0 0 0 0 J

U. CRUSTACEAN EGGS .J568 U .2451 u 0 .0626 0 0 .0090 U 0 OECAPOD LARVAE .0021 G .0095 G 0 0 G 6 .0023 0 0 EUPHAUSIIO NAUPL .0103 5 3 .0172 0 G .0368 C C5bo 0 6 EUPHAUSIID CALYT 0 0 0 .0025 0 J 6 0 C G 0 u

GASTROPOD EjGS 0 ,, u 6 L 6 G u 0 .6264 0 0 GASTROPOD LARVA= .0124 0 0 .0049 0 0 .0316 6 3 .0271 0 0 MEDUSAS .Olb5 6 0 .3074 6 0 .0368 0 0 .6204 0 0 STATIONS04 ;:8/17/72

DATUM .2S

SURFACETEMP. 12.2uu SURFACESALINITY 33.7650 BOTTOMTEMP. 11.950 3OTTOMSALINITY 33.5970 FOREL NO. 7 SECCHI R=AGING 4.0 THE FGLLGWING TABLE LISTS ABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALS PER CUBIC MITER OF WATER FILTERED)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALLS IMMS FEMALES MALES IMMS ACARTIA CLAJSI 13.1 2.9 24.7 ACARTIA LONSIREM 26.1 16.9 36.3 ACARTIA SP - 0 0 18.9 CALANUS SP 0 0 16.9 CENTROPAvES MCMU 0 1.5 G OITHONASIMILIS 27.5 G 0 PSEU000ALANUS 14.5 0 1G.2 COPEPOD NAUPLIUS 94.3 0 0 HARPACTICJIO 1.5 0 0 ANNELID LARVAE 10.2 u j BARNACLE CYPRIS 17.4 0 O BARNACLE NAJPLIU 75.4 0 0 PODON LEUCKARTI 52.2 0 0 CRUSTACEAN EGGS 2.9 u 0 EUPHAUSIID JAUPL -37.7 G 0 GASTROPOD EGGS 24.7 0 0 GASTROPODLARVAE 21.8 0 0 MtOUSAE 23.2 0 0 THE FOLLJWIVG TA3LE LISTS THE FkACTION OF TOTAL STuTIUNAt3JNDANCE

ACARTIACLAJSI .1222 .J049 .0420 ACARTIA LCNJIREM .0444 .0321 .0uI7 ACARTIA SF - 0 C .0321 CALANUS SP 0 U .0321 CENTROPAGES MCMU 0 .0025 0 OITHONA SIMILIS .J469 U 0 PSEJDOCALANJS .0247 U .u173 COPEP09 NAUPLIUS .1b05 u u HARPACTICOI7 .0025 J 0 ANNELID LARIAE .0173 0 u 3ARNACLECY2RIS .0296 6 u BARNACLENAJPLIU .1284 u u POOON LEUCKARTI .0689 0 0 LRJSTA4EANLOGS .0049 U u EUPHAUSIIC 4AUPL .0642 0 0 GASTROPOD EGGS .6420 u 0 GASTROPODLARVAL .0370 0 0 MEDUSAE .0395 0 u STAIIUNS ON 03/22/72

DATUM . Y 1. 1.5 2.G

SURFACE TEMP. 14.530 14.630 14.70G 14.550 SURFACE SALINITY 32.9360 33.0490 33.066 32.8990 BOTTOM TEMP. 13.930 12.730 11.650 11.350 30TTOM SALINITY 33.1310 33.2263 33.296u 33.341G FOREL NO. 6 7 0 5 SECLHI READING t.5 6.5 6.J 7.0 THE FOLLOWINGTABLELISTS ABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALS PER CUBIC MITER OF WATER FILTERED)

FEMALES MALLS IMMS FEMALES MALLS IMM3 FEMALES MALES IMMS FEMALES MALES IMMS

AGAr(TIA CLAJSI 35.4 47.9 713.9 517.5 721.3 7622.4 8.6.2 660.5 9391.2 81.5 59.3 484.9 ACARTIA LONGIRE'1 10.4 1i.4 108.4 +2.0 55.4 1398.6 165.1 82.6 1816.3 140.7 140.7 1399.9 ACARTIA SP - 0 L 29.2 u u 279.7 G U 268.3 0 L 66.7 CALANUS SP 0 G 0 0 L 0 0 0 20.6 0 0 0 CENTROPAGES MCMU 0 2.1 6.3 0 3 28.0 0 20.6 32.6 22.2 88.9 414.3 UITHONA SIMILIS J u 0 L C 0 20.6 G 0 7.4 0 0 PSEUDOGALANJS u u u L u C. 0 0 23.6 U 0 7.4 COPEPOD NAUPLIUS 0 0 0 26.C 0 u 0 L 0 u 0 0 ANNELID LARVAE J u u 0 u 0 41.3 0 0 0 0 u BARNACLE CYPRIS 8.3 u 0 42.0 0 0 20.t G C J u 0 BARNACLE NAJPLIU 20.8 L 0 C 3 0 20.6 0 0 0 0 0 PODON LEUCKARTI 12.5 0 0 28.0 0 0 20.6 0 0 29.6 0 0 CRAB ZOEA 0 0 0 14.0 0 3 20.6 0 0 0 0 0 HERMIT CRAB LARV 3 u 0 14.0 u U 0 G G ,; 0 0 PORCELAIN CRAB Z 0 u 0 0 0 J 20.6 0 0 0 0 0

CRUSTACEAN EGGS 4.2 u 0 C. 0 0 0 0 0 U 0 0 FISH EGGS 0 G 0 0 0 0 20.6 0 0 0 0 0 GASTROPOD SGS 2.1 0 0 0 0 0 20.6 0 G 0 0 0 GASTROPOD LARVAE 8.3 0 0 28.0 C u 20.6 0 0 7.4 0 0 MEDUSAE 0 0 u 14.0 0 0 0 0 0 0 0 0 OIKOPLEURA 2.1 0 3 14.u G 0 20.6 0 0 7.4 0 0 THE FOLLOWI41i TA;3Lt LISTSTHL FRACTION OF TOTAL STATIOi4 ABUNDANCE

ACARTIA CLAJSI .u344 .u466 .6984 .0476 .5669 .7014 .6621 .0485 .6994 .0275 .0200 .1650 ACARTIA LONSIREM .0101 .3101 .1053 .0039 .0051 .1287 .0101 .0061 .1333 .047t .0475 .4725 ACARTIA SP - J 0 .0233 0 G .0257 0 C .0197 U 0 .0225 CALANUS SP 0 0 0 G 0 0 C. 0 ,3015 0 0 0 CENTROPAGES MCMU a CU20 .6661 0 u .6026 0 .0015 .0061 .0075 .0300 .1400 OITHONA SIMILIS 0 C 3 3 0 J .0015 G 0 .0025 0 0 PSEUDOCALANJS 0 G G G 0 0 0 .0015 U 6 .UG25 COPEPOD NAUPLIUS J 0 0 .u326 0 u G C 0 G 0 C ANNELID LARVAE J 0 0 0 0 0 .0036 0 0 0 0 G BARNACLE CYPRIS .3031 0 u .0039 0 U .0015 G 0 0 C 0 BARNACLE NAUPLIU u .0202 0 0 G C .0015 G 0 0 POOON LEUCKARTI .U121 0 u .062E G 0 .0015 0 3 .0103 U 0 CRAB ZOEA 0 0 0 .0013 0 0 .0015 0 0 0 0 0 HERMIT CRAB LARV 0 6 0 .0013 3 J C. U 0 0 0 0 PORCELAIN CRAB Z 0 0 0 G 0 0 .0015 0 0 0 0 0 CRUSTACEAN OGGS .3G4U U J 6 0 3 0 0 0 0 0 0 FISH EGGS u 0 0 0 G 0 .0&15 & G u 0 0 GASTROPOD ESGS .0020 U 0 0 0 0 .0015 0 G 0 0 0 GASTROPOD LARVAE 0 .0081 u .0026 G 0 .0015 0 0 .0025 0 0 MEOUSAr- U u .0u13 u 0 0 0 0 0 0 0 OIKOPLEURA .3020 G 0 .0613 0 .Uu15 0 u .0025 0 0 STATIONS ON 03/22/72

DATUM 2.5 3.0 4.0 5.0

SURFACE TEMP. 14.b50 15.200 15.000 15.150 SURFACE SALINITY 32.7440 32.5010 32.4J20 32.3970 BOTTOM TEMP. 9.450 8.450 8.300 8.100 BOTTOM SALINITY 33.5330 33.6120 33.6640 33.7080 FORLL NO. 5 5 5 5 SECCHI READING 10.0 10.5 7.5 7.5 THE FOLLOWING TABLE LISTS ABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALS PER CUBIC MLTER OF WATER FILT_RED)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS

ACARTIA CLAUSI 3b.5 -2 1.1 276.2 J 0 235.7 1.7 3.4 42.2 4.4 0 41.2 ACARTIALONGIREM 321.3 408.91285.2 714.6 623.41566.0 222.9 84.4 182.3 98.7 44.2 190.0 ACARTIA SP - 0 0 21.9 0 0 76.0 0 0 40.5 0 0 35.4 CALANUS SP U 7.3 65.7 0 0 15.2 0 0 3.4 u 0 1.5 CENTROPAGES ICMU 73.0 146.0 613.4 38.0 53.2 68.4 3.4 3.4 6.8 2.1 2.9 2.9 EUCALANUS SP 0 U 7.3 0 0 0 u 0 0 1 0 0 OITHONA SIMILIS 21.9 U 0 15.2 0 J 6 0 0 1.5 1.5 0 PSEUDOCALANUS 0 0 0 0 0 7.6 1.7 0 0 4.4 0 7.4 COPEPOD NAU?LIUS 21.9 0 0 22.8 6 0 28.7 0 0 42.7 0 0 UNIDENT CALANOID 0 0 7.3 0 0 0 U 0 0 7 0 0 HARPACTICOID 0 0 0 0 0 0 3.4 0 0 J 0 0 HYPERIID AMPHIPO 0 0 0 0 0 0 0 0 0 1. 5 0 0 ANNELID LARVAE 7.3 0. 0 7.6 0 0 C 0 0 J 0 0 BARNACLE CYPRIS 0 0 J 7.6 0 0 C 0 0 0 0 0 BARNACLE NAJPLIU 43.8 u 0 76.0 0 J 55.7 0 0 14.7 0 0 P000N LEUCKARTI 0 6 0 0 U J 0 0 0 2. 3 0 0 CRAB ZOEA 0 0 0 0 0 0 1.7 0 0 0 0 0 PORCELAIN CRAB Z 0 0 0 0 0 0 1.7 0 0 0 0 0 CRUSTACEAN EGGS 7.3 0 0 68.4 0 0 5.1 0 0 30.9 0 0 ECHINODERM LARVA 365.1 0 0 38.0 0 0 3.4 0 0 J 0 0 EUPHAUSIID NAUPL 0 U 0 0 0 0 25.3 0 0 25.0 0 0 EUPHAUSIID CALYT 0 0 0 7.6 0 0 13.5 0 0 28.0 0 0 GASTROPOD LARVAE 43.8 0 0 30.4 0 0 10.1 0 0 14.7 0 0 MEOUSAE 7.3 0 0 0 0 0 1.7 0 0 0 0 0 OIKOPLEURA 36.5 0 0 91.2 0 0 42.2 0 0 39.8 0 0 THE FOLLOWIJG TABLE LISTSTHE FRACTION OF TOTAL STATION ABUNDANCE

ACARTIA CLAUSI .0094 .0132 .0698 0 0 .0626 .0021 .0042 .0524 .0069 U .0042 ACARTIA LONGIREM .0630 .1057 .3321 .1899 .1657 .4162 .2767 .1048 .2264 .1537 .0608 .2959 ACARTIA SF - 0 0 .0057 0 0 .0202 G 0 .0503 u 0 .0550 CALANUS, SP 0 .0u19 .0170 C 0 .0040 0 0 .0042 0 0 .0023 CZNTROPAGES MCMU .0189 .0377 .1585 .0101 .0141 .0192 .0042 .0042 .0084 .0046 .0046 .0046 EUCALANUS SP 0 0 .0019 0 0 0 G 0 0 0 0 OITHONA SIMILIS .0057 0 0 .0040 0 0 G 0 0 .0023 .0023 0 PSEUDOCALANUS 0 0 G L C .0020 .0021 0 0 .0069 -u .0115 COPEPOD NAJPLIUS .0057 0 0 .0061 0 3 .0356 0 0 .0665 0 0 JNIDENT CALANUIJ 0 u .0019 0 0 J 0 0 0 0 0 0 HARPACTICOID 0 0 u 0 0 0 .0042 0 0 0 0 0 HYPERIIDAMPHIPO 0 0 0 0 0 0 0 0 0 .0023 0 0 ANNELID LARVAE .0019 0 0 .0020 0 0 0 0 0 J 0 0 BARNACLE CYPRIS 0 0 0 .0620 0 0 C 0 0 J 0 0 BARNACLE NAJPLIU .0113 0 0 .0202 U J .0692 C 0 .0223 0 0 PUDON LEUCKARTI 0 0 0 0 0 0 0 0 G .U046 0 0 CRAB ZOEA 0 0 U 0 0 0 .OG21 0 0 G 0 0 PORCELAIN CRAG Z 0 0 0 G 0 0 .0021 0 0 u 0 0 CRUSTACEAN EGGS .0019 0 u .0182 0 0 .0063 C 0 .6482 0 0 ECHINODERM LARVA .0943 0 0 .0101 J 0 .0u42 0 0 J 0 0 EUPHAUSIID NAUPL 0 0 J 0 0 0 .0314 C G .039J 0 0 EUPHAUSIIDCALYT 0 0 0 .0020 0 J .0168 0 0 .6436 0 0 GASTROPOD LARVAE .0113 0 J .0081 0 0 .0126 C 0 .0229 0 0 MEDUSAE .0019 G 0 0 0 0 .0021 0 0 0 0 0 OIKOPLcURA .0094 0 0 .0242 0 0 .0524 0 0 .0619 0 0 STATIONSON 03/22/72

DATUM .2N .2C .2S SURFACETEMP. 14.200 15.506 15.40G SURFACESALINITY 32.983u 33.0170 0 BOTTOMTEMP. 1+.350 14.900 14.300 BOTTOMSALI41TY 33.1250 33.0860 33.1020 FOREL NO. 7 9 9 SEGCHI READING 5 5.0 5.0 THE FOLLOWING TABLE LISTS ABSULUTE ABUNJANCES (NUMBER OF INDIVIDUALS PER CUBIC METER OF WATER FILTERED)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS

ACARTIu CLAUSI 37.7 70.6 647.1 16.8 2.3 17.6 121.1 6.1 72.2 ACARTIA LOiy,;IREM 13.7 13.7 47.9 9.9 0 3.8 45.3 13.5 47.7 ACARTIASP - 0 G 30.8 0 0 0 0 0 2.4 CALANUSSP 0 G u 0 0 J 0 0 1.2 CENTRUPASES MCMU 0 0 C 0 0 0 0 1.2 13.5 EURYTEMORA u 0 .8 0 3 6 0 0 UITHUNA SIMILIS 6.3 0 U 1.5 0 1.5 8.6 0 0 PSEUOOCALANUS 0 0 0 0 0 0 0 0 1.2 COPEPOD AAUPLIUS 0 0 0 .8 0 0 2.4 0 0 HARPACTICOID 3.4 U 0 .8 0 .8 U 0 0 HYPERIID AMPHIPO 0 0 0 0 u C 1.2 0 C ANNELID LARVAE 10.3 0 0 4.6 0 3 2.4 0 0 BARNACLE CYPRIS 513.6 U 0 167.3 0 0 156.5 0 0 BARNACLE NAJPLIU 34.2 0 0 22.9 C 3 8.6 0 0 PODON LEUCKARTI 3.4 0 0 1.5 0 3 1.2 0 G CRUSTACEAN EGGS 0 0 0 6.1 C 0 2.4 0 0

ECHINODERM LARVA 27.4 0 it 3.1 0 0 26.9 0 0 EUPHAUSIID CALYT 0 0 3 0 0 0 1.2 0 0 FISH EGGS 0 0 0 7.6 0 0 2.4 0 0 FORAMINIFERA 0 0 u .8 0 0 0 0 0 GASTROPOD EGGS 0 0 0 0 0 0 1.2 0 0 GASTROPOD LARVAE 10.3 0 0 13.0 0 0 12.2 0 0 MEDUSAE 10.3 0 0 11.5 0 0 6.1 0 0 OIKOPLEURA 13.7 0 0 2.3 0 0 8.6 0 0 THE FOLLOWIYG TABLE LISTS THE FRACTIUN OFTOTAL STATION ABUNDANCE

ACARTIA CLA'JSI .0248 .0519 .4266 .0545 .0074 .0569 .21u2 .0106 .1253 ACARTIA LON;IRE1 .0090 .0090 .0316 .0322 0 .0124 .0796 .0234 .3628 ACARTIA SP - 0 0 .0203 0 0 0 G 0 .0042 CALANUS SP J 0 0 G U U G C. .0021 CENTROPAGES ACMU 0 U U 0 0 U C. .0021 .0234 EURYTEMORA U 0 0 .3625 0 0 G 0 0 OITHONA SIMILIS .0045 u 0 .0050 G .0053 .0145 G P 0 SEUDOCALANJS 0 0 0 0 0 0 C 0 .0021 COPEPOD 4AUPLIUS U 0 0 .0025 0 J .0042 G 0 HARPACTICOID .0023 U u .0025 0 .0025 U C 0 HYPERIID AMPHIPO 0 G 0 0 0 0 .0021 0 0 ANNELID LARVAE .U068 U 0 .0149 0 0 .0042 G 0 BARNACLE CYPRIS .3386 U 0 .5421 U 0 .2718 0 0 BARNACLE NAJPLIU .0226 0 0 .0743 0 U .0149 0 0 P03ON LEUCKARTI .0023 0 0 .0L50 0 u .0021 0 0 CRUSTACEANEGGS 0 0 C .0198 U 0 .0042 0 0 ECHINODERMLARVA .0181 0 G .0699 0 0 .0467 0 0 EUPHAUSIIDCALYT 0 0 0 C 0 0 .0021 C 0 FISH E.GS 0 0 u .0248 0 J .0042 0 0 FORAMINIFERA 0 0 U .0025 0 0 G 0 U GASTROPODE3GS 0 0 0 0 0 0 .0021 0 0 GASTROPODLARVAL .0068 U 0 .3421 0 U .G212 0 0 MEOUSAE .3U68 0 0 .0371 0 0 .Ui06 0 0 OIKOPLEURA .0393 C 0 .0074 0 0 .0149 u 0 STATIONS ON 03/08/72

DA TUM .4 .2N .2C .2S

SURFACE TEMP. 12.400 U 0 0 SURFACE SALINITY 33.2650 0 33.2750 0 BOTTOM TEMP. 11.901' U U 0 BOTTOM SALINITY 33.2680 0 0 0 FORLL NO. 0 C 0 0 SECCHI READING 0 0 0 0 THE FOLLOWING TABLE LISTS ABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALS PER CUBICMETER OFWATER FILTcREO)

FEMALES MALLS IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES iMMS

ACARTIA CLAJSI 10517.3 3134.1 8.286.7 5645.7 4583.012221.3 4606.0 1526.6 4000.6 991.1 991.1 2265.3 ACARTIA &.ONJ-!REM 159.4 159.4 478.1 0 0 265.7 C 0 0 0 0 70.8 CALANUS SP 0 0 0 0 0 66.4 C 6 0 0 0 0 0 CENTROPAGES MCMU 0 0 53.1 13 0 0 C 0 0 U 0 OITHONA SIMI-IS 53.1 0 G U 0 0 131.6 0 0 212.4 0 0 PSEUJOCALANUS 0 0 425.0 U 0 265.7 0 26.3 131.6 0 70.8 424.7 HARP4CTICOIO 0 0 0 0 0 0 52.6 0 0 0 0 0 ANNELID_ARVAE 53.1 U u u 0 0 52.6 0 0 70.8 U 1 AQUATICMITE 0 U 0 0 0 0 G 0 0 70.8 0 0 BARNACLECYoRIS 1912.3 0 0 1926.2 0 0 2737.3 0 0 2690.0 0 0 0 0 3ARNACLENAJPLIU 159.4 0 0 132.8 0 13 131.6 0 0 283.2 P000N LEUCKARTI 8764.8 0 0 2125.4 0 0 684.3 0 0 15078.3 0 DECAPOD LARVAE 0 0 0 C 0 G 0 0 0 70.8 0 0 FORAMINIFERA 0 0 0 0 0 0 0 0 0 70.8 0 0 GASTROPOD E 55 0 0 0 66.4 0 0 26.3 0 0 0 u 0 GASTROPOD LARVAE 212.5 0 0 199.3 0 0 684.3 0 0 495.5 0 0 ISOPODA 0 0 0 0 0 0 26.3 0 0 0 0 0 OIKOPLEURA 106.2 0 0 66.4 0 0 79.0 0 0 141.6 0 0 THE FOLLOWING TABLE LISTS THE FRACTION OFIOTAL STATION ABUNDANCU

ACARTIA CLAUSI .2960 .0632 .2332 .2024 .1643 .4381 .2951 .0978 .2563 .0391 .0391 .0894 ACARTIA LON,IREM .0045 .OU45 .0135 0 0 .0695 G 0 C _i 0 .3028 CALANUS SP 0 U 0 0 0 .0024 G 0 0 0 0 0 CENTROPAGES MCMU 0 0 .uG15 0 C J U 0 0 3 0 0 OITHONASIMILIS .0015 U 0 0 U 0 .0084 0 0 .OG8 0 0 PSEUDOCALAN!J3 0 U .0120 0 u .0095 U .0017 .0084 3 .0028 .0163 HARPACTICOID u a 0 0 0 0 .0634 6 0 3 0 0 ANNELID LARVAE .6015 0 0 0 0 J .0034 0 0 .0028 0 0 AQUATICMITE U u 0 0 0 J 0 0 6 .6023 0 0 BARNACLE CYPRIS .0536 0 0 .u690 3 0 .1154 0 0 .1061 0 0 BARNACLE NAUPLIU .0045 0 0 .0048 C 0 .0034 0 6 .0112 0 0 PODON LEUCKARTI .2466 U 0 .0762 0 0 .0438 0 0 .5950 0 0 DECAPOD LARVAE 0 0 U G u J C 0 C .0025 G 0 FORAMINIFERA 0 0 0 0 0 J U 0 0 .6023 U U GASTROPOD LSUS U 6 0 .0024 0 0 .0017 0 0 G 0 0 GASTROPOD LARVAE .0060 0 U .0671 0 0 .0438 0 0 .0146 0 0 ISOPODA 0 0 0 U 0 J .0017 0 0 0 0 0 OIKOPLEURA .0030 U 0 .0024 6 3 .0051 0 u .6056 0 0 STATIONS ON 01/12/72

DATUM 1.: 1.5 2.0

SURFACE TEMP. 12.450 12.3u 12.600 12.900 SURFACE SALINITY 33.1920 33.1480 33.0600 32.9130 BOTTOM TEMP. 11.000 10.100 16.100 11.200 BOTTOM SALINITY 33.2750 33.4420 33.4870 33.5776 FOREL NO. 9 7 6 6 SECCMI READING 6.0 6.6 3.5 5.5 THE. FOLLUWIN TABLE LISTSABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALS PEPCUBICMCTLR OFWATER FILTERED)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS ACARTIA CLAUSI 402.3 125.5 258.4 5183.0 5572.7 6j40.3 5016.8 4895.6 3756.4 7321.D 6314.6 8135.4 ACARTIA LON3IREM 3.7 11.1 3.7 194.9 39.0 0 30.8 123.2 30.8 77.5 155.0 38.7 ACARTIA SP - 0 0 3. 7 0 0 0 0 0 0 0 0 0 CALANUS SP a 0 0 0 0 116.3 0 0 92.4 u 0 0 CENTROPAGES MCMU u 0 7.4 0 0 77.9 G 0 30.8 0 39.7 33.7 OITHONASIMILIS 11.1 3.7 u 428.7 0 3 369.5 0 0 232.4 0 0 PS EUDO CAL ANUS 7.4 0 33.2 77.9 15.9 506.0 184.7 246.3 1539.5 193.7 426.1 1317.2 COPEPOD AAUPL1US 11.1 G 0 39.9 G J 61.6 0 0 155.1 G 0 GAMMARID AMPHIPO J 0 0 0 u 6 36.8 0 0 0 0 0 HYPERIIOAMPMIPO 0 G 0 0 0 0 30.8 0 0 u 0 0 ANNELID LARVAE 0 0 0 77.9 0 0 61.6 0 0 77.5 0 0 BARNACLE CYPRIS 77.5 U 0 311.8 0 J 492.6 0 0 697.3 0 0 BARNACLENAUPLIU 0 0 U 116.9 0 892.9 0 0 155.0 0 0 CMAETOGNATHA 0 0 0 0 0 J 61.6 0 0 0 0 0 POJON LEJCKARTI 937.9 0 U 1519.8 0 3 1346.9 0 3 3331.6 u 0 CRAB ZOEA a a 3 0 0 0 30.8 0 0 38.7 0 0

HERMIT CRAB LARV 0 0 0 0 C. 0 0 G 0 38.7 0 0 PORCELAIN CRAB Z 3 0 0 77.9 0 a G 0 0 38.7 0 0 CRUSTACEAN EGGS 0 0 0 0 G a 0 0 0 38.7 0 0 DECAPOD LARVAE 0 u 0 G 0 u 30.6 G 0 77.5 0 0 GASTROPOD LARVAE 3.7 0 0 389.7 G a 492.6 0 0 309.9 0 0 OIKOPLEURA 0 G 0 0 0 184.7 0 0 77.5 0 0 THE FOLLOWING TABLE LISTSTHE FRACTIUN OFTOTAL STATION ABUNDANCE

ACARTIACLAUSI .1993 .u622 .1233 .2213 .2379 .2579 .2264 .2208 .1694 .2204 .1904 .2453 ACARTIALON- .0013 JIREM .uu:55 .0018 .0083 .0017 J .Ju14 ACARTI .0056 .0014 .0023 .0047 .6012 A SP - 0 0 .0018 0 0 0 0 0 0 0 0 0 CA LANUS SP 0 0 0 0 .0056 U 0 .0042 3 0 0 CENTRUPAGES MCMU 0 0 .0037 0 C .0033 0 OITHONA SIMI 0 .0014 u .J012 .0012 LIS .0655 .Ju13 0 .0183 u J .0167 0 G .0073 0 0 PS UOOCALANJS .0037 U .0165 .0033 .0067 .6216 .0083 .0111 .0694 .005c .0129 .3397 COPEPOD NAUPLIUS .0055 0 0 .0017 0 G .0628 G 0 .0047 GAM ARID AMPHIFJ 0 0 0 0 0 0 C 0 uul4 0 U u 0 0 HYPERIIO AMPHIPO 0 u u 0 U J ANNELID .0014 0 0 u 0 0 LARVAE J 0 U .0033 C u .0028 0 9ARNACLECYPRIS 0 .UG23 G 0 .0384 C 0 .0133 0 0 .0222 0 0 .0213 0 0 BARNACLENAJPLI'J 0 U u .0050 C 3 .0403 0 0 CHAETOGNATHA .0047 C G 0 G u 0 0 .3328 P000N G 0 J 0 0 LEUCKARTI .4153 0 u .0649 0 0 .0472 0 0 .10G5 CRABZOEA 0 0 0 0 3 0 0 ) .3014 0 0 .0012 0 0 HERMIT CRABLARV 0 u 0 0 0 0 0 0 0 .0012 U 0 PORCELAINCRAGZ 0 0 J .0033 0 0 0 CRUSTACEANEGGS 0 0 .0012 0 0 0 0 3 0 0 0 u 0 0 .GG12 0 3 OCCAPODLARVAE 0 U u 0 0 0 .3014 GASTROPOJLARVAE 0 0 .6023 0 0 .0013 u 3 .3116 0 0 .3222 OIKOPLEURA 0 0 .0093 0 0 0 u u G 0 3 .J683 0 0 .0023 0 3 STATIONSON 10/07/72

DATUM .4 1.u 1.5 2.0

SURFACETEMP. 9.400 9.70u 9.60u 9.700 SURFACE SALINITY 33.5630 33.5040 33.3980 33.3890 BOTTOMTEMP. 9.100 8.60C 8.900 8.400 BOTTOM SALINITY 33.5170 33.5b40 33.5630 33.6320 FORELNO. 8 b 5 4 SECCHI READING 4.5 5.0 10.0 11.0 THE FOLLOWING TABLE LISTS ABSOLUTE AdUNUANCZS (NUMBER OF INDIVIDUALS PER CUBIC MLTER OF WATER FILTERED)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES imms ACARTIA CLAUSI 5028.317+5.5 14005.7 3165.04807.812321.6 795.4 272.9 1017.2 1208.7 811.81912.2 ACARTIA LONGIREM 0 0 0 0 0 0 74.4 0 24.8 18.6 54.1 0 CALANUS SP 0 0 41.6 0 U 24.2 0 C 49.6 0 0 90.2 CENTROPAGES MCMU 0 0 0 0 0 J 49.6 0 74.4 0 54.1 16.0 OITHONA SIMILIS 166.2 u 0 724.8 0 0 967.b 24.8 49.6 1172.6 18.0 18.0 OITHONA SPI:NIROS 0 C 0 24.2 0 0 74.4 0 0 0 0 0 PSE0000ALANJS 748.1 249.4 1537.7 483.2 265.81353.0 322.5 99.21116.4 505.1 180.41569.5 TORTANUS OI3CAUD 0 u U 0 0 24.2 0 0 0 0 0 0 COPEPOD NAUPLIUS 0 0 0 0 0 u C 0 0 13.0 0 0 ANNELID LARJAE 41.6 0 0 24.2 0 0 297.7 0 0 1 0 0 BARNACLE CYPRIS 0 u 0 604.0 0 0 248.1 0 0 36.1 0 0 BARNACLE NAUPLIU 0 U 0 24.2 u 0 272.9 0 0 36.1 0 0 CHAETOGNATHA 0 0 0 0 0 0 24.8 0 0 0 0 0 CLAOOCERA,EVADNE 0 u 0 0 U J 0 0 0 18.1 0 0 POOON LEUCKARTI 83.1 0 0 338.2 U 0 393.2 0 0 378.3 0 0 CRUSTACEAN EGGS 0 0 0 u 0 0 223.3 0 0 0 0 0 GASTROPODEGGS 0 0 0 24.2 0 C 0 0 0 0 U 0 GASTROPOD LARVAE 0 0 it U 0 0 545.8 0 0 U 0 0 ISOPODA 0 0 0 24.2 0 3 0 0 0 0 0 0 OIKOPLEURA 0 0 1 48.3 0 3 24.8 0 0 36.1 0 0 THE FOLLOWING TABLE LISTS THL FRACTION OF TOTAL STATION ABUNDANCE

ACARTIA CLAUSI .2115 .3734 .5692 .1222 .1856 .4757 .0603 .0276 .1030 .1473 .0993 .2340 ACARTIA LON,IRE1 0 0 u 0 0 0 .3075 0 .0025 .0022 .0066 0 CALANUS SP 0 0 .0017 0 0 .0003 0 0 .0050 0 .0110 CENTROPAGES MCMU 0 0 U 0 0 3 .0350 0 .0075 0 .0066 .0022 OITHONA SIMILIS .0070 C u .0280 0 3 .093G .0025 .0050 .1435 .6022 .0022 6 OITHONA SPIIIROS 0 u u .0009 0 .0075 0 J 0 0 PSEUDOCALANJS .0315 u1Jti .0647 .0187 .0103 .6522 .0327 .0101 .1131 .0619 .6221 .1921 TORTANUS DISCAUO 0 0 0 0 0 .0009 C 0 0 0 COPEPOD 4AUPLIUS 0 0 0 0 C 0 0 J 0 0 0 .0022 0 ANNELID LARVAE 0 .u017 0 u .0009 0 G .u302 0 0 C 0 0 BARNACLE CYPRIS 0 0 0 .0233 G J .0251 G 0 .0644 0 0 BARNACLE NAJPLIU 0 0 0 .0009 G J .0276 0 0 GGv+ 0 0 CHAETOGNATHA 0 u C 0 U 0 .0025 CLADOCERA,EVADNE 0 0 3 0 C 0 0 0 G L 3 C 0 u .6022 POOON LCUCKARTI 6 0 .0035 u u .0131 0 0 .0935 0 0 .C46 0 0 CRUSTACEAN EGGS 0 0 0 0 0 0 .0226 0 0 GASTROPOD EGGS 0 0 0 0 0 0 .0009 0 l G 0 C 0 G GASTROPOD LARVAE 0 0 0 0 0 0 J .0553 0 G 0 0 0 ISOPODA J 0 0 .0009 G 0 0 0 G G 0 OIKUPLEURA 0 0 0 .JG19 0 5 .G025 0 0 .0044 u 0 STATIONSON 10/u7/72

DATUM 2.5 3.0 4.0 5.0 SURFACETLMP. 9.750 9.950 9.360 9. 350 SURFACESALINITY 33.3890 33.3750 33.3490 33.3630 BOTTOMTEMP. 8.300 9.050 8.200 8.200 BOTTOMSALINITY 33.6420 33.6540 33.6900 33.E956 FORLL NO. 5 5 6 7 SECCHI READING 12.0 12.0 13.3 10.0 THE FOLLOWING TABLE LISTS ABSOLUTE ABUNDANCES (NUMBErtOF INDIVIDUALS PER CUBIC METER OF WATER FILTCRLD)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS ACARTIA CLAJSI 639.4 374.8 1499.4 1381.2 538.4 3815.3 3267.1 2355.4 5546.5 1638.31200.12400.3 ACARTIi LONJ-IREM 0 22.0 22.0 46.8 117.1 46.3 152.0 76.0 114.0 57.2 57.2 114.3 ACARTIA SP - 0 0 154.3 0 0 0 6 0 0 0 0 0 CALANUS SP 0 0 132.3 0 0 46.3 0 C 38.0 0 0 19.0 CENTROPAGES ICMU 0 44.1 132.3 23.4 117.1 93.6 152.0 76.0 190.0 O 19.0 133.3 OITHONASIMILIS 1455.3 0 110.3 1264.1 0 70.2 1557.E 0 0 209.5 19.0 19.0 PSEUDOCALANJS 859.9 22.01608.1 1030.0 70.2 1802.6 759.8 190.0 2773.3 133.3 38.1 514.3 COPEPOD NAUPLIUS 0 0 0 491.6 0 0 227.9 C 0 0 0 0 ANNELID LARVAE 88.2 0 0 23.4 0 0 0 0 0 133.3 0 0 BARNACLE CYPRIS 0 0 0 23.4 0 0 38.0 0 0 57.2 0 0 BARNACLENAUPLIU 44.1 0 0 0 u 0 76.0 0 0 209.5 0 0 CHAETOGNATHA 44.1 0 0 140.5 0 0 0 0 0 19.0 0 0 CLADOCERA, EVADNE 22.0 0 0 70.2 0 0 0 0 0 19.0 0 0 P000N LEUCKARTI 154.3 0 0 515.0 0 d 607.8 0 0 495.3 0 0 HERMITCRAB LARV 22.0 0 0 0 0 0 0 0 0 0 0 0 CRUSTACEAN EGGS 132.3 u 0 210.7 0 6 0 0 0 0 u 0 ECHINODERM LARVA 0 0 0 23.4 0 0 0 0 0 0 0 0 GASTROPOD LARVAE 44.1 0 0 46.8 0 0 38.6 0 0 266.7 0 0 OIKOPLEURA 44.1 0 0 280.9 0 0 379.9 0 C 38.1 0 0 THE FOLLOWI ' G TABLE LISTSTHt FRACTION OFTJTAL STHTiUN ABUNDANCE

ACARTIA CLAJSI .0759 .6445 .1760 .1099 .0428 .3035 .1717 .1238 .2914 .1737 .1273 .2545 ACARTIA LON;IREM 0 .0026 .002b .0037 .0093 .0037 .0060 .uG40 .0060 A .0061 .0061 .0121 CARTIA SP - 0 0 .0183 C 0 0 0 0 0 0 0 0 CALANUS SP 0 0 .0157 C 0 .6037 0 0 .0020 0 0 .0020 CENTROPAGES ICMU J uuti2 .0157 .0015 .0093 .0074 .0080 .0040 .0100 0 .0020 .0141 UITHUNA SIMILIS .1728 0 .0131 .1006 0 .0056 .0016 0 C .0222 PSSE000CALANJS .6020 .0020 .1021 uu26 .2141 .u819 . 0056 .143'. .0399 .0106 .1457 .0141 .0040 .0545 COPEPODOPPO NAUPLIUS 0 0 0 .0391 C 0 .0120 G 0 0 0 0 ANNELID LARVAE .0105 0 0 .0019 0 0 6 D 0 .0141 0 0 BARNACLE CYPRIS u 0 0 .0019 0 J .002u 0 0 .0061 0 0 BARNACLE NAJPLIU .0052 0 0 0 6 0 .6040 CHAETOGNATHA G 0 .0222 0 0 .0052 0 0 .0112 0 0 G G 0 .0020 G 0 CLADOCERA,tVADNt .0026 0 0 .0056 0 0 C 0 0 .0020 0 0 POOON LEUCKARTI .0183 0 J .0410 0 J .d15 0 0 .0525 0 0 HERMIT CRAB LARV .0026 0 0 G 0 0 C G 0 0 0 0 CKUSTACEAN EGGS .0157 0 0 .01b8 0 0 0 0 0 0 0 0 ECHINODERM ARVA J u 0 .0015 0 0 C 0 0 0 0 GA 0 STROPOD LARVAE .0652 0 0 .6037 0 0 .0020 0 0 .0283 0 0 OIKOPLLURA .0052 0 u .0223 G 6 .020C C 0 .0046 0 a STATIONSON 10/07/72

OAT UM .3N .2S

SURFACETEMP. 11.000 9.700 SURFACESALINITY 33.4710 33.4990 BOTTOMTEMP. 10.100 9.550 BOTTOMSALINITY 33.4970 33.5050 FOREL NO. 7 9 SECCHI READING 5.u 3.u

THE FOLLOWING TABLE LISTSABSOLUTE ABUNDANCES (NUMBER OF INDIVIDUALSPER CUBIC METER OF WATER FILTtRLD)

FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS FEMALES MALES IMMS

ACARTIA CLAJSI 210.9 122.7 379.7 433.7 205.'. 456.5 ACARTIA -ONJIREM 7.7 3.8 3.8 3.8 7.6 79.9 CALANUS SP 0 0 15.3 0 0 7.6 CENTROPAoESMCMU 0 3.8 7.7 0 3.8 J EUCALANUS SP 0 0 3.8 0 0 0 OITHONA SIMILiS 184.1 3.8 0 106.5 3.8 0 OITHONA SPI4IROS 7.7 U 3.8 u 0 PSEUDOCALANUS 84.4 23.0 391.2 7.6 300.5 0 COPEPOC NAUPLIUS 15.3 0 u 0 0 U HARPACTICOID 0 0 0 3.8 0 G GAMMARID AMPHIPO u 0 0 3.8 0 U ANNELID LARVAE 11.5 0 0 7.b 0 0 BARNACLECYPRIS 26.8 0 0 64.7 G 0 BARNACLENAUPLIU 3.8 0 0 0 0 0 P000N LEJCKARTI 23.0 0 0 79.9 0 0 CRABZOEA 0 0 u 3.8 0 0 CUMACEAN 3.8 0 0 0 0 G EUPHAUSIIOCALYT 0 0 0 3.8 0 0 FORAMINIFERA u 0 G 7.6 0 3 GASTROFUO E GS 0 0 0 3.8 0 0 GASTROPODLARVAE 3.8 0 0 3.8 0 0 ISOPODA 3.8 0 0 0 0 0 MYSID LARVAE 0 0 U 3.8 0 0 OIKOPLEURA 3.8 0 0 0 0 0 TH: FOLLJWI4u TABLE LISTS[HL FRACTION OFTOTAL STATIONABUNOANCL

ACARTIA CLAUSI .1338 .0779 .2409 .2222 .1053 .2333 ACARTIALON31REM .0049 .0024 .0024 .0019 .0039 .6409 CALANUS SP 0 u .6097 0 0 .GG39 CENTROPAGESMCMU 0 .0024 .0049 0 .0619 0 EUCALANUS SP 0 0 .uu24 G U J UITHJNw SIMILIS .1168 .uu24 u .6546 .0619 0 UITHONA SPINIROS .0049 0 u .6019 G u PSEUDOCALANJS .0535 .0140 .2462 .0039 .1540 0 COPEPOD NAUPLIUS .0097 0 u G 0 0 HARPACTICOID 0 u 0 .0019 G 3 GAIMARID AMPHIPO 0 0 19 0 !3 ANNELID LARVAE .u073 U u .0039 0 0 9ARNACLE CYPRIS .0170 u .0331 0 3 BARNACLE NA'JPLIU .UG24 G G 0 0 3 PO0UN LEJCKARTI .0145 0 .0409 u J CRAB ZOEA 0 0 0 .0019 0 0

CUTACLAN .0024 0 u u 0 ]

EUPHAUSIID CALYT 6 0 0 .OG19 0 ] FORAMINIFERA 3 u u .0639 0 0 GASTRUrD3 E"GS 0 0 G .0019 0 0

GASTrt;OP00 LARVAL .uu24 u u .OG19 G l

IGOP07A .0024 u 0 U J

MYSID LARVA_ 0 3 .0019 0 ] OIKO'L=URA .0024 u v 0 0 3 APPENDIX III

Appendix III contains maps showing theareas from which each set of drift bottles were returned. There are 2 maps for each set of bottle drops: the first shows the returns from the immediate surveyarea (Moolack Beach). The arrows on these local maps are the specific release points of bottles found outside of Moolack Beach and indicate their general direction of travel. The second map shows the area of returns made outside thesur- vey area. 10 June 1972 24 Kelp ------j 13 .10 7 ' Jmon OtterRock / 7 18 II - *, X20 15 83 I *. 1 /10 S 4i 26 23 17 i 13 I g 7

5 * 13 Kelp 17 it 9 83 53: 8 fILOtter Rock 21 18 (//) 15 9 .. S II I" 5` 19 1 's pen ce' Kel 16 p 13 54 ceun Purl It 25 -C4 II 8 4, I 3s L) ' 14 19 'Beverly Beach /

24 9 19 14

20 16 22

18 22

14

23

16

24

13 23

No nlocal returnson this date 10 June 1972 26 June 1972

24

1.20 18

26 23 17

17

21

S 19

16 25

19

24 19

20 16 22

18 22

21

23 19

22 16

24

18

13 23 26 June 1972 6 July 1972 6 July 1972 19 July 1972 24

26

21

25

24

22

23

24

No local returnson this date. 19 July 1972 27 July 1972

18

26 23

21

19

25

19

24 19

20 22

22 18

23 19

22 16

24

18

23 9 August 1972

18

26 23

21 18

19

25

19

19

20

22

23

16

24

23 9 August 1972 9 August 1972

Returns of 16 August 1972 9 August 1972 Returns of 17 August 1972 9 August 1972 Returnsof 18 August 1972 9 August 1972 Returnsof 19 August 1972 9 August 1972 Returns of 20, 21, 22 August 1972 APPENDIX IV

Appendix IV is a listing of the droguedata reduction process. Each set of data is presented in 2 parts: the first is informationnecessary for plotting the data points (shownin Figure:iV-i); the second contains additional plotting information, thevariations in speed from point to point ("Smoothed Linear Speed"), andthe cumulative average speed ("Average Speed" in cm/secor nautical miles/hr). -Frl UNHUN HHHUN SIMS-1-H :.;;:::-:; ::::.:::.I RUNUH: NuNUMMUNN HIHIIIN HISHUN HNIZINSISH Russ :....:::::::::::::::: :::::::::: Nuunaguiung ;:.-;-.-.-.:;-.-.-.-.-...... -.....ss::I wn Iniiannun I ...... illil....1inn--.-.-.-.--.--.- ...... I ...... SIR .... unur ... ;::::::::: IS ii.-j.--:-.-:...... :.:.:.::igi..-.-..Mi--..::i:.::...:::.:::.:...:S..:I ...:.::-!:::::.....:::::::...::..-.I...I...... HUHNNINUHHHH! ...... unucuninum-minu.:...... :!if: EIMMUSIM,...... -Mu 111MM.M..JH...... -.11 I-I.: '. RPH""Higilillf, UM...L-H.-H...... ::::::...:::...... :::..:::::-::::::::::::::::::::::..::.:::.:.::::::::::..::::::::..:...... :..::..:...... :..:...:I ...... IS...... L .....:..=:!..!.I... HHHHHIH ...... ullill...... I.I.-HEI-H. HIMMUM.HINIMME...... :.,.-.-.::::::...HHHHHHHHORIM,, ," M IM,... M:=. ...h ...... ': I I- I . - - - . - -- I:::::..:::::::....:::::::....:.:::::..:::.--:.:::...:..n .... sit:::::::: ...... I ...... : I. - -...:-.-.!!!!I!-.!-.-.--...iiiiiiiiiiiiiiiiiii,..... 1 - * - .:::::.iiiiiiiiiiiiiiiiiiiiiiiii....i!i!liiiiH.iiilt:iiiii'iii'iiiiii2ii'.'r.ii'.iii ..... 1*11,111,1111,.... I--...I mi:...:::::::::::..:..2g3.!!!:::::::::.-::i:iir:lc,!i.."!iiEiLm!ii..-I!ii-iHEi,-:,.::.-:IiiilIIS: ...... "I ...... Plus-: ...... - - MHUM ...... -1w...... -.1. ...:..:.!..-:.:::IS ..Ili: ...... :::::::::.::::I:..:::.::::::--:::.:::::.:::.:::::I .... I!....: ...... -:.-.--I!...... ::::::::...... I...... III. I us ....." .-.-:.-.n.-::3:::.:::::.--.-:.-::.-I ...... !.-g..---.--!-!:::::::::::.-.-.-..! ...... I .... :HHHHHHHH.- us Hisun:HHHHHHHH". -NiNUM-131121.Su...... ME Aug..,::::::,.:::::::::.;:.:..::..:::.=. S:....:.:.::...:..:.::....::::::.-::.:::-:::.-.:.::.,.V.":;...... :..::.::::::::..:::::::.!..:: ...... I ...... !I-.:.-. .... IL ...... H ... :.:.-I .... I H. I I. I - I;:::: U."....; ...... ; N .. .. H.. IN I H I I I I I 9 ...... I:. II I nuu,ilM. . - znjunnuunp -::::;;::::t:::::.;:::::::-..:::.-..I:::::::::::::;::::-.:::::::::,UNNNiE!:H-::::Su.H ...... Sisumai;s,.M.-musuh-jounif".III.-=1 :::::::::..:::::..:..:::::....::::::I...... is:...... ::::::::..:...:.L-iiiiiii-..iii.i.i:::::i:::....i....:....--.iiiI.. a H ...... H-0...::::::I .I:::::::,...... I ,H:::-... Iun "Hul IS H-11-1-,:...... 1. -.i-:::.::::::::::::.::::::::::::: ...... :::::..!,::::.....!U:r.:Zt:c::.::::I ...... ::::::::::::::::::::::::: ...... ::::::::Nn::..::St.. Iunnuniiss-ENE"- ...... ,:::I!.....H_:iE:iiu,:... * .--i::::::L.....-..-.-W..--...... U--.3s.c:=:...... 1-----IL- Mul - ...... :us : ...... uu. IS ...... :I I I! .. :::::..:.::::.::::-.M.N.IS ...... 11 I ..NuI- .....---;::Nu..... I .... I IN...... :!.I!..-.. gligglip,.. . N,.ii;.i-r-::::::::::;:::::::::::::::::::::::I:::::::::::::t:::!!!:::::HH:j:m::--:M!:-.-ij-..ii. ::::::...... u. ...:::::I.....must.::: ...... -1.u...... :.:I-.!::::-..!.I IS :Mnu...... ust.N.:.2...... HHHHHHHH11111-:1I ...... if sillp.c.- mananioungISI ... uUnIS ..... W.H.-mnu.:::::::::::::..:::::::::::::::::::::::::::::::::::uM :::: 'gig9Alismi-1I I.--::11...... fl :::::::::::::::::...... ::...... :::::::.-- .% ..:::::::::::.-.-..-.-.-:..-::::-::::.:=:.:..:;::::..::::::I...... ii.:.....:..:!.[..i..:...I.:.:::..,:::::::!:::::::::...... :...... :::::::::...... u...... NN:::._N:...."-::....N.-.rr-.-. -1.- us.. ... :::::::..,::- I..: ...... ::..:::::...... uMuNuunumull ... ::::i::::-:::::it:l...-.::::::;::::t:;:::::i::::::;::;::;;::::=::.::::.-.::t:.:::::::;:::::::::::::::::;:NN:u...... :::::!::::!:::::;:::::::z::::::::::iii:iiI....------...... aMRS us: 11H.....U.I.H.I.H.C.11I.N.I.-IC...... I ..11::::t::::::::::.:::..::::::::::::::;...::...i:::::.-..:.::i:::::::::::::::::-I.II .... Milifl, it ... ..-MILEgmu ...... I ...... HUM...... I i.....:..--...i;-_::::::::::::::::::.-.:I ...... IS... 1.1...... I.H.' - -...... ::::::::...... ---::::3n.:.:..:I:..:.. HINUM_...u: U ::: ..: ...... --I.. ,uuu...... !!.:::::;;...:..:!!!..:::::: ...... nu..; .... IS:1.1. iii!Pii!!!!:::::::::::::::::::::::::iHiE:.I..1!.:n ...... I I I , ....":::--:::...... ::.:::::--::.:.. .MRS..... IS .u...... !..;;:::=:::..uss-Nu. ...,.....I .... .IH ...... I..::::..:::::::::.-:::::!::::::.- :::::::!:::::N..:::::::::E:::::::::I.1 ...... I ...... I:::::::::::::.:::::.::::.: ...... 1"1::::::::::::::i::::::::::::;:;:-:::::::::.::::.::::!I:.:::--:::::i:::::::::::iiiiEii!iiiiiiiiiiiiiiiI. :. 1. it: ...... :::::.::::-:::-.:::.-.:::::: ...... ::::::::. iggs, iq!!!..C!::----- ...... 1.1..-....::::S:::::::::!:::::::::::::-:::n...... :::::::!::::::::::-..:.:.I.:Sun.:I:::::::::::::::::::::: ...... swgg- .. //9 vN .... MUNN; 1. 1. N. 1. 1. 1. I ...... -:.:.::.::.::::::::::::::::::::::::: ...... :::i::::::::11,111,11*11,:::::: ...... IS, ..... 1-:21 ..... SRI .... :-i--I-.,I..Eiii!-Eii!i!iiiiiiiiii!iiiiiir.:::I:::::::::::::::::::::;::::;::::::::V:::::::::::::i::::;::.-.::::iL::!:::::t:.iiiii!!" _Imcmu.--:I...l -MM. ME I ...... HHHH1111flussin ...... i:-i:::::::::::::::.-..::::.ii.-.i:i.:.ii.i.::::::::::::::::::::::::::::::::::::::::::::::::::::..::.-:::::::::::I ...... ::::::-::::: -u.. I-!.-, I'll - I I I 'j, ..!IiKj!wF_m.i.pmI! ...... -1IFI" floo I ...... MHHHU ... UU-1111.1111 ... I ...... SUMUNNNIS ...... U.-M.-Hun ... U.M.S.MuNnuun...... U ...... :::::::::::::-::::..-::::; C I -* ..::::::::.-::::::::::::::::;::::::::::::::::::::::I:::i::.::::;r.:::::is::::.::::::: ...... ,umillim-m.E.HiMiLHI I ...... I.:...... -.!!!! ...... :::::;:::;:;::::::::::;:;::::::::::::::::;::::::i:::::::::::::::::::;::!.It:::.:.!I!! ...IIIIIN: N. ss::::::::::::::::::::::::::::::: ... uu.-M-Nuutimunn"us ...... 7 . ,,, - I ... - Mumununn! . I ...... '... RR:polp.!*I! -1H.-HRUMIPH* , ",,:.:I::::,UuNNINNO-3:11:11-1. I:::::,N::u._-:uu.::W...... -1 : F.- ...... ::::::::::::::::::::::::::::::::;.:.::::::::::::::::::::::.:::::::::::::.:::-:::::::::::ii:::I...... :::.:.:::::::::::::::::::::::::::::::IL:::::::::i:.::::::: -::::::::::::::::::::::::::-i::::I:mm .. I...... I I - I I HU Russ I RUN ...... ISSIMUN:...... I ...... : ...... -,-..:.-... I I ... !..!.....::::::::::::::::::::::..:::::::::::::::::::::::::::::::::::: ...... I .... un ...... al::::::::::::::::::::::::::::!::I ...... ::::: ...... HIM...... am ...... - r U1111111111.J...... :;::::::::::::::::::::.--:::::.-I ...... S::::::;;:::::::::::::::::::::::::::::::::::::::::::::::::::::::: .... :::::::::::::::.:::::::::::::::::;..... I ...... 1.1.. -:I::::::::::::::::-::::::t::::I::.::::::zI ..... :::::::::::::::::::::::::t::::::::::::: 4u:::::::i:::::::!l!.!:::v!! ... ! ,umisints. .1.1111MMINIalcu S.-UNUU-11111-H ... U111-mun ...... :::::::::..--N..:...ii--..:is::,.::I ... ::::::::::::::::::::::::::::::::: ...... :::::::::.-:...... uu.u I ..... n.ME!:;:::i:::: ...... ::::::::!::::::::!:::::::::I:::::::::::;::::::::::::::::::.::::::::::::::i:::::-.:::i:::::.:::::::..- _:;.i-uE:ui;:: ...... U. I ....,.1 I Ir ...... iff.m.: ...... 1..2..1i...::::::z::::::::::::::::.::::::::::::::::::::::::::::::::::::::::::::::::::::::.M. -::..:::::::::::: ...... ,;""NuuL... NNUIUMUNIN ...... iiiiiiiiiiiiEE.,!.-i-ii-!Eii-if.r.I.:.s -. I.0:.:.:::::t::::::::::.-.::::::::.:-..:::::;::;:::::::;t:::::::::::::;::;:::::::::::i;:I:::::::::::::::::::::::::::::::,:::I...... ::::::::::::::::::::::::::::::::::I.::::::::::: ...... i:::::::::::i::::::i:::::::::::::::: ...... ::::::::::::::::i:::::::--:i:i!:E;::=:::::::::::::::I::ij.-.:::::-.jiMEM"Hi"B".1"IMMIS::,:!.=I ...I 1;;:6m:::::t::::::::::::::::::I ..... ::: -:::::::::i::::::::::: ...... U: _....M.M ...... MM ...... :::::::;:::::::::::::::::::::;:::::::::::::::.::.::::::::::I ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ...... M- .... M ..... ::::::: ...... :::::::::!.-::::M-..-.M-:::::...... mm--,!.-.!:::!.7..::V-:.-I:.::I

...... ::::::::::::::::::.:::::::::::::::::::::::::::::::::::::::::.:: ...... MM:...... : ..::.;::::::::...... -...:...-i.:I ...... HuNNNNNNNu:Nu:N:Izu SIR, ...... ::::..::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::..:!:::::::::::.i::::::::::i:::::::.::::::::::::::::::::::::::::::::::::r H ... . M ..gu..:::::.-:::.I.I:.-::N-L::::;:::::IuiiEim!i:::-. ::::it..-.:..I.HMMIMS! ... /Ova 0...... NN.WNuNN ...... I::::.IS Still -.it...... -i..i....:::::::::::::::::::::i.-:i-.!.::::::::::::.:::::::::::::::::I ...... M ...... ::::::::::::::::::.::::::::::::::::::::::::::::::::::::;:i!:i:::.-::::::::::I ...... M ...... uuuuuuu!:-; .. a ...... -i;:::::!::::::::::::::::::::::.-:=::::::::::,::: ...... ::::::::.:::.-:.--.:::::I.--::,..Br.cs.:.:I:"'_uEH :iiiir-iiiiii-.-.i"'.'ii"..imii'.ni...mm.:!:::::::::::::::::::::::::::- Suit. .... ::.:::::::::::::-::::::::::::::::::::::::::::::::::::::::-::::::::.:::::::: ...... :::::::::::.:..:.:::::::::::::::::::::::::::::::::::::::::::::::::::: - ...... M ... M ...... M .... M- ... nn::::::::::;::::::::::::::::::;::::::::::::::::::.::::.- -::::::::: ..... ::::::::::::t::::.:::::::::::::::::::::::::::.::::::::::::::::::::::::::::::::t:...::::::...... HUNU:Nnnnvv:. I ;:.::::::=:::;::::::::::::=;i::i:::::iz.:::::::.-:.-M:i::::i:::::::r.:=:.ilnu;mp, Inu ..... mn I 1.-.-.-.-.----.-....:::....:::::.I ...... A.M. Us ..... :::a:::::::::::::::::: ...... uumuumunnnunnu ::::::::::::::::::::::::::t::::::::::::: ...... ::::::::::..:::::::::::::::::::::::::::!:::.!:::::::::::::::::I ...... :::::::::::::::::::::::::::::::::::: ..:.:.:::::::--.;:::::::::::::::::::::::::::::.-:::::::::::iii:::::::ii::itL::--::::I .=;:.:...:::I...... is unnunnu: ...... IRS .... :--..:-...:-.-.-::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;:;:::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;::I ...... ::::::::::::::::::::::::::::::::::::::::::::::::::::;-.: ...... - - ....- it::::::::::::::-.U.M.-IN ...... ;:...... ::::::::::::::::;:::;:::::z ...... ::::: ...... ::::::::::::::::::::::::::::::::::::::::::::::t::::::::::i:::::: ::::-::::.:::::::::::::::::::I::::::::::::::.:::::::::::::::I ...... ::: ...... ,.;:::::::::::. :::::::::::::::::i::::::::::.,P:::::::i.:::::=::::::;::::!.:::2:::::::=::=::i:;i:-"-,.=::In,::H:NHH:MMu ii::!:uu:uu::: ::::::!!!..::::::::::::::::..!:..::..:.I ...... :::::::::::-!"g;::::::;:.::::.-:::::::::::::::::::::::::::::l:::3:I ...... -.-N::!7..f:!L-.;i% - us:1: .- I ... ss:::-:::::::::::::::::::::-_-:::::ii::::::::::::::::::::::::i.::::..:::::i:::::::::::::::::::::::I ...... :::::::::::::..::: ...... ::::::::::::%.!!::::u ::: 1 ; ..... H"HiHis ... * -...... us - rtj I: ...... I I ..... :::::::::::::::::::::::::::::::::::"I "I,*,.....::::::::::::::::::i:I.:::::::::::::::::::::::::::::!;.: ...... :::::::::::::::::::-:.;:::::::::::::::.::..::i:::::::::.::::::::::::::::::::I ...... :::..::--::::::::::;:::::.::::::::::::::.:i.:.:.:.:.I.:1H:.I: p::I Mull::::,HIS::u"uu"H%NNjH;...... 1 ...... 8 ...... :::,::::::::::::::::::::::::::::::;::::: ...... ::;;:::::::::::-:::::.-umun - .::::.:::::I:::::::::::::;:!;;!!!!E I6106 :I ...... ::::::::::::::::::::::::::::.-:::::::::::::::::::::.::::::::::::::::::.:::::::::::: -.--:::::::::::::::::::::::::::::::: ...... :::::::::::!.!!...... mmm !.:!::,:;;;;;:-I:::::::::::::::::::!:.:;:::::::::::::::::::::::::::-::I:.:::::I ...... - o ...... :::::..::::..::..:::::::- - : ...... ::::::::::::::::::::::::: ...... :!EE:!i::::::::::I 11mulmm-a'jumm!::::I::::::.::i:.-:::::::::.::::::::::::::I:g:.-I-isI iuu. Limmi m-Mi.-miqlap .NNNNNNNNuu:uuu::u .. !- t:::;n .- !::::::::::::-:::::i::::::::::::::::i::::.;;:;:;;;.i;:::g:::::::::::::::::::::::::::::: ...... :::...suits...... I ....I..- --I ii::::::::::::::::::::::::::::::;:,:::::;::::::::::::;::::::::::::::,:;:::::;;::::::::::;:::::::::.::::t.::::::t::;:;:::::::::t:::::.!:!!o ...... ::::..:::::::::::::::!:::::::..:::::::::::::::::::r--::;;;..;;I::::;:: ...... -!TT:;;;::;-.; ...... :..:...:::::.-::::.::::::::::::.:::::.:::::::::::::::::::::::::::::::::.::::::::::::::::: i -u ...... :::::.-:::::::::::n:::::.::i:;:::::::::::11::.:::::..:::::::::E::::::::::::i::::::I- ...... :::::-.!::::I!! u;l:u:H::HH::iiuu imunumn - ..... :::-:::::..::::::::,_:::::::::::::::::.:7::!Z:!Z:::::::::::::::.-::: ...... :a:::::..-::::::::::.::::.:::,:::...... -1.. INii:jj.- ...... - H: ...... --- ...... - 4":,;.::::::::::::::::::...... ::::::::::::: I:::I ::I Muu: ::::::. . :;;.4:::::::::::::::::::::::::::::::::::::::::::::::::::::. ... - . -::--::!:::::::::::::t:::.-::::.;.::::::::::i:::::::::::::::::::-:::::::::::;:::::::::::::::::::::::::::.::::::::-:::i - :::::.3:::::::::::::::::=:::::::::::!!:!::::::...... ::::..-.!I::: u: ...... HHHO.. 1:2:31"I': : rtHN:NNLNA.1-- ... , :I .:r ... I ...... :.:::..::::::::::::!::::::::::::::::::::::: ...... :::;; ...... ::::..:: ...... :ii-_i:::::::::::::::::::::::;;i..;;;:!! ...... !:::;;;::::::::::.:::::::::::::::.:.::3:::4:::::;:...--- ...... - .-.- ...... , ..iinnuuunjhT imunnumuling:.I..g SIR- " iiiiiii1qPip.iiiiiii.:I: I iiis!.i:::..:::::-_-::::::::..::::::::!:::::::::!:::::::::::::::-:::::::..: ...... :::::::.::::::::-:::::-.-:::::::::::::::::::.--:::::::::::..::::::::.-:::::.--.::::::.--::;..:: ...... :::::::::::::--:::::::!-::::::.'!::i:.;"!::.FL:L:'::.'.::!!:::::::I ..... !%:uNuHu::u::::Ir,-:i;q ...... ,:.:.:::::::::::::.:.::.::::::::::::...... MI.M.M.!::.::::::.-:.::. .:::ii:i::...... Mnnunuu..-...-.- ... u..,I ...1.I;::- uulussuiug ...... iiiiii:...... -NNu ...... un..:::::u:::i:::::.-::E::::::::::.,.,:,:,:,:::::t::::ir.::--:::...... :Ili SRI:- , ".Juuniuum:.:::_ui::ij:iT.p.jiji:i:::::i:r.Ili .... ; ,!..[H:i:::::::::::: -.::::::i-::::::.-::::::::::::::.:::::::::::.z,:!:::iiE:::3:1::..-.:.I ...... ::::::..:::fz::::::::::::::::::.. I ...... i:Mug- I::-:41,MO.Mmisim:lio ::::::n:.:: IS 3..-::::::t::::::-_i:i::::::.:::::-_--_-_--_::::::::::::::-_-::::::::::t ...... I ...... ::: ...... N.-NA.M.-Un.- ...... :I:lI;:::::::::::::.-...... NH:M:!:J:%u1i: ...- -:::.- ...... nunnunnuansullmrs ...... ;::11:,::!!::::._::::..::::::.:::::iu:::::ii::::::....N:::::::::::::.-:::==:2:-iii;i..ii:::i:.-.-:i:iI...... -...... -...... UHN.::::=:::::::::::::::::::.Fi:::::::I ...... :::::::. .:::::..:::::::::::::::::IiEli:w.::::.- -MuursNUMN- _.... ::: ....- HN. - ::: Milflimunu-nusum ...... I Iu:M::::::::iM:::su::=i:u:...... lii;::ii_....uq:u::RH:::::F:f...... _-::::::n::i ... NNM17Nuu ...... Luunuumjirua :::::::::::=!:::---.:::.-:::::::::::I..!ml:;:sNN"SSuHHH:.__::=ur.H...:jilu iullinusun limmusugg.g.-SUM..h ...... ,.IHmiiiiiiHiiiiiiii.iiiiiii:!iq::Iiil,Hi!Rn:ii:",...... _...HM ....uN:u * ...... I ..-...: ...... -::Eqmu=:L- "I -us _: MH.: - E::::.i::EE:::::::::E=::I:---:::::.-::::ii::::=::iiiijiliI- ...... linninisimmumisHiag ME :iiiii-Eiiiilgilmi-x-iii.---i::::n M ------...... :::::=::::::::::2:m:::::.-::::::::::::::::::.--::I::::w.::=:::::::-*ii..iiiiiiiii!H . lil,HliHiiiii:!Till!is::!:EH:;..- flMunn.-SEnnunIsulmnal I HuNN"11111 l::-_:.u3-:::::.::-.:::::::::.:L::::.:::::i3:I illillumn-mg- Im. - MR."m flHiff : =.::::.N:::::".... . :N:::::uw.:::::::::3::_::::::-_-::::::::::::::::L.:::-::=::.-=:::::=:::.--.::::i:::ilI .::,-:_:...... il"INUMmum ::.::::::--::.:::-::mg ism"IMIM"IM"liMiumit MR13311=1MIGNI --..=:::::. iiiiiiii-M-MgM -ii,mtEi2i:-*r2:2i-=-qHli!!iiiillmillllHnilluiliillilli!?41fllllmllmlliliupi:::=:::Eii::::Em::::EiE:::i!E::iuHE, ..ii:!;";::,!F:::=::,-4:::Ml:ili:!IIILql!!L--Ili:iiiriHi:i-::=:::--::::I- . mg ..HiHIjIL..i!:::".m susiSsunt,vu-nimm-1:111n:- HNNH:::: H ::: I I - I I UNS: I HHHUMHIMEmmutu,I : n:mal. 11MIlluffiflerumman.I ::::.::3::::.-3= UNINNIMUNNUMMIN: --::::::::=:::::::L::::.-::-:::.l-a!!M!!!-::=4:::::=::: .. N .... ::: .... ISSIX; HNus NHN -II 1-11 Kim :1 I 31 --munnunuum.....Nis UIRRIMSH I ...... M.H.M.-HRMHUSHM M ... .I-. I ::::M-ME ISMORMIiiiiiin.,N MPB!!,E.Fl,IMIIIIIEIIIIIMOMRiiiii:::::..:::::..:::::i::::ir:t=::L:::=::;;;;;;;64;;;-- joi gr"';::::gluuu" ...... : ... ,-=u":C:JjiffHJSM1IM ,,,r%r;:!::::::::.iimiilmmll!!EEEi!i::m::::14- I 11 Muttil ------...... H.H.Mlin.EM .::.-:::::::::IMEHMME SHUTUNUMM Hiliii-niuriiiiE:::ninilillir:iiiiiI11/10/1111 ..I!I.:!:!:::;:...... HUMMUNSINSONSISSISHN: ...... H.: I.: B.'Hifts;I I u1w1,-._=__I :, '4!,:44_:MMI =:::=*I=-:-::: - 1;I ii1milumll:qi.9-9.pl,igumigHm MeNIMIN ,M:":-=::,:=:::::-_-:::::i:.-:=::::::::rt I.t ..uS.: ...... uu:sussu.unuu:=...... rt ...... omuuunu::Mll" ...... JIF!I:.::::=::::::::::w.::-:::-EEMIURiii!!!iiii:iiiii-- ::4.:.,TgFi:u-!: I IS. ini,iiijiil!,!J=E-iEmi::.-:::=.:::::=::.--:::::-::::::::N:::L.,_. ""'HUNN.,- ...... :::..::=:.- . - St. u:B:NuMsjHH..--_:wHUMUNCH - ., go MUMIgun. HH:HHu= ... ::... SIMM- iiiiiiiiij"u""IMM1111111111MUNIMM...... I...... -.-...-...- .:=---:u:::=iiiw=ii=-@_112. I"M at-H. NHHRM 11,1111MUMMM U-1-Mill ...... NNu :::.-::::::::::=E!-!iii:i:iil!-HiiirlimifiiirlirirdHiiiiifli::::iiE;ii,-;i.r,:;;,7.1imig.1miliq ;,:;,t4.:-.,:!:-"!:!:=Iii!iii!ii='Iim::::inngiiiiiIIII:.unusuglusm ...... HN _.u illilloillml!llll-liuli--::iEi,:;::..:.::::::::::I=_:uHiJ nunif IH11flffliqMUMHEiE:ii=EL:--I:MIIHMflUILFTHM!!Ei!ir=1 !_HWH-jpMpp.upllIE!m11T.-F :::::::::::::::W.::.-::::::::::::::::::._::::::::::=:::::::-Hill i:U_nnl1::::i:::i:!:::.:M:::::i::.-H:ii:::::==:::::.--::-:T::=::::.:=:::--:=:::.-:::::::::- _:::::N:::::=:::::c:::=:::::-_::.=.;::! an ...... im..-..!!!! Uill::.--:::!-::N.M.1T-""p:::-_HH:HH:=iI ..-.:.-::: ME I mus-SHIM311:1,11 HH: HUM",Mut full: I , , ..."MuSISSIM"n.1115111.1- I N:::::-- : .. gigirdmillimmmig11111p,11johI!u utN;o..;;::! _!!r!!!-M-MMA";L9:lL.;,!!,H!uNNNus, pEgmilm 1 HHH1,11HINUMN.... !!E!.!!E:.:::-:Hii!!":n:i:::N=:::::=,.::=l::E:::::=:::r::M:;:=::::::-::::.-HE...-!.I ...... _._._...._...... "CillimilimriMiniNN..I=:;--...... _M .. --.- -..-.pjmuHulmliiim-:l:q-.-,!.-:::.-I, :iii..B.-.!Amlmluliurp,mi:-..-:II. , '"u":I:Lq:g... :I:::::=:::::_::::I:::31:u:::.q... - ::1:::EE::::E-::.--.:::.-:::::=::=::!=::!M:::::=::1=1:1:1 I, (,Poo :::::::=:.-.:L:::::::E:::::.-:..!!IPTI!llihl:i:il! i"mii::11,1111gulllll;:!IlipmlimllmlimiilliHillml!Lp.!!Iiiil:I I, lul:jHij a I I H11111111MIEHimuUMUNIIIIHISSINI""M"'-::::iHiliglHiH-H::.'i=::Imi:mllulmliillligmikil!i,LlpiklirHIIMPMFIIP!!Mmr::::"2: N ...... N H.H:j ,,.._.:.:,!;.flM_.M...... :_ ...... 11I.M.:I ::M:::ii::i::=:::::c:::i:=:=:.iaI...__..._...._.._ . Ni: Mu".-:7" ; Erc: . I Mliiillssii - MIIIIIIIIHIMIMEMN: i:::l:ipoiHmu!HHilli:::Pi.::,t,,-- ,,,,--.:..i..- HUM.OMH_111-11,11"I'M !PMME"Houn.stsui HiE:C:rgg;;;;:H ... !:.:iuml...I",-.:::-::=:::::::Hliiip.II!!!iiEii I Ill iiiiiiaiiiiiuffiiiiii...=--::::::::::P,..:::.,i::ii...... ,-..:Hrzilifflllluxsll- --- :=:::!::::Iimii'i-mlll:i,-i::011=:i!Hiiii!iMI!L :::: IIIII MI I -unninuicusiIHIM-Mus H .:::.-::...-N.H.Hililifliffifliffil - 19MI .I..- ...... "N.....HHE"Eniii"iTM11111UHH"IMMIMMML immillgIHIMUN :"6n:=s;::_,w--_"HF1Il Hunnuan ::::n::!E::::E::::::::::i:.-:::::.--:::::=::::I___iiiu:-uu::i:.1 ...... 4;4!-:::::::::t:-:E:.:::=::::::::::!F.::=::::=::::::=:::--.!:::i::::::=::::r..:::iL5::i::i-ii-ii-ilmi::::.-::I , 11111i,!E!:=:::E:.--:::::=-:::i::::M-.:.:-...-ImlllL.....3 .... Russ: U.-H Susan:.. : ii::I::i:::ii::.:::::::-::.----:::::.---.:::::.--.-.-:::!.-6.!:::::::::.:::6.!::::..:"::.=-::.=-:::::::::::.".7. . I OMPu!g!lHollmiggiiingM, &Hmmm-.:Hi:::-" I:::: I:I11 H ,...,: - fill ..... :::::=-.-:::=:::::...... , MI:Mu I :....::II.-H-Mrillifflim H ...... IRuss=:::::.::::,: Ill HII&LiI.S.HNINUHHHHHHHHEMilim!. N I I :::::: I I: ! uNuHHHUNplun; _T:7.,!!:::::::M:::uu:fflIIHIIISuH,1I11M_::::::::::::::: - . us, .. ::iii!iiiiaEii-iiiEi!i5iiiiiiI:IM Rq! I !Pip.111p!J11 I T I 1 h j;:!qIfflIM%: 1,11f;%9ME ...... r.'! A-ANHSIH r...... 111H.HHH111-0-limilill::::::::::IHiii!LMi::i!:!Iill:::=::=::M:mi:.Hplimi!!Hll-Ri:=IaI -:Ioiimiummii!Hiiiii-iiiiI H :N_ ... UNNSINNINSINHAININ H...:::: .... . M.11111MIMI ...... nan.Hunin ...... :UEMUNHHHHH.M.7-...... - --:::::..::..;.,:j:::=:::-:::::=:::::::I ...... - ::::::::::::I::=::=:.-..-..=:- I ...... Hing_., 111111111111MOHMIMMII .PH..%.M:i::i=.I 1Ill! M".. UNINSINCHN. .. fliffill"IffiffliffiHM"issistHISHN: ...... :.:::::. ------;:IRP.i:iiiiiiiiiiiii1miii1fi;1!11:=:::::::::rlIlIii!IilIIF.Hi!E!1111!1111111!11!!IEE:::::::::I.-:::.-=:::::L::i:::::Ipiml!lB!Es::!:m.:rIllMPNIIM!F=-::in:ii::-::::Mig:mi::::M::I::.-::II ill Ilu: M: .:::::::::u:::::::i::iiiijil!,:!I!i!6 i ...... NUUMHUHHIM11111 I1 11 11111 . I :::::M I:::::::::::::N ...... -.1.11MAIllinamimiiiii...... I ...... :u:::uiiuiuuuu:H ... I H ...... i...... -..'4 ...... MuL, I..:I:::::: ...... NH:=:H..uou;u!MMHu ...... L -:uuuuuuuujjjjjj- . H ...... UNITs...... :::::::-:::::::::::::::: 3_,,,,cuiliall I ..-mis".110irlill IIN'!!.]H.m-ti.-IRI-iml-ullmH!.-I- .... : ...... ,I IS . Hjuilli.:u=:m::1MjMjM1EIK!J::Ii:::I1 Egii.-..:::::: I ..::-:::::--=-::::::::::::::::::::-.:.:::.:::::::::...... '.'-.r,g:::::::::6,:::::.::::::.::::..::::::.-::::::16,i::::=I:::.:::::tremiMiiEEiiij!iui1jMp.jj1.u IS ...... S - .Mj!,j!mgMi!a::.Lp,F.M.q,TjjjjjMjM Lug- i"MiN... HiMist"EMERM:...... UNNNUNHHHHushut. :="HUNM %MuNHUNIZZINUMMUNNS. - ...... :1US 1113:1111 ...,::::_:::W.:::::::::::::::::.:::iaI...... EPM1191..... Hiisui_-MEI :.-::..:::::...-...... M.M.H.-M: .. 1:. Miniin:..... jillillo:111i I Ill-Ili",!!11!1!!!t'tP[1!1111111:iiliiiiili!illlul!lq..Ii:llinlilulli:liEi:!!iiE!ili:ii!!!Ilii:E,-::=::2::::::.--::::::::::ii::::PHIM!!:if::::::: MiIIIIIIHIIIIII11MIlap - .-..::::::i:::::::::::::=:::::...::::I ...... I ...... - -..-...: .... I ...... I ... :::::: usunusunnI suniHiliIiiijilIII! I., .::::::= HUM. 1. Milli: iiiiii:i:::::--::::::::iiliiiiiliiiliil:.H.. I'swunin ...... HH ..... :-:::::iiimiimp![Fuimim:v-,:::=Ei::212i!V!E.111=31Ni.i-.IiiiiiilpHplipApiE3!T..Pim-igiiquimow.!!m- ::::i::=ii:::.-i:=i::=::::::.:::::::=::::::I :.:::::=:::::..:- ...... - ..... n,:::::::::::Ii::i:iimii:::.::::.-::---:Ih-4i:iii illillEnununnuu.- Milli ...... I .... ::E::::::i::::=:::::::::::::::::::::::::---::..::::--:%::=,:::::::I iiiiiHmilluilluflillillul!:t:E:::::::=:::::::::=:::::::::I H gmilligplip-11111HIIII .-HiIIIIII-Mill: 2MEMP. ::ii::::H:::,--=:*:":,:,:,:,L,,:,::i::::::::::::::_%:-::.:::::::::::W.::::::::::::::::m::I nianituUMI: -.:::::::..:::::::::::..::::::::iI- - - HHu.1-=THHI" HEM....: If ...... 3...... M9 -=:::=:::::.::::;:..:Ic.::::.-::I_.NN."S'"MINH".1111:.- UMMONT"s-H-11011-Mill-Eiiiiiiii ...... ll.W!IEE:::::;.-.16iN.-::::::::::::.--.::::::i:::i=:::=..-.I ...... HHUMNINNHununim.ju::fSJJjIjj:!iIjIIjIIjI ...... H ...... -..::.-.::.-::=.::=.,%::: ...... nuu..::::::=:::: Iu =.::=::.-::::.:1 -:::0us: .MHF! .lErwx.:.-::-::imiiiiiiwgLiil::!, ::::::.-:::i::::::-_:::.-.:::::..::::::I -dillmillillulliff ilip:!IiiillilHiiiiii::::::::::::!:Ii:iijilll:::::,=::::::Iimmir.I: - =1 ...... ::: 911HIM11MMSM I Ii... :--::::::::::.--::::=::::.-:::::r.-:a .Z:::::::::::L=:::::=:::=::.::w.::.t :::::.--::i::::::::::::::-::::i:iHliill!I...... H INNUUMNUHunnumi...... II:::::: . H .""ists"MMMIMIRII MU-MUMMURMif I .... 1-if"""MMI: I I ,:_...I .q:::...--.:::::::::-:::;::::.::..:::::::=%::::::::::::::::::::::W.:::::::::::.::::_:::::-_:::::.-:::%; UnMIMMMINHOMPH ii!::::.-::::::::::=:::::::::I::ii-!Iilp. imunts:- I - ;N:IHM1HFHu:i:II::- -7,:::::::::!.-:::::::::=:::.-::::::::i:i!iiiE:Miiiiluc .M .11HIMIllimilmill- .::::::: u-.1 us..I..::::!.... :-:::::::::_-::::::.I::!:I:::Ituiilii!ii:i:i::ii::i::iE:...... I!lIr;N:!:HHM-Ii:.IIIHI I .-!.!:!:Ili::!113:piliiiniiiliiiiililliii!r,:::N:::::::::::::=:::::::::::::::IlipI ...... I ..... !:L::::.-::::::::::::-.:::i:::::iiiilil.I...... -.:::::::=-:::;:iiiiiriiiiiHillii!I ...... :::.-.: u Mu . . ... nuuiciun...... E!::::Mi!iipl:!i:ilil:!:!3p::iiIilil ::::I:::.-:::-S.:I ....IF HH"Hiss ....-...:!::::::::::::::iH.-::::::::i:i-.:i::!r.F!:I-:::E:::::.:::::::::::.-:::::-..:::::::::::::6::=:::::::::::=::=::::=::::::::&-:::::::::::::::::I::::::..illoili!i:i:::::.-:::.:::::::::-:::::::::::::::-illilig:::E=:::::-:::::::::::::::=:::::::::::.-::I:n- I is ... is P-.1-1 ...... :::ilill.M:N:::::.::;::::::::.-=:::::::::::::::::::.:::::: ... :=:::: ...... MustuuHNNIM-l"....-MEN: . , ::::::::::::::::::.-:::::::::::::::i:,!;!,;;--_::::::::::::-.-::=:::..:::::::::::.- ..:::::.::::::::::. _I: ::i:::!:::w.::::::::::-i:lililiii:q...... Ill ...... - I ...... -:::::::::::::::::::: ...... SHEM ...... --::::-:::Illm::.Ei:=::=::---::::iiliiI .HM1110HIMEM: !u::-:E:i::ui inuununin-uiuiif ...... N ...... Hum ...... iuumn...... -...- .::::..::::::::::::::::i:c:::Is- ... Iussnuius..::::::-, .-::!:!ii::::.Liii=iii-iiiiiiiiiii.iiiii.-.1illil-ii!ilii.4 lip.Eiiii,".iiii!iEiiil!ii:i=_:_:::L::i::::::::-:::i4- ,P::I:iE: :::i:::::::::i:::i::..:::::s.::.IN 3 .Wmmll.... .- !!!!I!!i!!!!i!ililjiilj!liiiip:::...M:iiil::ii:::Ii::i::::.::::::ii::::3:1-lso:::::::I.I 1:3 us..:.:..:I..I g.::":..::.:.::::::.:=:::m:::I ... ius ...... ::::.-::::.-.::::::::::::-_:::::::I ...... I .MuzusN ...I .::::- ... . HHHHH.M.HUM110111111111 ...... -::i:Ea::: .... H 111...... -_,:,:,:,: . L:::::::::.:.I...... M ...... NuMMMUMEli ...... ::::::::::::::::::::::::::.Ei:i.:::::::.-:::=::=::::::::::I:::::::::: ...... :::=:;::.-.:::::::::::::::::::::::::.-:::::,.,:*:'::':":':*:":':':'::*:":I :.::::::::HM:::::::::!!!!:: ,imiiliI., . .... MLInjililillniiiiiiiiiiI ...... Hunn ...-...:: ...... :::::::::::..:::::ruuuuuuu:Euu:L:::%..:::-_-::::::::::m::::=:.IiiI ...... !jE!:i:::::u:::_S:::::u:q1q- - .RIO.E!I---.:::E!H:::rn::.-::::.-:::::::::::::::i.::I UNIMUS"HIIIHIMUM. -u -SRI IS: H "I,::::::: .... ::: ... :::-:::.-:::::::::::::::!::=Oil.w- p1milligsullimmimun-ts: :::::I:1EM UNNNIS ;;....:..:::::::::i:::::::::::::::::::::::::::::::::.-:::::.:::=_-::-_::::.-:::::-_:::=:::::::::::::=L::::::::::::::: ...... 6,%::!:::::::::::-...:...;;;;;:;11;:::::::":::I...... _SS .nnnilI I ...... I ...... ;19;::::,:::..:::N:=::::::::::.. ...-...... :"M:...Mass...... ,!:Ip.ii:=:::::i::::--:::---::::::::::I rL"i:::::Iiiimiilliuii:::::::::,- -::::::::3=::::::::::s::11:1;.I:::Iii::Iii:i:: Lunuui: n ff. ii:91111IMMUM..:..-..i::..i::::::::::::::::,iiii: ...... - iiiii::-:E!E.=:::::::::::.-::::::::--::::---...... I: ifiE::::::::::.:i::::i:ii::Ir.--:::i!:I IS., :::---:::::.-.-.i::--::::::ii::I:::iiii:,.'-I.ilifliu"HuNN:1:11uuuuu:-HuNHHMuN: I is.Iilii;iiiiiiii;iiiii2ii!!IPiiiII HHHHHHHH..'' -.11jimin."I: -.--::::::::: ...... I:,,":::::.-HN ... ::::::E.-:: _.::::::::::-::: ...... - ..-...-. .-- ...... 2":iraiiii:::i::ih:iii--::2iiriiiiiimi ..::.::.::I-:::::...... N ...... SIM 11IM:...... I...... I M.. .I ...... ::.-::::::::::::::::: ...... -.__._ iM MIMMIUMM, M...... ::;Hij:slii:nl:il:::=::::.:.:::::::IEF1.,I::::.:..::::::::::--N ...... ::::=::::::.::::..:..:I:::L:::::.-.::::::I::::::::::::.-.:::::::I ...... ::.-:::26!:L.:::::.-:::::.::ii.-.:IliI!:!:.:::::::::-- ... uts .:::::..::::..::-- - ... cuunuz"Muu- -7 13:3133MINNSINNIMinuninI!!;;.[:::: ....- .. :::::::=:::::!i!!Ir:::i::::::i::..,W.;::::.-.-::::::::.-:.-.::::::::::::::...... ::::::::::::::.::::.-I:::::::.::::::::%!:Ii:::iiiiiiiH!:=::!!I.:::::::.::::::::::- --iiiiiiih!l!::i::Iiiii:iqi:iiiiiiiip-.._..._.H.I!..H.l.If ...Hull":111:11111111111:.. .- HuHililln iiWilliii "1111,11,.... I .:...:.::..:: ... :.:....-:::.::: ...... :::::::::::::::::::::::::::::.-n::I ..... 11...... unnu..::::::::..%.::: .... I ..... :I=::- .. ..:.,:::::,::::.-:::::=:I- -.-..-.- ,..-NH:::i:iH... . fill ... :..:::: ...... - M ii:::::::::-...-..-...-.::::::::::::L::::LI...... =::::::::::::::.:::..::I- ...... iiii:.i:::_ii:::::!--i::::::u:u::::::i: .....1111111m i --_-:::::::::::::.-.::::.::::::IE!ii!iihi!i!!E!-P!Eiiilmg,i::Hii:i:ii;!:ii!-i!illi;MHHHHHHE !I: HH ;iii.:;i!:Eiii!iH!Iii!illliiE:Ipiiliii:::::I. I ...... - -.Ili .m.: -..::::::N::::: ..: H.. . .-:::::::::::::..:::::::!::::::::i:::=::-=:iio I: ... :::::::::.::::n::::.-:: ...... uuuu:,u,I3Ic1: ...... NIS .lip :.:.::I:::.:!=.1i _SH=IHH:::N:::iiHM II rfl:::ia:::::.----:::::...!.!!:i.:::::.:.::,...::i...I - _1w . IS-..:::::::::::::-_-:::..::::::::::::- M_ :if .. . 1 ... : .... ::::::::::=:::::-_:::::N...: ...... L...... un: ... 33 I ... :.:::::::::-...... - i...... illililip ...... MHOMIMMo...... _...... :..,:::::::.-:::::3:::I. r I ...... :.::::: ...... ::.:.:.:.: ...... :::.-::::::..22:::::::::.-::I:.-!ilillpipli::i.-::::::.-.::::::ii4:ijili!ii:.-I...... I::::::--:::::: ...... :::::::L:E::::::::I:::iis=4-:::Miliq:lEiiiHn..iiiiiiiiiiiimin -I:::-,too I.UNHHHUHNNUmmmil !Rflf -mmjus-d.j JIMMU ... :1 ...... :::::. I ...... MilL . H H...... :"N...... -:::-_::::::iii:.i::.:::::::::-:::E-,:::::::::::::.:::-_-::::::::::::::=..::::::i:.i::::L...... H.'110H .- --::.I I!::::::: .-:::::. ... I.::::r::::::::..::::::::::::-- I ... .!:in..H!!:iii::!Ili!!!:I:::I::::::::im.:::::Su::..._.,,u..... ::=::i:p.::iiHi::::::::3::::::-:::::::::::I ....:::l:::::::I:jjs:::::.--::::,::-:::-::::::::::::::::.:::i.-.-!I:im:::::::iijn...IjjJ!!IH!iJjjHi:Iiii:::::::33:u::.--::::.--:::-:----::ui::I...I.. ..::::::: H -.::::::: ...... :::::::::::: ...... ::i!::u!::.,i: ...... ifffllnimmiHmimilliqiimnuv: ...... ::c::::::!:::::::::i::::::::-.:::::::i:-::::::::::=::::::--..-.:::::::::::.:-.I...... E.M.:...... :.:::::::::::::::-:::.-.:::::.-::::I ...... H ...... ::::::::::-..:5:E;j: -:Ilil:::..::::::---::::::::::-::::::::::::::ELlI...... lIII,l,!II::...... --NN_--::::::::::"::u::::::::::::...... -....-NUHNNI. .::,:::::.::.::::-..-::.3EE:iN-'Eii.iiI .:.:::::::::::::.::::.:::::-.::::::::"I:::s::i:![H,!;;!iil.-.:::::::::::::::::r:i:giiii ..ii:il::::::i:::::::i:::4:iiiii,-,Iiip;i;;Il!ii:iiii-- ..... :::::::::--... ..- I!Hi!l!iH:::i:::::::I-_:::::.---::--:::. 1;iF..ummillEmic.uM:l:HHHH ::l::::::::::::;irii::Iz::iaci;:j::i:i:::::::.-::::::::::.-.:::::.::::=::::::::::::::r:if ..::::::::::::::::::::.::::::::::::::::::::::::::::..:::::::.!:::::::::::::::i.1I...... , Ill! .... iffiHi I lili"IM""I"MIS ... HHHHH" ..... I. SO ...... __...... ui:::j::!:...... -L;.::.".::.::.:.:::::::::::::::::::.-::::::::::::.-:i.::i!:i::iiI ... .1i i.iiHuSHMMUM! :::.--::::::::::::::::::::=...... '-...... ::::::::: . .... 01HIM=S.HN :... . I.: Nu:NuuN:u:uuu:uu:: ...... :::::::::.:. ::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::.:::::::::::.-::::::::::::::::::::::::::::::.:-Is ..... :::::::::::::::.-..: ...... :..::::::.::: ...... :::::::: ...... MMI:111111""'IM.Nu. ::-::::::::::.Iilil:::::Fi.-i:;.:.:::::::::::.-:::.:::::::::::::::::.-:::::::::!..:!:::!!:!!I:ii:i:.-ii::::::I: - ...Huii:u:u::::i:i!H5k-Mir.::=:::::::::::::::::!::I=iliiI ...... -"Hu" ...... HHHHHHHHHHHHHHH::: .... ::;:::::::::::::::::::::::::::::::::::::::::.:::::::i:::-:::::::::::::I ...... un-:::::::::..::::::::::::..:::::::::.I..,:::::::umnu.; ..... nuunn-nunnunnuun: .- '. ..:I .I!...... - ...... - - :Mlin-IMM" I-:.::..:::::::..:::::i:::::::i:.. .In ,.:::.... -_::::::::::::::::...... REMISS...... HMEr...... "TIM-31 . T.. irii...... 'U.I ...-...... -.:::;::::::::::::.::::::::-::::i:::::;:::;ii!::::n:::::::::::::::i::!:I:::::::::::::::::::z::i::.-.:::;:r".E!:;i;!::::!i:::I!!::i:iim::.I .:.-,.-..,:::::::::::::::::::::::::::::::::...... :::::::::::-::::::::::::::::::::Ir.-::::..::;:::::::::.:::::::::::::I ...... :::::::::::::::::::::L;::.!:::::.-.::::::::::i::::::::II ... :...... N ... N.Nmunnnnnnn: ::iiiE!HimlqmF-Hiiir:i::!:::::::::::::::.-I ...... munwr - ,truststoo roeus ...... :j::::::::::I:::::-:::::::::::::::::I::::::: ... :::::::::::::::::::::..:.:.:::::::::::::::::!:..:!:::"I::::..:..::.:.::::..::I ... pr,F :::::.-:..:.:::.,:::..-:;:::::::: ...... :::::::::::::::::::::::::::::..:::: ...... lii!iil!H!!-!:::.-::3::-::m:::::r ...... ::::=is...... III UIRSIMMUrissu...N.u.-...--...-...... ::::::i:l::::t:L:iRiiiii:i.::::::I ...... I...us.::::::.::::::-_::::::Hi::: ::iiuliiu:R:3 :::.-.::- I I ...... ::iiE:::;!!.:::.:::::::::::::::I:::::::::::::i:i:::E:-:::::::::::r.:::::::::i::IllliI liii1ilimiii:i.-i!!;-.:;:iiiii!i.-.:::::::Iuu .. N ... N::::::::::::..:::::::::::::::::::::::-:::::L:::::::::::::::::I ...... :::::::::::::::::::::::.:::I:-.::::i:iiii:i:mi:iH::::i:::::::M.i: H.-H 24IF: .-*"'-'I H.- ...... I-!-!!!! ...... ::-!I::::..:::::::::::...... ::::-: ...... :.::::::::::::::::::::::::::..:.:::.::us .... :::::.-.:::::::::.:: ..... : . .I ...... If Hu :.::::,..::::,.:::::::::::::::::::;:::I ...... ::::::::::::::::::"3113!11:!.::::I ...... H ...... il:iil,::iu:,:",:,:"-.":,:":,:,:,:,_,,:.-.I, -.-!!.-..:I-- ...- -::..!:..!!:::::::::::::::::::i::::::::::::i:::::::::::::::::::::::::::: ::::::i:::::::::::::::i:::::::.L:::::::::::::::::i:::::::::::::::::-::::I::::::1:::::: ...... ::::::::::::::iiiiii.!!i!iiiiEH4-ill-ml!"im ...... ::::::::.::2::: ...... ::!::ii;;;:it::!!I.:::::::;::I::.--:::::::::::i--::::--.ii.iiiiiiiiiiiiiin... -gpm ... 4 -gg- .i--iiiii,Simla..-.I .....HINHU.I ... I .... :..:::::i...... :::::::::...... ::::...::::.::::..::::.:::::....S:iI ... ::::.::::..:;::::z::::I-_:::::::::::::::.::.::::::::::- ...... :::::::::::: :;::I....:;::::..::::....;:::::::!i:.I..:::ii...... HHNNH--:::::!:::::::::::::::,::::..::::::::I...... :: ...... :.:.i.:::I.:i!:...:::.:i:::::::::::::V.:::::::::::i...... HMI-MEnuninnnns .: Is :::: IS::: a..JjiiiE,III- - .:: ::::::::::::::::: SMICH.-HRUISHM ::-.::i--:::-:I-:-.:;.:..:!...!::..I.::!.:!;.:.!.:..::i.::::....:::-.!:...,i!E2::!!-..;:.I- ...... ::... IS , piniumilig,gliamp.Is - .. IS.- - ;.:".-..I::.. " 1 I ..:...:..:::: ..... ::::::I.-.-.:IS: :I MI u IIs u ::: .1 .1. -i-r::::::::::.:::.:::::..:::::::::::::::::::..::::..::::::I ...... ".1111i1r.is ::.::I...-.-UHHH..U: NM...... I.. 1.muffillIM: I.III- ...... ,- i.111:11I.M...... NJ,...::::, .... uss:- ...I HII I ...... : 1. 1'Bl-..:::::::::::i...:::::--:::::::I:i,.iiiiiiiiiiiii-"..::--::::..-.. -::::r.::::::::::I::::::::::::::::I ...... is .....i ----311111!i.:.I..i:.Iii.i..:::i.:i- ...... ------..U.N.-H.-HuNu.. unRUSS. __... II11 ...... 1I-HI ...... 9...... m "" -.__M ...... U IAVO /300 1400 /Ivo /W /700 /goo 1700 Apo* A1046 .UDO A300 0100 .ASW RAW A700 41,1`76 I- (MaTa*s) 065CP,V#7700 100/07r OATLOF 29SE4JTIJ;+ = AUU 17, 1972

HIGH TIDE AT 733

NUMBEROF DATA 'coI:nTS 45 DIST FROM 0111\T O-- OBS[RVt TI;"+ TU Y-Ax; ; 0120.9 MET=F,S CORRECTION IN ZERO POINT = J;:(

DIST FRO'l k y CCPRECTFD A71M :Lz:JATI:rt READING TIM= OZIMUTh EL_VATION 03SERV c7T -It'. TFRS)(' ETERS) IN pAOIW:S IN rA --, T1 o

1 1042 364525 5145 35 1041.6 1469.9 811.4 .8930491 1.6015086 2 1346 77?943 9146 50 1629.4 1487.8 810.1 .9759266 1.6513717 3 17571 331245 9143 0 1018.2 15714.8 809.1 .9184520 1.6022135 4 1355 39 4 25 9149 25 1065.1 1524.8 837.8 .9334821 1.cu2E044 5 11 C 393710 9151 30 979. 1547.9 792.4 .943CC91 1.6004702 6 11 5 432140 9i1 53 25 969.6. 1563.6 792.0 .95,9,27 1.oC7733C 7 1110 412330 9154 55 9570 1985.0 791.5 .573535 1.6042229 8 1115 42 030 5156 36 943.9 1600.8 786.4 .984702. 1.60469+7 9 1120 4225 0 9157 45 933.9 1611.9 781.7 .9916399 1.6053476 10 1125 424650 9157 0 939.8 1613.7 789.9 .9981798 1.6049316 11 1130 431320 4153 G 931.9 1624.0 787.1 1.6058894 1.6111;1225 12 1135 4329 5 92 0 50 910.1 1639.2 770.9 1.6104718 1.6859430 13 1140 433345 92 2 25 899.3 1646.5 761.6 1.6119274 1.6:54.,54 14 1144 4343 0 92 2 0 901.3 1643.1 766.1 1.0159749 1.6662374 15 1146 434940 92 2 20 893.9 1649.7 764.3 1.0164576 1.6063914 16 1150 4345 0 92 3 25 891.0 1652.9 75b.9 1.0151622 1.6060963 17 1155 4341 5 92 3 25 891.0 1652.0 756.4 1.013962E 1.6CE6963 18 12 C 433330 02 340 889.2 1651.3 753.8 1.0117554 1.6067533 19 125 434010 92 250 895.2 1649.6 759.9 1.0136957 1.6065254 20 121C 434415 92 4 0 385.8 1654.9 753.2 1.0148833 1.6068672 21 1215 44 140 92 4 5 886.2 1659.1 755.1 1.0199479 1.6068912 22 1220 441055 92 5 5 879.1 1664.8 750.3 1.0226380 1.o071321 23 12?5 441915 92 540 875.0 1668.7 747.9 1.0250641 1.6073501 24 1230 4451 0 92 650 867.0 1679.8 745.2 1.0343009 1.6076390 25 1233 45 520 92 720 863.5 1684.6 744.1 1.6384888 1.6078359 26 1234 451420 92 625 869.8 1683.4 750.6 1.0410869 1.6075590 27 1235 451010 92 720 863.5 1685.7 744.7 1.0358?53 1.6078359 28 1236 45ii50 921G20 843.6 1696.1 727.7 1.0403582 1.6087086 29 1237 451110 92 725 863.C 1686.2 744.3 1.0401662 1.6076599 33 1239 451240 92 810 857.9 1689.1 740.1 1.0406011 1.6080738 31 1239 451325 92 930 8'"9.1 1693.7 732.6 1.3408200 1.6084657 32 1240 4515 0 92 840 854.6 1691.2 737.6 1.0412818 1.6082228 33 1245 453143 921015 844.2 1706.0 730.6 1.0461282 1.6086346 34 1246 453325 921015 844.2 1700.4 730.8 1.0466380 1.6086846 35 1250 4551 0 921130 836.2 1708.1 726.0 1.0517542 1.609475 36 1255 462245 521245 828.3 1718.7 723.0 1.0809674 1.6094134 37 13 0 47 0 15 921315 825.2 1726.1 724.6 1.0718569 1.6395573 38 13 5 48 210 921450 815.5 1745.7 723.0 1.0899080 1.6160162 39 1310 49 120 921445 816.0 1758.0 729.8 1.1071184 1.6099922 40 1315 4959 0 921635 805.0 1775.71 726.0 1.1238946 1.6105260 41 1320 503215 921655 803.1 1782.9 727.5 1.133565E 1.6106220 42 1325 5134 0 9216 0 808.4 1793.8 738.4 1.1515287 1.6103580 43 1330 53 430 9214 0 820.5 1808.7 758.0 1.1778523 1.6097762 44 1335 541620 921130 836.2 181809 779.0 1.1987484 1.6 090475 45 1340 55 43 35 52 P 20 850.2 IE -.: 7°7.3 1.224128: 1.:.0",417;' SMOOTHED SMUJT4_0 `Sm LiT jt') AVc.RAGE AVEa0G;- X-3PEOu Y-SPEED L+` cAP SC <<0 S P E ? READING C1/SE0 CM/Sw r, . T,4 V SP.LJ SM(U Tc;-z A.' . - (CM/SEC (Kt+CTS)

2 7.36 0.49 4.43 1487.5 310.2 3 7.b5 4.43 .09 0.50 4.E 1505.3 3' .G 4.51 .09 4 h.61 -1.98 4.18 1525.3 ? 3.1 4.38 .09 5 6.54 1.5? 4.03 1545., 77.4 E.63 4.35 .09 -1.81 4.16 1545.3 ?. 4.27 .05 7 5.88 0.65 3.55 1593.?. 7 ., 4.14 ,u3 9 5.37 -1.15 3.29 1559,3 7 4.r1 .9 9 3.18 -0.13 1.91 1608.8 76. 3.74 .07 10 ?.58 08 1.55 1616.5 7 3.48 it 3.04 .07 -1.23 1.9o 1625.6 792.3 3.32 .007 12 3.65 -3.15 2.89 1636.6 773.2 3.28 13 '.b7 -2.33 2.1.3 1644.6 7 6.2 3.ls .r 14 1.4b -0,92 1.54 1648.1 764.5 3.04 LE 15 1.76 -1.29 1.31 1650.2 7b2.4 2.99 16 .54 ,b -1.35 .87 1651.5 759.2 2.87 17 .17 CE -1.15 .7u 1652.1 755.7 2.72 19 -0.37 C .33 ?3 1651.0 776.7 2.5E .05 19 .33 -0.35 .29 1651.9 755.6 2.43 .05 20 .86 .14 .53 1654.5 756.1 2.32 21 1.69 05 -1.07 1.20 1659.b 752.9 2.26 .04 22 1.53 -0.59 .98 1664.2 751.1 2.19 .04 23 2.30 -1.10 1.53 1671.1 747.9 2.16 24 2.20 .04 -O.E9 1.38 1677.7 745.7 2.12 .04 25 2.72 .50 1.66 1682.5 746.6 2.11 .04 26 3.28 -0.29 1.98 1684.6 746.4 2.11 27 6.37 .04 -9.08 6.65 1688.4 741.0 2.15 G4 23 1.54 -3.50 2.29 1689.3 733.9 29 1.88 2.15 .04 -2.52 1.89 1690.4 737.4 2.15 30 -1.34 .04 2.72 1.82 1689.6 739.0 2.15 31 2.81 G4 -3.75 2.81 1691.3 736.8 2.15 .04 32 6.10 -5.28 4.84 1695.0 733.6 33 2.18 G4 .75 -0.20 .46 1697.2 733.0 2.11 34 9.39 .04 -6.41 6.82 1702.8 729.2 2,14 .04 35 2.59 -1.05 1.68 1709.1 726.5 2.13 . 36 3.09 04 -0.70 1.89 1718.3 724.5 2.12 .04 37 4.17 -0.34 2.51 1730.8 723.5 38 2.13 .0L 4.36 .76 2.66 1743.9 720.3 2.15 39 5.21 .04 .15 3.13 1759.5 726.3 2.19 .04 40 4.13 .50 2.50 1771.3 727.3 41 2.20 .04 3.98 .95 2.46 1783.3 730.6 2.20 42 .C4 3.75 3.56 3.10 1795.1 741.3 2.23 43 .04 4.01 5.71 4.19 1807.1 753.5 2.29 44 4.47 .05 6.30 4.88 1320.6 773.K 2.36 45 4.49 6.92 3 1834.0 799.6 G 0 DATE OF 09SEi2VATION = AUG 17, 1972

LOW TIDE AT 1206

NUM3ER OF DATA POINTS = 85 DIST FROM POINT OF 03SFRVATION TO Y-AXIS = 2122.9 1::T-RS CORRECTION IN ZERO POINT = 3 D'GRcES 1 MINUTES . SECCNCS ANGLE OF ROTATION = 14 DEGFE6S 25 MINUTES 40

DIST FROM x Y CORRECTED AZIM L EVATIZN READING TIME AZIMUTH ELEVATION JBS6RV PT (MITERS)(M0TE-S) IN RAOIGNS Ili RADia^,S

1 1351 213120 911720 1422.3 971.3 834.7 .6271530 1.5932916 2 1355 223410 912140 1346.8 1047.0 810.2 .645431E 1."19.5512 3 14 0 243015 9125 0 1293.9 1116.1 812.8 .6791980 1.5355228 4 14 5 264525 912910 1233.4 1194.4 811.9 .7185161 1.59E-7344 5 1410 2922 5 913320 1178.4 1272.1 5-'=.3 .7640693 1.5979460 6 1417 334130 913325 1117.5 1376.7 331.5 +395498 1.59'4245 7 1422 3735 5 914129 1035.3 1454.7 ?35.2 .9074974 1.6332732 3 1424 391435 914355 1058.3 1495.7 352.. .9364391 1.631:230 9 1426 405510 914515 IC44.9 1528.5 359.3 .9656993 1.601.4125 10 1429 433425 914845 1011.3 1586.3 857.5 1.0120227 1.6024295 11 1431 445530 914920 1005.8 1605.9 855.2 1.0356085 1.6026334 12 1432 46 8 0 915040 993.7 1634.2 865.3 1.0566988 1.8029373 13 1434 473343 915155 962.6 1661.2 867.4 1.0816166 1.6333532 14 1435 4833 0 915330 958.9 1682.4 863.0 1.0988779 1.6039120 15 1437 495220 915425 961.1 1705.9 865.9 1.1219543 1.6040739 16 1438 91 9 0 915525 952.8 2378.5 917.9 1.3423882 1.E043695 17 1439 5150 0 9156 5 947.3 1741.3 867.0 1.1561831 1.5045647 18 1440 524225 915645 941.9 1756.7 867.8 1.1714292 1.6047567 19 1441 533335 9158 0 931.9 1773.4 863.8 1.1863124 1.6051225 20 1442 543240 915830 928.0 1789.7 866.1 1.2034988 1.6052665 21 1443 552245 915920 921.5 1804.6 864.7 1.2180671 1.5055094 22 1444 562125 92 3 0 916.3 1821.1 865.2 1.2351335 1.6057036 23 1445 571040 92 0 5 915.7 1833.7 868.6 1.2494589 1.6057276 24 1446 575910 92 1 5 908.1 1848.3 865.5 1.2635690 1.6360185 25 1447 59 710 92 2 0 901.3 1867.4 864.3 1.2833488 1.6062954 26 1448 595645 92 225 898.3 1880.7 865.0 1.2977709 1.6064754 27 1449 605740 92 220 898.9 1895.9 869.7 1.3154911 1.6063314 28 1450 615655 92 240 896.5 1911.5 871.2 1.3327255 1.6064774 29 1451 625015 92 320 891.6 1926.1 869.6 1.3482414 1.6366723 30 1452 635140 92 345 888.6 1942.3 870.1 1.3661056 1.6067923 31 1453 644225 92 430 883.2 1956.2 867.3 1.3808688 1.6070112 32 1455 6628 0 92 425 883.8 1982.8 872.6 1.4115828 1.6369872 33 1456 671035 92 440 882.1 1993.9 872.6 1.4239679 1.6070592 34 1457 6759 0 92 455 880.3 2006.4 872.6 1.4380540 1.6071312 35 1458 685125 92 5 5 879.1 2019.8 873.3 1.4533001 1.60713?1 36 1459 693845 92 5 45 874.5 2032.4 869.8 1.4670677 1.6773741 37 15 0 7020 5 92 545 874.5 2042.8 870.8 1.4790928 1.6073741 38 15 1 7110 0 92 425 883.8 2054.8 881.2 1.4936131 1.6069972 39 15 2 7150 5 92 420 884.4 2065.0 882.5 1.5052731 1.6069632 40 15 4 731440 92 355 887.4 2086.6 886.7 1.5298753 1.6068403 41 15 5 735730 92 230 897.7 2097.4 897.3 1.5423360 1.6064294 42 15 6 743820 92 155 902.0 2107.9 901.9 1.5542142 1.6062585 43 15 7 7524 0 92 115 906.9 2119.9 906.9 1.5674989 1.6060665 44, 158 76 650 92 025 913.2 2131.3 913.2 1.5799560 1.6058236 45 15 9 764635 9159 50 917.7 2141.9 917.5 1.5915200 1.5055534 46 1510 7730 0 9159 0 924.0 2153.7 923.5 1.6041509 1.6054134 47 1511 7821 0 9153 35 927.3 2167.6 926.2 1.6189861 1.6052905 48 1512 79 220 9157 40 934.6 2179.1 932.9 1.6310083 1.5056236 49 1513 794330 9157 15 937.9 2190.5 935.4 1.6429532 1.6049036 50 1514 803440 9155 56 949.4 2205.5 945.8 1.6578164 1.6644398 51 1515 8113 0 9155 C 956.2 2218.1 951.4 1.6704733 1.602498 52 1516 82 1 5 9154 30 960.4 2230.4 954.'. 1.68:0053 1. 41329 53 1517 824140 9152 25 973.2 2245.9 970.7 1.6948093 1.6034971 54 1518 832850 9152 25 978.2 2257.2 959.0 1.7385289 1.6034971 55 1519 3411 5 9152 0 981.8 2269.6 970.8 1.7268209 1.50, 33771 56 1520 844950 9150 45 993.0 2282.4 980.1 1.7320911 1.6736113 57 1521 853125 9150 20 996.7 2294.9 981.8 1.7441882 1.6025913 58 1522 8615 5 9156 20 996.7 2307.3 979.5 1.7568911 1.6028;13 59 1323 865520 9149 20 1005.8 232u.6 986.2 1.7685991 1.6,26794 60 1525 881045 9143 5 1017.4 2344.7 993.0 1.7905352 1. 502?375 61 1526 83 t>450 9147 30 1023.0 275x.7 995.5 1.8033588 1.6320566 62 1527 893140 9146 5 1036.6 2372.6 1006.1 1.8140734 1.6+016537 63 1528 90 940 9146 15 1035.0 2383.3 1001.7 1.3251269 1.5017)37 64 1529 9041 0 9145 30 1042.4 2394.4 1006.4 1.8342437 1.6014348 65 1530 912350 9144 25 1053.2 2409.1 1013.4 1.8467008 1.66116)9 66 1531 92 150 9142 45 1070.4 2425.8 1026.6 1.8577543 1.6008841 67 1-332 923720 9142 50 1069.5 2436.2 1022.5 1.6680827 1. 60 C7J31 68 1533 931650 9142 10 1076.4 2454.0 1025.5 1.8705711 1.6505161 69 1534 935550 9141 35 1082.6 2463.6 1027.6 1.8909162 1.6"_03+32 70 1535 943225 9141 0 1068.8 2476.5 1029.8 1.9015588 1.60017??_ 71 1536 95 725 914u 20 1096.1 2489.4 1033.0 1.9117396 1.5999323 72 1537 954530 9139 35 1.104.4 2503.7 1036.7 1.9228178 1.5997534 73 1538 962755 9133 50 1112.6 2519.4 1039.8 I.9351549 1.5995445 74 1539 965640 9137 45 1125.1 2532.6 1047.9 1.9435190 1.5992205 75 1540 973225 9133 10 1120.3 2541.7 1039.1 1.9539187 1.59%35"?5 76 1541 98 750 5136 50 1135.8 2558.3 1049.0 1.9642195 1.598:527 77 1342 984150 9136 20 1141.6 2570.7 1050.2 1.9738192 1.3998137 78 1543 9917 5 9135 45 1148.7 2584.2 1051.3 1.9843558 1.5966473 79 1544 100 510 9135.50 1147.7 2598.8 1044.4 1.9983523 1.5996718 80 1545 1303C40 9135 0 1157.6 2610.7 1049.8 2.0057688 1.5981+318 81 1546 101 230 9133 40 1174.2 2627.5 1060.2 2.0150289 1.5980+20 82 15471014210 9133 26 1178.4 2641.0 1058.1 2.0265689 1.7979461] 83 1548 10213 0 9132 15 1192.2 2657.2 1065.7 2.0355381 1.5975311 84 1549 1024945 9131 55 1196.6 2676.6 1063.9 2.0462265 1.5975322 85 1550 10324 0 9131 5 1207.5 2686.2 2068.0 2.0511913 1.5972922

SMOOTHED SMOOTHED SMOOTHED AVERACE AVERAGE X-SPEED Y-SPEED LINEAR SPEED SPEED READING CM/SEC CM/EEC SPEED SMCOTHED-X SMOOTHEC'-Y (CM/SEC) (KNOTS)

2 30.64 -6.44 18.78 1044.8 819.2 18.78 .37 3 24.79 2.53 14.95 1119.2 311.6 16.65 .33 4 25.01 .57 15.01 1194.2 813.3 16.07.32 5 28.94 2.11 17.41 1281.1 819.7 16.42 .32 6 ?0.66 3.43 12.56 1367.3 834.1 15.38.36 7 24.84 4.13 15.11 1442.3 846.5 15.34.36 8 42.19 7.66 28.73 1493.3 855.7 15.97 31 9 36.73 .64 22.02 1537.0 856.4 16.31.32 10 21.16 2.36 12.77 1575.1 860.7 16.03.32 11 29.36 1.65 17.64 1610.3 862.6 16.12.32 12 41.32 5.52 25.01 1635.1 665.9 16.33.32 13 20.14 -0.61 12.09 1659.3 865.2 16.14 .32. 14 39.79 .36 23.37 1683.2 865.4 16.31.32 15 199.26 14. 02 119.85 1922.3 882.2 20.81 .41' 16 32.70 2.24 19.66 1941.9 883.6 20.79 .41 17 23.22 1.04 ib.94 1958.3 884.2 20.71 .41 18 -336.18 -30.01 202.51 1757.1 8b5.2 24.42 .48 19 26.87 -0.52 16.12 1773.2 865.9 24.25.48 20 26.62 -1.69 16.00 1789.2 864.9 24.09.47 21 26.49 .76 15.90 1805.1 865.3 23.93 .47 22 24.45 1.54 14.70 1819.9 866.3 23.7E .47 23 24.27.49 14.57 1834.3 8E6.5 23.59 .45 24 25.73 -0.49 15.44 1649.8 866.3 23.44 .46 25 26.11 -2.14 15.72 1865.4 865.0 23.30.46 26 26.46 2.29 15.94 1881.3 666.4 23.17.46 27 34.51 3.80 14.88 1896.0 868.6 23.03.45 28 25.23 2.55 15.22 1911.2 870.2 22.90 .45 29 25.77 .18 15.46 1926.6 870.3 22.77 .45 30 24.81 -2.12 14.94 1941.5 869.0 22.65 .45 31 31.48 1.69 18.92 1960.4 870.0 22.59 .44 32 14.33.70 8.61 1977.6 870.9 22.15.44 33 27.91 2.90 16.83 1994.3 872.6 22.07.43 34 20.59 .21 12.36 2006.7 872.7 21.92 .43 35 21.39 -1.56 12.87 2019.5 671.8 21.79 .43 36 20.24 -0.99 12.16 2031.7 871.2 21.64 .43 37 19.39 4.54 11.95 2043.3 873.9 21.50 .42 38 18.13 7.08 11.65 2054.2 879.2 21.36.42 39 74.32 8.83 15.52 2068.3 883.5 21.28.42 40 11.83 4.48 7.59 2083.0 880.3 20.91 .41 41 23.86 10.76 15.70 2097.3 895.3 20.84 .41 42 13.51 11.24 12.99 2108.4 902.0 20.73 .41 43 18.84 8.81 12.48 2119.7 907.3 20.62 .41 44 13.87 3.67 12.46 2131.0 912.5 20.52 .40 45 18.78 9.23 12.56 2142.3 918.3 20.41 .40 46 20.17 7.27 12.86 2154.4 922.4 20.32 .4C 47 20.68 3.56 13.43 2166.8 927.5 29.23.40 48 20.46 6.61 12.90 2179.1 931.5 20.14.40 49 21.05 10.85 14.21 2191.7 938.7 20.07.39 50 21.62 10.32 14.37 2204.7 944.2 20.06.39 51 22.17 10.54 14.73 2218.0 950.5 19.94 .39 52 21.36 13.85 15.27 2230.8 959.8 19.88 .39 53 21.75 9.73 14.30 2243.9 964.7 19.82 .39 54 21.78 9.12 14.17 2256.9 970.2 19.75 .39 55 21.37 5.21 13.20 2269.7 973.3 19.68 .39 56 23.92 7.11 13.25 2282.3 977.5 19.61 .39 57 20.93 4.53 12.89 2294.3 980.4 19.53 .38 58 21.22 3.40 12.89 2307.6 982.5 19.46 .38 59 27.68 6.23 17.02 2324.2 986.2 19.43 .33 60 14.27 4.44 8.96 2341.3 991.5 19.21.38 61 28.92 11.06 18.57 2358.7 998.2 19.20.38 62 21.46 4.86 13.20 2371.5 1001.1 19.14.33 63 19.82 6.10 12.44 2383.4 1004.8 19.07.38 64 20.67 4.05 12.64 2395.8 1007.2 19.01.37 65 23.63 13.81 16.42 2410.0 1015.5 18.98 .37 66 23.24 8.96 14.94 2423.9 1020.9 18.94 .37 67 22.33 6.73 13.99 2437.3 1024.9 18.89 .37 68 20.96 .58 12.58 2449.9 1025.2 18.83 .37 69 22.41 4.02 13.66 2463.4 1027.6 18.78 .37 70 21.89 4.17 13.37 2476.5 1030.2 18.73 .37 71 22.28 5.02 13.70 2489.9 1033.2 18.68 .37 72 23.85 5.52 14.69 2504.? 1036.5 18.64 .37 73 24.01 8.26 15.23 2518.6 1041.4 18.61 .37 74 21.11 1.34 12.69 2531.3 1042.2 18.55 .37 75 21.59 5.15 13.32 2544.2 1045.3 18.51 .36 76 21.13 1.27 12.70 2556.9 1046.1 18.45 .36 77 23.80 7.08 14.90 2571.2 1050.3 18.42 .3E 78 22.48 -2.60 13.58 2584.7 1048.9 19.38.36 79 22.25 -0.19 13.35 2598.0 1048.7 1d.3Z.36 80 23.90 4.68 14.61 2612.3 1051.5 19.30.36 81 23.77 7.62 14.98 2626.6 1056.1 18.27.36 82 25.85 8.94 16.39 2642.1 1061.4 19.2E.36 83 23.93 2.03 14.41 2656.5 1062.6 19.22 .3E 84 24.82 5.50 15.26 2671.4 1065.9 18.20.36 85 24.90 3.51 0 2686.2 1068.0 0 0 DATE OF OBSERVATION = AUG 21, 1972

HIGH TIDE AT 1144

NUMBEROF DATA POINTS = 35 DISTFROM POINT OF OBSERVATION TO Y-AXIS = 2122.9 METERS CORRECTIONIN ZERO POINT = 10 DEGREES 15 MINUTES 35 SECONDS ANGLEOF ROTATION = 14 DEGREES 25 MINUTES 40 SECONDS

DIST FROM X Y CCRRECTEC AZIM ELEVATION READING TIME AZIMUTH ELEVATION OBSERV PT (METERS)(METERS) IN KADIfNS IN RADIANS

1 1131 251515 913525 1152.6 1118.9 566.2 .5135142 1.5985518 2 1133 254440 913540 1149.6 1126.4 573.3 .5220703 1.5966238 3 1135 26 740 9136 0 1145.6 1133.8 577.9 .5287603 1.5987227 4 1137 263015 913735 1127.0 1153.5 574.9 .5353310 1.5991316 5 1139 2655 5 913740 1126.1 1158.5 581.4 .5425555 1.5992956 6 1141 271015 913325 1117.5 1166.5 581.2 .54t9E63 1.5994245 7 1142 271745 913910 1109.0 1177.0 578.8 .5491466 1.5996434 8 1143 272655 913915 1108.1 1179.3 580.9 .5518127 1.5996674 9 1144 2735 5 914040 1092.5 1193.9 574.9 .5541908 1.6000793 10 1145 274255 914115 1086.2 1200.6 573.7 .5564671 1.6002492 11 1146 274925 9142 5 1077.3 1209.2 570.7 .5583594 1.6004921 12 1147 275520 914225 1073.8 1213.2 570.5 .5600808 1.6005891 13 1148 275925 9144 0 1057.4 1227.7 562.3 .5612684 1.6010499 14 1149 28 555 914450 1049.1 1235.9 560.1 .5631571 1.6012999 15 1150 28 820 914540 1040.8 1243.2 556.2 .5638618 1.6015328 16 1151 2812 5 914645 1030.2 1252.3 551.6 .5649534 1.6018477 17 1152 281155 914710 1026.2 1256.2 549.3 .5649625 1.6019706 18 1153 281325 914335 1061.7 1226.4 568.8 .5653403 1.6009270 19 1154 2816 0 914930 1004.3 1275.3 538.6 .5660930 1.6026484 20 1155 282020 915025 996.0 1283.0 535.2 .5673526 1.6029153 21 1156 282415 915215 979.7 1297.3 527.4 .5684922 1.6034491 22 1157 282520 915315 971.0 1304.8 523.0 .5688071 1.6037400 23 1158 282755 9155 0 956.2 1317.6 515.6 .5695569 1.6042498 24 1159 283010 915545 950.1 1323.2 512.9 .5702136 1.6044658 25 12 0 283020 915745 933.9 1336.8 504.2 .5702616 1.6050476 26 125 232540 92 415 885.0 1377.3 476.8 .5689C31 1.6069392 27 1210 2814 5 92 920 850.2 1405.1 455.6 .5655352 1.6084177 28 1215 275645 921710 801.6 1444.0 426.1 .5604917 1.6106969 29 1220 273225 9223 0 768.8 1468.8 404.1 .5534141 1.6123943 30 1225 274335 922715 746.6 1489.0 394.5 .5566620 1.6136299 31 1230 274310 923145 724.5 1508.3 383.6 .5579565 1.6149375 32 1235 274645 9236 0 704.7 1525.0 372.9 .5575827 1.6161160 33 1240 273320 923910 690.6 1536.0 364.0 .5551355 1.6170957 34 1245 273150 924145 679.6 1544.7 357.1 .5532432 1.6178465 35 1250 271940 924725 656.6 1563.1 343.0 .5497044 1.6194959

SMOOTHED SMOOTHED SMOOTHED AVERAGE AVERAGE X-SPEED Y-SPEED LINEAR SPEED SPEED READING CM/SEC CM/SEC SPEED SMOOTHEO-X SMOOTHED-Y (CM/SEC) (KNOTS)

2 6.20 5.21 4.86 1126.4 572.5 4.86 .10 3 9.61 2.42 5.95 1137.9 575.4 5.40 .11 4 3.92 2.26 5.52 1148.6 578.1 5.44 .11 5 9.63 .92 5.81 1160.2 579.2 5.53 .11 6 6.51 1.09 3.96 1168.0 580.5 5.22 .10 7 11.54 -0.30 6.93 1174.3 580.3 5.37 .11 8 14.14 -3.48 8.74 1183.4 578.2 5.65 .11 9 13.13 -2.86 8.07 1191.3 576.5 5.84 .11 10 16.63 -5.64 10.54 1201.2 573.1 5.18 .12 11 10.69 -2.49 6.59 1207.7 571.6 6.20 .12 12 15.06 -6.05 9.74 1216.7 568.0 6.42 .13 13 14.78 -5.93 9.55 1225.6 564.4 6.61 .13 14 16.71 -7.90 11.09 1235.6 559.7 6.86 .13 15 13.91 -6.26 9.15 1243.9 556.0 6.98 .14 16 11.30 -5.96 7.66 1250.7 552.4 7.01 .14 17 -9.37 6.95 7.00 1245.1 555.6 7.01 .14 18 12.50 -7.17 8.65 1252.5 552.2 7.09 .14 19 14.90 -7.8. 10.10 1261.5 547.5 7.22 .14 20 39.42 -22.97 27.37 1285.2 533.8 8.06 .16 21 16.40 -8.69 11.14 1295.0 528.5 8.18 .16 22 19.26 -10.89 13.27 1306.6 522.0 8.38 .16 23 14.35 -8.39 9.88 1315.2 517.2 8.43 .17 24 17.77 -10.47 12.37 1325.9 510.9 8.57 .17 25 33.14 -21.60 23.74 1345.7 497.9 9.10 .18 26 9.10 6.36 6.66 1373.1 478.8 8.74 .17 27 11.91 -8.67 8.84 1408.8 452.8 8.75 .17 23 10.17 -8.07 7.79 1439.3 428.6 8.64 .17 29 9.32 -6.79 6.92 1467.3 408.2 8.47 .17 30 7.15 -4.72 5.14 1488.7 394.1 8.16 .16 31 6.24 -3.47 4.28 1507.4 383.7 7.83 .15 32 5.22 -3.39 3.73 1523.1 373.5 7.51 .15 33 4.04 -2.94 3.00 1535.2 364.7 7.18 .14 34 4.23 -3.32 3.23 1547.9 354.7 6.92 .14 35 5.05 3'.90 2.57- 1563.1 343.0 18.48 .36 DATE OF 09SERVATION = AUG 21, 1972

LOW TIDE AT 1641

NUMBEROF DATA POINTS = 26 DIST FROM POINT OF OBSERVATION TO Y-AXIS = 2122.0 M_TEKS CORRECTIONIN ZERO POINT = lu DEGREES 11 MINUTES 50 SECONDS ANGLE OF ROTATION= 14 DEGREES 25 MINUTES 40 SECONDS

GIST FROM X V CORRECTED AZIM ELEVATION READING TIME AZIMUTH ELEVATION UBSERV PT (METERS) (METERS) IN RADIANS IN RADIANS

1 1311 303155 915215 979.7 1317.2 558.6 .6067187 1.6034491 2 1314 303520 9154 0 964.6 1330.1 550.8 .6077143 1.6039589 3 1316 303630 915510 954.8 1338.3 545.5 .6080532 1.6042978 4 1327 304715 915910 922.7 1366.3 529.5 .6111811 1.6054614 5 1330 315140 92 0 25 913.2 1374.9 525.0 .6124647 1.6058236 6 1335 31 1 4U 92 2 C 901.3 1386.0 520.3 .6153730 1.6062654 7 1340 31 015 92 240 896.5 1389.6 517.2 .6149621 1.6064774 8 1345 304825 92 435 882.6 1399.3 506.7 .6115200 1.6070352 9 1350 303920 92 535 875.6 1403.6 500.6 .6085870 1.6073261 10 1355 302810 92 6 5 872.1 1405.0 496.5 .6056300 1.6074730 11 14 0 3016 0 92 650 867.0 1407.5 491.0 .6020912 1.6076997 12 1,45 302030 92 650 867.0 1408.1 492.0 .6033988 1.6076990 13 1410 301015 92 710 864.7 1408.6 488.5 .60C4178 1.6077979 14 1415 30 7 0 92 7 40 861.3 1410.9 486.0 .5994731 1.6079319 15 1420 293440 92 740 861.3 1466.3 479.2 .5900661 1.6079319 16 1425 29 6 0 92 815 857.4 1405.7 471.1 .5817289 1.6081328 17 1430 285050 92 315 857.4 1403.6 467.9 .5773152 1.6081028 18 1435 2828 5 92 845 854.1 1403.3 461.4 .5706994 1.6082468 19 1440 28 8 5 92 810 857.9 1397.4 459.3 .5648814 1.6080798 20 1445 274950 92 810 857.9 1394.9 455.4 .5595710 1.6080738 21 1450 273310 92 310 857.9 1392.7 451.9 .5547246 1.5080788 22 1455 273215 92 8 0 859.0 1391.7 452.3 .5544577 1.6080303 23 15 0 2733 0 92 740 861.3 1389.8 453.6 .5546766 1.6079319 24 15 5 274040 92 540 875.0 1379.2 462.5 .5569049 1.6073501 25 1510 275040 92 510 878.5 1377.6 466.5 .5598139 1.6072061 26 1515 28 520 92 4 5 886.2 1373.1 473.8 .5640807 1.6068912

SMOOTHED SMOOTHED SMOOTHED AVERAGE AVERAGE X-SPEED Y-SPEED LINEAR SPEED SPEED READING CM/SEC CM/SEC SPEED SMOOTHED-X SMOOTHED-Y (CM/SEC) (KNOTS)

2 6.31 -3.87 4.44 1328.5 551.6 4.44 .09 3 13.64 -6.08 9.51 1344.9 541.9 6.47 .13 4 2.26 -1.30 1.56 1359.8 533.3 3.10 .06 5 8.84 -4.66 5.99 1375.7 524.9 3.55 .07 6 2.61 -1.37 1.77 1383.5 520.8 3.18 .06 7 2.72 -2.03 2.04 1391.7 514.7 2.98 .06 8 1.95 -2.19 1.76 1397.6 508.2 2.80 .06 9 1.69 -2.30 1.71 1402.6 501.3 2.66 .05 10 .91 -1.74 1.18 1405.4 496.0 2.50 .05 11 .50 -0.96 .65 140b.9 493.2 2.31 .05 12 .39 -0.88 .58 1408.0 490.5 2.15 .04 13 .38 -0.56 .41 14C9.2 488.8 2.06 .04 14 -0.20 -1.41 .36 1408.6 484.6 1.91 .04 15 -0.32 -1.94 1.13 1467.6 473.8 1.86 .04 16 -3.81 -2.00 1.33 1405.2 472.8 1.82 .04 17 -0.34 -1.99 1.21 1404.2 466.8 1.78 .04 18 -0.92 -1.32 .96 1401.4 462.9 1.73 .03 19 -0.96 -1.39 1.02 1398.5 458.7 1.69 .03 20 -1.17 -1.06 .95 1395.0 455.5 1.65 .03 21 -0.63 -0.78 .60 1393.1 453.2 1.60 .03 22 -0.57 -0.20 .36 1391.4 452.6 1.54 .03 23 -1.50 1.13 1.15 1386.9 456.1 1.52 .03 24 -1.56 1.58 1.33 1382.2 460.9 1.51 .03 25 -1.86 2.24 1.75 1376.6 467.6 1.52 .03 26 -1.17 2.06 6.66 1373.1 473.3 2.40 .05 DATE OF OBSERVATION = AUG 22, 1972

HIGH TIDE AT 1219

NUMBEROF CATA POINTS = 29 DIST FROM POINT OF OBSERVATION TO Y-AXIS = 2122.9 METERS CORRECTION IN ZERO POINT = 1 DEGREES 59 MINUTES 35 SECONDS ANGLE OF ROTATION = 14 DEGREES 25 MINUTES 40 SECONDS

DIST FROM X Y CORRECTED AZIM READING ELEVATION TIME AZIMUTH ELEVATION OBSERV PT (METERS)(METERS) IN RADIANS IN RACIANS

1 10 0 29 610 921710 801.6 1522.9 531.5 .7249654 1.6106369 2 105 302250 922715 746.6 1575.2 507.4 .7472651 1.6136299 3 10 6 303350 922930 735.4 1585.1 501.5 .7504650 1.6142337 4 10 7 304425 9232 0 723.2 1595.5 494.9 .7535449 1.6150124 5 10 8 305650 923355 714.3 1603.3 490.6 .7571557 1.6155673 6 109 31 640 923620 703.2 1613.2 494.4 .7600160 1.6162720 7 1010 311840 923840 692.8 1622.4 479.1 .7635068 1.6169493 A 1011 313220 924155 678.9 1634.3 471.4 .7674834 1.6173945 9 1012 3142 0 9244 0 670.3 1641.9 466.7 .7702964 1.6185032 10 1013 314810 924550 662.9 1648.0 462.4 .7720898 1.6190341 It 1014 3157 0 924820 653.0 1656.2 456.7 .7746599 1.6197629 12 1315 3210 0 925045 643.7 1664.5 452.0 .7784409 1.6204646 13 1020 3241 5 93 120 606.1 1695.2 429.5 .7874828 1.6235438 14 1025 3225 0 931326 568.4 1719.9 400.9 .7828644 1.6270346 15 1030 3222 0 932555 533.6 1744.3 376.6 .7819317 1.6306934 16 1035 32It 0 934050 497.5 1768.3 349.4 .7787318 1.6350329 17 1040 315910 935710 463.1 1792.1 324.1 .7752897 1.6397962 18 1042 313815 94 515 447.8 1801.2 311.5 .7692048 1.6421367 19 1045 311720 9416 0 428.9 1812.9 296.5 .7631199 1.6452646 20 1047 31 620 942535 413.4 1823.2 284.8 .7599200 21 1.6480507 1050 3056 0 944145 389.6 1839.7 267.5 .7569157 1.6527531 22 1053 301530 95 0 5 365.7 1854.1 247.9 .7451328 1.6580875 23 1055 294245 951240 350.9 1862.8 235.4 .7356058 1.6617463 24 1057 283240 9522 0 340.6 1865.7 223.4 .7152195 1.6644633 25 11 0 2525 0 9554 0 309.7 1878.4 190.0 .6606313 1.6737721 26 11 2 193630 963740 275.4 1889.5 146.1 .5592554 1.6864721 27 11 5 19 2 5 972425 246.2 1910.7 124.8 .5317915 1.7000717 28 11 7 215320 981320 221.5 1940.0 124.9 .5990593 1.7143011 29 1118 2631 0 1004340 168.9 1991.5 166.2 .6798300 1.7580337

SMOOTHED SMOOTHED SMOOTHED AVERAGE AVERAGE X-SPEED Y-SPEED LINEAR SPEED READING SPEED CM/SEC CM/SEC SPEED SMCOTHEG-X SMOOTHED-Y (CM/SEC) (KNOTS)

2 12.72 -6.01 8.44 1561.1 513.5 8.44 .17 3 40.31 -20.37 27.10 1585.2 561.3 11.55 .23 4 15.86 -9.35 11.05 1594.8 495.7 11.48 .23 5 15.64 -9.49 10.97 1604.1 490.0 11.41 .22 6 14.95 -8.77 10.40 1613.1 484.7 11.30.22 7 16.96 -10.67 12.02 1623.3 478.3 11.37.22 8 15.91 -9.84 11.23 1632.8 472.4 11.36.22 9 14.23 -9.24 10.18 1641.4 466.9 11.26 " .22 10 12.19 -3.14 8.79 1648.7 462.0 11.07.22 11 12.61 -3.17 9.01 1656.3 457.1 10.93 .21 12 26.24 -18.31 19.20 1672.0 446.1 11.48 .23 13 7.08 -6.21 5.65 1693.2 427.5 10.02.20 14 8.36 -8.45 7.34 1719.3 402.1 9.46 .19 15 8.18 -3.90 7.25 1744.3 375.4 9.11 .18 16 9.02 -3.53 7.03 1768.4 349.9 3.81 .17 17 6.32 -7.17 5.74 1787.4 328.3 8.43 .17 18 12.26 -14.71 11.49 1802.1 310.7 8.57 .17 19 5.76 -7.29 5.57 1812.4 297.6 9.37 .16 20 10.70 -12.21 9.74 1825.3 282.9 9.43 .17 21 7.63 -5.98 7.07 1839.3 266.7 8.35 .16 22 7.32 -9.17 7.02 1852.2 250.3 8.28 .1E 23 7.23 -12.26 8.54 1960.9 235.6 8.29 .16 24 6.74 -16.09 10.47 1869.0 216.3 8.36 .16 25 4.94 -16.54 10.36 1877.3 186.5 8.46 .17 26 12.50 -27.38 18.06 1892.9 153.6 9.77 .17 27 11.41 -12.06 9.96 1913.4 131.9 8.83 .17 28 23.36 -11.09 18.27 1947.4 118.6 9.11 .18 29 6.68 -1.98 3.15 1991.5 106.2 5.32 .10 DATE OF OBSERVATION = AUG22v 1972

LOW TIDE AT 1730

NUMBER OFDATA POINTS= 34 DIST FROMPOINT OFOBSERVATION TO Y-AXIS= 2122.9M_TLRS CORRECTIONIN ZEROPOINT = 2 DEGREES 0 MINUTES15 SECONDS ANGLE OF ROTATION = 14 DEGREES 24 MINUTES40SECONGS

DIST FROM X Y CORRECTED AZIM READING EL=VATION TIME AZIMUTH ELEVATION O6SERV PT (METERS)(METERS) IN RADIANS IN YAOIAtiS

1 1325 2543 0 913540 1149.6 1219.5 711.1 .6668369 1.5986238 2 1330 2540 0 914240 1071.2 1279.6 660.5 .6645097 1.E006601 3 1335 252450 914755 1019.1 1317.9 ° 624.3 .6600953 1.6021366 4 1340 25 120 915510 954.8 13E4.7 580.3 .653260E 1.6042378 5 1342 244720 915730 935.9 1377.4 565.8 .6491887 1.6049756 6 1345 2422 5 92 125 905.7 1397.5 542.2 .6418442 1.E0E1145 7 1347 24 7 0 92 425 883.8 1412.7 526.0 .6374567 1.6069372 8 1350 233920 92 820 856.8 1430.3 504.4 .6294082 1.6081268 9 1352 231745 9211 0 839.3 1441.3 489.8 .6231284 10 1.6089035 1355 225645 921555 809.0 1463.1 468.1 .6170202 1.E103311 11 1357 223440 921830 793.9 1472.5 455.2 .6105964 1.6110339 12 14 0 214715 922330 766.2 1489.2 430.6 .5968648 1.6125333 13 14 2 211115 922555 753.5 1495.3 416.9 .5863324 1.6132401 14 14 4 203315 922350 764.4 1481.5 415.9 .5752789 15 1.6126343 14 6 195615 923110 727.2 -1508.5 389.1 .5645163 1.6147695 16 14 8 19 725 923415 712.7 1515.4 372.7 .5503102 1.6156662 17 14 9 183320 923530 707.0 1516.7 363.7 .5403963 1.6160291 18 1410 181015 9237 0 700.2 1520.1 356.2 .5336816 1.6164669 19 1411 173630 9239 0 691.4 1524.3 345.8 .5238E37 1.6170487 20 1412 171220 923940 663.5 1524.3 340.2 .5168341 1.6172407 21 1413 164120 924055 683,2 1526.0 332.2 .5078169 1.6176036 22 1414 16 135 9242 5 678.2 1526.5 322.9 .4962529 1.6179454 23 1415 152820 924340 671.6. 1529.2 314.1 .4865819 1.6184043 24 1416 145420 924325 672.7 1525.2 308.6 .4766920 25 1.6183323 1417 14 915 9244 0 670.3 1523.4 299.7 .4635775 1.6185032 26 1418 133750 924440 667.6 1523.1 293.0 .4544374 27 1.6186952 1419 125320 924525 664.5 1522.1 283.9 .4414945 1.6189141 28 1420 1219 0 9246 0 662.2 1521.4 276.9 .4315079 1.6190350 29 1421 it4040 9247 0 658.2 1522.0 268.6 .4203555 30 1.6193759 1422 105920 924710 657.5 1519.4 261.1 .4083333 1.6194239 31 1425 102720 9248 0 654.3 1520.0 254.2 .3990245 1.6196668 32 1424 949 0 924820 653.0 1518.4 247.0 .3878750 1.6197628 33 1425 91440 924735 655.9 1513.3 242.0 .3778855 1.6195439 34 1426 855 0 924810 653.6 1514.0 237.7 .3721671 1.6197148 SMOOTHED SMOOTHED SMOOTHED AVERAGE AVERAGE X-SPEED Y-SPEED LINEAR SPEED SPEED READING CM/SEC CM/FFC SPEED SMOOTHEO-X SMOOTHED-Y (CM/SEC) (KNOTS)

2 17.61 -15.18 13.95 1272.3 665.5 13.95 .27 3 16.13 -14.53 13.02 1320.7 621.9 13.49 .27 4 10.87 -10.53 9.08 1353.3 590.3 12.02.24 5 22.10 -22.97 19.13 1379.8 5E2.3 12.85 .25 6 8.89 -10.06 8.05 1395.3 544.7 12.13.24 7 14.69 -17.06 13.50 1413.5 524.2 12.26.24 8 9.12 -9.70 7.59 1428.1 506.7 11.70 .23 9 14.01 -16."9 12.80 1444.9 487.4 11.78 .23 10 7.82 -9.11 7.20 1459.0 471.0 11.32.22 11 13.29 -16.45 12.69 1474.9 451.3 11.41 .22 12 5.96 -9.43 6.72 1485.6 434.2 11.01.22 13 2.51 -10.91 6.72 1488.7 421.1 10.77 .21 14 5.36 -11.53 7.63 1495.1 407.3 10.61 .21 15 5.60 -12.28 8.10 1561.3 392.6 10.49 .21 16 9.76 -14.49 10.48 1513.5 375.2 10.49 .21 17 6.44 -18.28 11.63 1517.4 364.2 10.52 .21 18 4.90 -14.92 9.43 1520.3 355.2 10.49 .21 19 4.25 -13.06 8.24 1522.9 347.4 10.44 .21 20 3.26 -13.33 8.23 1524.8 339.4 10.40 .20 21 1.26 -12.74 7.68 1525.6 331.13 10.34.20 22 2.71 -14.52 8.86 1527.2 323.1 10.31.20 23 -17.41 -13.08 7.85 1527.0 315.2 10.2E.20 24 -1.74 -12.89 7.81 1525.9 307.5 10.21.20 25 -3.40 -11.E9 7.30 1523.9 300.5 10.16.20 26 -1.74 -13.72 8.30 1522.9 292.2 10.12.20 27 -1.09 -12.64 7.61 1522.2 284.6 10.07.20 28 -0.60 -13.57 8.15 1521.8 276.5 10.04.20 29 -1.49 -12.69 7.67 1521. 0 268.9 10.00.20 30 -0.78 -12.64 7.60 1520.5 261.3 9.95 .20 31 -0.66 -4.00 2.44 1519.3 254.1 9.58 .19 32 3.42 10.61 -6.69 1517.2 247.7 9.85 .19 33 -?. 34 -9.18 5.86 1515.2 242.2 9.79 .19 34 -2.02 -7.56 16.13 1514.0 237.7 8.39 .17 DATE OF OBSERVATION = SEPT 8, 1972

HIGH TIDE AT 1342

NUMBER OF DATA POINTS = 29 DIST FROM POINT OF OBSERVATION TO Y-AXIS = 2122.9 METERS CORRECTION IN ZERO POINT = U DEGREES 0 MINUTES 0 SECONDS ANGLE OF ROTATION = 14 DEGREES 25 MINUTES 40 SECONDS

DIST FROM X Y CORRECTED AZIM ELEVATTCN READING TIME AZIMUTH ELEVATION OBSERV PT (METERS)(METERS) IN RACI.NS IN RADIANS

1 1131 274940 914540 1040.8 1352.6 699.9 .7374959 1.6015329 2 1132 283740 9147 0 1027.7 1371.9 701.b .7514584 1.6019226 3 1133 292020 914740 1021.4 1385.3 706.5 .7638704 1.6021146 4 1134 30 340 Si50 0 999.7 1409.7 700.6 .7764744 1.6027953 5 1136 313343 915350 966.1 1451.7 694.8 .9026547 1.6039080 6 1137 321450 915520 953.5 1468.7 693.6 .8146289 1.6043458 7 1138 33 630 915520 953.5 1479.2 703.4 .8296590 1.b043458 8 1139 34 120 915740 934.6 1503.0 699.4 .845EC98 1.6050236 9 1140 35 520 92 0 20 913.8 1529.6 695.1 .8642267 1.6057996 10 1141 36 3 0 92 0 40 911.3 1543.0 703.0 .o81CG22 1.6058956 11 1142 37 340 92 350 888.0 1570.0 694.9 .8986475 1.6068163 12 1143 38 740 92 520 877.3 1589.5 696.6 .9172644 1.6072541 13 1144 391440 92 7 5 865.2 1610.3 697.1 .9367540 1.6077639 14 1145 401020 92 820 856.8 1626.6 698.4 .9529477 1.6081268 15 1146 412140 9211 5 838.8 1651.3 693.7 .9736969 1.6089275 16 1147 4223 0 9215 0 814.4 1677.1 681.6 .9915400 1.6100671 17 1148 433220 921420 818.5 1688.8 693.9 1.6117174 1.6098722 18 1150 46 430 921630 805.5 1726.3 701.1 1.0559701 1.6105020 19 1151 472220 922110 778.8 1754.9 686.4 1.0786116 1.6118605 20 1152 484750 922140 776.1 1773.3 692.9 1.1034e14 1.6120045 21 1153 50 630 9224 0 763.5 1794.6 689.3 1.1263651 1.6126952 22 1154 5132 0 9224 0 763.5 1811.9 697.3 1.1512378 1.6126852 23 1155 53 5 0 9224 5 763.0 1831.0 705.0 1.1782901 1.6127092 24 1156 543740 922730 745.4 1856.5 696.1 1.2052442 1.6137019 25 1157 56 6 0 9229 0 737.8 1876.9 695.6 1.2309409 1.6141397 26 1158 5740 0 923020 731.3 1898.1 695.9 1.2582848 1.6145266 27 1159 59 8 0 923140 724.9 1917.8 695.2 1.2838826 1.6149135 28 12 0 605640 923410 713.1 1942.9 690.0 1.3154911 1.6156422 29 1221 9718 0 923420 712.3 2386.6 661.7 1.9500170 1.6156902

SMOOTHED SMOOTHED 'SMOOTHED AVERAGE AVERAGE X-SFEED Y-SPEED LINEAR SPEED SPEED READING CM/SEC CM/SEC SPEED SMOOTHED-X SMOOTHED-Y (CM/SEC) (KNOTS)

2 28.93 4.71 17.59 1369.9 702.7 17.59 .35 3 31.76 .39 19.C6 1389.0 702.9 18.32.36 4 44.30 -3.80 26.68 1415.6 700.6 21.11.42 5 23.18 -3.59 14.07 1443.4 696.3 18.29 .3E 6 38.59 1.56 23.17 1466.5 697.3 19.11.38 7 28.53 2.56 17.19 1483.6 698.8 18.83 .37 8 33.85 .80 20.31 1503.9 699.3 19.02.37 9 35.42 -0.22 21.25 1525.2 699.1 19.27.38 11 79.14 -31.27 51.06 1796.3 624.7 33.29.65 12 66.24 -16.11 40.93 1636.0 615.0 33.37.67 13 53.E8 -16.26 39.43 1874.2 605.3 34.21.67 14 39.64 -5.20 35.92 1910.0 602.2 34.32.69 15 79.60 -2.32 +7.79 1957.3 600.8 35.11.69 16 39.66 3.27 23.87 2005.4 604.7 33.92 .67 17 79.55 2.10 47.75 2053.1 605.9 34.62 .68 13 56.56 4.92 34.06 2087.0 603.9 34.59 .63 19 57.92 1.69 34.77 2121.8 609.9 34.E0 .68 20 58.52 -1.61 35.12 2156.9 638.9 34.62 .68 21 58.92 -4.99 35.49 2192.2 606.0 34.66 .69 22 57.94 -3.33 35.12 2227.0 601.0 34.68 .63 23 50.20 -12.50 30.89 2263.1 593.5 34.76 .69 24 58.33 -15.74 36.54 2298.4 584.0 34.83 .69 25 60.23 -7.38 36.41 2334.6 579.6 34.88 .69 26 464.87 -28.95 279.46 2613.5 562.2 43.32 .85 27 24.27 -2.71 14.65 2919.3 523.1 31.28.62 28 91.99 -15.86 27.21 3250.5 471.0 13.10.26 DATEOF OBSERVATION = SEPT 8, 1972

HIGH TIDE AT 1342

NUMBEROF DATA POINTS = 28 DIST FROM POINT OF OBSERVATIO;4 TO Y-AXIS = 2122.9 METERS CORRECTION IN ZERO POINT = 2.1 OEGRLES ANGLE OF ROTATION =14 DEGREES 25 MINUTES 4o SECONDS

GIST FROM X Y CORRECTEC AZIM ELEVATION READING TIME AZIMUTH ELEVATION O9SERV PT (METERS)(METERS) IN RADIANS IN RADIANS

1 1131 30.8 358.2 1018.2 1379.8 696.1 .7527204 1.6022129 2 1135 33.6 358.1 964.6 1452.0 693.0 .8015896 1.6039583 3 1136 33.7 357.9 872.7 1517.0 628.0 .8033350 1.6074489 4 1137 36.4 357.9 872.7 1547.3 655.9 .8504589 1.6074489 5 1138 37.9 357.8 833.0 1590.0 640.2 .9766388 1.6091943 6 1139 39.6 357.8 833.0 1609.2 655.7 .9063894 1.6091943 7 1140 41.4 357.7 796.7 1651.5 642.3 .9377254 1.6109396 8 1141 43.0 357.7 796.7 1669.7 655.2 .9656507 1.6109396 9 1142 45.1 357.7 796.7 1694.0 671.4 1.0023026 1.6109396 10 1143 47.7 357.5 732.9 1756.8 634.9 1.0476812 1.6144303 11 1144 50.0 357.4 704.7 1795.6 624.1 1.0878238 1.6161756 12 1145 52.7 357.3 678.5 1836.4 615.1 1.1349477 1.6179209 13 1146 55.5 357.2 654.3 1876.0 605.9 1.1838169 1.6196662 14 1147 58.0 357.1 631.7 1910.3 594.8 1.2274502 1.6214116 15 1148 61.2 357.1 631.7 1943.8 605.8 1.2833007 1.6214116 16 1150 67.9 357.0 610.6 2019.3 601.7 1.4002378 1.6231569 17 1151 71.1 357.0 610.6 2053.0 606.6 1.4560864 1.E2315t9 18 1152 74.3 357.0 610.6 2087.0 609.5 1.5119390 1.6231569 19 1153 77.5 357.0 610.6 2121.1 610.6 1.5677895 1.6231569 20 1154 80.9 357.0 610.6 2157.3 609.6 1.6271307 1.6231569 21 1155 84.2 357.0 610.6 2192.3 606.6 1.6847266 1.6231569 22 1156 87.5 357.0 619.6 2227.1 601.6 1.7423225 1.6231569 23 1157 90.8 357.0 610.6 2261.6 594.6 1.7999184 1.6231569 24 1158 94.6 357.0 610.6 2300.7 584.1 1.3662409 1.6231569 25 1159 97.8 357.3 610.6 2333.0 573.3 1.9220915 1.6231569 26 1160 100.7 357.1 631.7 2370.0 581.3 1.9727061 1.6214116 27 1221 140.0 358.4 1145.6 3137.5 532.0 2.6566208 1.5987223 28 1227 145.0 358.5 1222.0 3250.5 471.0 2.7455873 1.5969770

SMOCTHED SMOOTHED SMOOTHED AVERAGE AVERAGE X-SPEED Y-SPEED LINEAR SPEED SPEED READING CM/SEC CM/SEC SPEED SMOOTHED-X SMOOTHED-Y (CM/StC) (KNOTS)

2 29.09 -9.89 18.43 1449.6 672.4 18.43 .36 3 93.05 -22.34 57.42 1505.4 659.0 26.23.52 4 76.70 -29.34 49.23 1551.4 641.4 30.07.59 5 51.25 15.39 32.11 1582.2 650.6 30.3E.60 6 57.94 -7.53 35.06 1616.9 646.1 30.95 .61 7 44.25 8.35 27.02 1643.5 651.1 30.51 .60 6 47.07 9.70 28.72 1671.7 656.3 30.33.60 9 58.45 -4.13 35.16 1706.8 653.8 39.71 .61 10 69.98 -17.31 43.26 1748.8 643.5 31.81 .63 10 37.19 -2.53 22.36 1547.5 697.6 19.58 .39 11 33.26.94 19.96 15E7.5 698.1 19.61 .39 12 37.43 -3.28 22.55 1589.9 696.2 19.86 .39 13 31.45 1.97 18.90 1608.8 697.3 19.78 .39 14 34.34 -1.E1 20.62 1629.4 696.4 19.34.39 15 37.03 -9.60 22.84 1651.6 691.2 20.04.39 16 34.55 -2.52 20.79 1672.4 689.7 20.09.40 17 +1.66 4.13 25.12 1697.4 692.2 20.38.40 18 21.61 1.34 12.99 1723.3 693.8 19.61 .39 19 46.95 -0.55 28.17 1751.5 693.5 20.03.39 20 37.98 -6.55 23.12 1774.3 689.5 20.18.40 21 31.63 6.04 19.35 1793.3 693.2 20.14.40 22 32.09 6.73 19.67 1812.5 697.2 20.12.40 23 34.34 3.78 20.73 1833.1 699.5 20.15.40 24 3E.14 -0.91 21.69 1854.8 698.9 20.21.40 25 37.24 -5.09 22.55 1877.2 695.9 20.30.40 26 34.06 -0.49 20.44 1897.6 695.6 20.31.40 27 36.60 -3.15 22.04 1919.6 693.7 20.37.40 28 271.41 -18.58 163.24 2082.4 682.3 25.29.50 29 24.14 -1.63 .37 2386.6 661.7 11.20.22 APPENDIX V

Appendix V contains data collected during theJanuary 2- 5, 1973, cruise offshore from Newport to Moolack Beach. The map shows the 40-hour paths of six surface drogues, identified bycolor, with the vertical axis approximating the trend of thecoastline. The drogues were set out ina line beginning southwest of YaquinaHead; points of release are circled. Also included isa listing of the hydrographic data collected at times of tidal changes during the periodof drogue tracking. Columns are identified above Station D-1.

HYDROGRAPHIC DATA

CRUISE Y7301A 3-5 January 1973

Station D-1 Wind Direction 12° Latitude 44 42.8 N WindVelocity 08 Knots 124 08.8 W Swell Direction 30° Time 1855 (Jan. 3) Height 07 Feet Period 10 Seconds Depth Temperature Salinity e. (°/oo)

0 9.26 30.98 23.97 10 9.35 31.00 23.97 20 10.16 32.30 24.84 30 10.10 32.95 25.36

Station D-2 Wind Direction 07° Latitude 44 43.4 N Wind Velocity 11 Knots Longitude 124 09.7 W SwellDirection 31° Time 0220 (Jan. 4) Height 05 Feet Period 08 Sec.

0 9.20 30.92 23.93 10 9.87 32.08 24.73 20 9.53 32.38 25.01 30 9.62 32.63 25.19

Station D-3 Wind Direction 09° Latitude 44 42.5 N WindVelocity 05 Knots Longitude124 09.4 SwellDirection 32° Time 0900 (Jan. 4) Height 04 Period 07

0 9.01 30.92 23.96 10 9.75 32.08 24.75 20 10.01 32.38 24.93 30 10.07 32.63 25.11

Station D-4 Wind Direction 08° Latitude 44 42.7 N WindVelocity 08 Knots Longitude 124 10.5 W SwellDirection 31° Time 1340 (Jan. 4) Height 02 Feet Period 07 Sec. 0 8.93 30.83 23.90 10 9.52 32.42 25.05 20 9.77 32.67 25.20 30 9.92 32.73 25.22 Station D-5 WindDirection Latitude 44 44.9 N WindVelocity 07 Knots Longitude 124 08.9 W Swell Direction 31° Time 1947 (Jan. 4) Height 04 Feet Period 08 Sec.

0 8.88 30.82 23.90 10 9.25 31.27 24.19 20 9.54 32.36 25.00 30 10.01 32.80 25.26 40 10.42 30.85 23.68

Station D-6 WindDirection 19 Latitude 44 40.1 N WindVelocity 10 Knots Longitude 124 12.0 W Swell Direction 31° Time 0310 (Jan. 5) Height 04 Feet Period 07 Sec.

0 9.00 30.82 23.88 10 9.16 31.27 24.21 20 10.20 32.36 24.89 30 10.17 32.80 25.23

Station D-7 Wind Direction 25 Latitude 44 41.0 N Wind Velocity 14 Knots Longitude 124 10.1W Swell Direction 31 Time 0930 (Jan. 5) Height 03 Feet Period 07 Sec.

0 10.11 32.95 25.36 10 10.20 32.78 25.21 20 10.21 32.60 25.07 30 9.78 31.71 24.45

Station D-8 WindDirection Latitude 44 43.5 N WindVelocity 12 Knots Longitude 124 07.4 W Swell Direction 31° Time 1410 (Jan. 5) Height 03 Feet Period 07 Sec.

0 8.69 31.36 24.35 10 9.05 31.79 24.63 20 10.08 32.35 24.89 30 10.19 32.83 25.25 Station D-9 Wind Direction Latitude 44 40.4 N Wind Velocity Longitude 124 10.1 W Swell Direction 29° Time 2010 (Jan. 5) Height 03 Feet Period 06 Sec.

0 8.69 31.28 24.28 10 9.69 31.92 24.62 20 10.23 32.58 25.05 30 10.13 32.75 25.20 0

i

11

I

u

n Il

to