Immmimimi Novice Notes Drew Diamond VK3XU Lot 2

Total Page:16

File Type:pdf, Size:1020Kb

Immmimimi Novice Notes Drew Diamond VK3XU Lot 2 immmimimi Novice Notes Drew Diamond VK3XU Lot 2. Carters Road, Wonga Park. Vic. 3115 NEW TIME CODE FOR VNG MINUTE PULSE MINUTE identifier SECONDS MARKERS NORMALLY 50ms. OF 1000Hz SECONOS MARKERS SS-58 ARE 5ms OF 1000Hz SECONDS MARKER 59 OMITTED. MINUTE MARKER IS 500ms. OF 1000Hz. DURING 5th,10th, 15th ETC SECONOS MARKERS 50- 58 ARE 5 ms. Of 1000 Hz. NORMAL SECONDS MARKERS OF 50ms OF 1000 Hz EMPHASISED BY 50ms. OF 900Hz TONE IMMEDIATELY FOLLOWING SECONOS MARKER 20 200 ms DURATION. DESIGNATES THE START OF THE TIME INFORMATION. TIME CODE TRANSMISSION /BINARY "0"- 100ms. DURATION \BINARYT — 200ms. DURATION PARITY CHECK BITS P,, P2 ,P3 COUNTING BINARY "ONES" OF EACH GROUP PLUS THE CORRESPONDING PARITY ST GIVES AN EVEN NUMBER VNG TIME CODE FORMAT VNG Time Coda Format. A short wave standard frequency and time completely every minute. signal broadcasting service VNG has operated For maximum security under marginal re- REGION 2 Conference from Radio Lyndhurst, Victoria, for 20 years. In commemoration of the IARU Region 2 ception conditions, the so-called "slow code" Conference, which will be held in Buenos Aires Telecom Research Laboratories were respon- at a bit rate of one Hertz has been adopted, the from October 20-25, 12 local radio clubs in sible for the establishment of the service and complete information thus extending over most Argentina will be operating special event stations continue to maintain the carrier frequencies of one minute. The low transmission rate also signing AZ1ARU/1; AZ1ARU/2 ... AZ1ARU/12. arid instant of time, as transmitted, to within permits decoding by the use of simple re- The operations will continue until October 31. close tolerances of the Telecom (ATC) Standard corders. QSL cards for AZ1ARU/5 should go to LU6FAZ. of Time and Frequency operated at the Clayton As VNG has Australia-wide coverage, the QSL information for the other 11 stations is, as yet, Laboratories complex. upgraded time service will have many new unknown. An updating of the broadcast time code applications where HF radio reception is the From The AfWL Lemr May 23,1986 format has been implemented which adds time only convenient source of accurate time infor- of day and day number of the year information WHAT TIME IS IT? mation. Such applications include surveying, There are many interesting stations to listen for without alteration to the existing minute, five- data logging, telemetry systems and shipping. when you want to catch the time: WWV from Fort minute and 10-minute identifying sequences or The method of encoding used complies with Collins, CO on 2.5; 5; 10; 15; and 20 MHz — DUT1 coding. The DUT1 Code relates the CCIR recommendations for Time Codes and is WWVH from Hawaii on 2.5; 5; 10 and 15 MHz — deviation between the Earth's angular position similar to the "slow codes" transmitted from JJY from Tokyo on 2.5; 5; 8; 10 and 15 MHz — time scale UT1 and the Co-ordinated Universal the standard frequency and time signal CHU from Ottawa on 3.330; 7.335 and 14.670 MHz Time Scale UTC. stations MSF at Rugby in England and DCF77 — VNG from Lyndhurst, Australia on 4.500; 7.500 The addition of this extra information in near Frankfurt, West Germany. and 12.000 MHz — OLB5 from Czechoslovakia on binary-coded-decimal (BCD) form, will enable The new code has been on air since May 14, 3.170 MHz — VWC from Calcutta on 12.744 MHz time code receivers to operate directly from the 1986 and has created renewed interest in the — and DOA from the Federal Republic of received signal by decoding the pulse se- VNG service provided by Telecom. Germany on 2.775 and 12.763 MHz. quences and updating a receiver's time output From The ARRL Letter May 23,1966 Page 26 - AMATEUR RADIO, August 1986 .
Recommended publications
  • Reception of Low Frequency Time Signals
    Reprinted from I-This reDort show: the Dossibilitks of clock svnchronization using time signals I 9 transmitted at low frequencies. The study was madr by obsirvins pulses Vol. 6, NO. 9, pp 13-21 emitted by HBC (75 kHr) in Switxerland and by WWVB (60 kHr) in tha United States. (September 1968), The results show that the low frequencies are preferable to the very low frequencies. Measurementi show that by carefully selecting a point on the decay curve of the pulse it is possible at distances from 100 to 1000 kilo- meters to obtain time measurements with an accuracy of +40 microseconds. A comparison of the theoretical and experimental reiulb permib the study of propagation conditions and, further, shows the drsirability of transmitting I seconds pulses with fixed envelope shape. RECEPTION OF LOW FREQUENCY TIME SIGNALS DAVID H. ANDREWS P. E., Electronics Consultant* C. CHASLAIN, J. DePRlNS University of Brussels, Brussels, Belgium 1. INTRODUCTION parisons of atomic clocks, it does not suffice for clock For several years the phases of VLF and LF carriers synchronization (epoch setting). Presently, the most of standard frequency transmitters have been monitored accurate technique requires carrying portable atomic to compare atomic clock~.~,*,3 clocks between the laboratories to be synchronized. No matter what the accuracies of the various clocks may be, The 24-hour phase stability is excellent and allows periodic synchronization must be provided. Actually frequency calibrations to be made with an accuracy ap- the observed frequency deviation of 3 x 1o-l2 between proaching 1 x 10-11. It is well known that over a 24- cesium controlled oscillators amounts to a timing error hour period diurnal effects occur due to propagation of about 100T microseconds, where T, given in years, variations.
    [Show full text]
  • Five Years of VLF Worldwide Comparison of Atomic Frequency Standards
    RADIO SCIENCE, Vol. 2 (New Series), No. 6, June 1967 Five Years of VLF Worldwide Comparison of Atomic Frequency Standards B. E. Blair,' E. 1. Crow,2 and A. H. Morgan (Received January 19, 1967) The VLF radio broadcasts of GBR(16.0 kHz), NBA(18.0 or 24.0 kHz), and NSS(21.4 kHz) have enabled worldwide comparisons of atomic frequency standards to parts in 1O'O when received over varied paths and at distances up to 9000 or more kilometers. This paper summarizes a statistical analysis of such comparison data from laboratories in England, France, Switzerland, Sweden, Russia, Japan, Canada, and the United States during the 5-year period 1961-1965. The basic data are dif- ferences in 24-hr average frequencies between the local atomic standard and the received VLF radio signal expressed as parts in 10"'. The analysis of the more recent data finds the receiving laboratory standard deviations, &, and the transmission standard deviation, ?, to be a few parts in 10". Averag- ing frequencies over an increasing number of days has the effect of reducing iUi and ? to some extent. The variation of the & with propagation distance is studied. The VLF-LF long-term mean differences between standards are compared with the recent portable clock tests, and they agree to parts in IO". 1. Introduction points via satellites (Steele, Markowitz, and Lidback, 1964; Markowitz, Lidback, Uyeda, and Muramatsu, Six years ago in London, the XIIIth General Assem- 1966); improvements in the transmission of VLF and bly of URSI adopted a resolution (No. 2) which strongly LF radio signals (Milton, Fey, and Morgan, 1962; recommended continuous very-low-frequency (VLF) Barnes, Andrews, and Allan, 1965; Bonanomi, 1966; and low-frequency (LF) transmission monitoring US.
    [Show full text]
  • NIST Time and Frequency Services (NIST Special Publication 432)
    Time & Freq Sp Publication A 2/13/02 5:24 PM Page 1 NIST Special Publication 432, 2002 Edition NIST Time and Frequency Services Michael A. Lombardi Time & Freq Sp Publication A 2/13/02 5:24 PM Page 2 Time & Freq Sp Publication A 4/22/03 1:32 PM Page 3 NIST Special Publication 432 (Minor text revisions made in April 2003) NIST Time and Frequency Services Michael A. Lombardi Time and Frequency Division Physics Laboratory (Supersedes NIST Special Publication 432, dated June 1991) January 2002 U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary TECHNOLOGY ADMINISTRATION Phillip J. Bond, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arden L. Bement, Jr., Director Time & Freq Sp Publication A 2/13/02 5:24 PM Page 4 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY SPECIAL PUBLICATION 432 (SUPERSEDES NIST SPECIAL PUBLICATION 432, DATED JUNE 1991) NATL. INST.STAND.TECHNOL. SPEC. PUBL. 432, 76 PAGES (JANUARY 2002) CODEN: NSPUE2 U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 2002 For sale by the Superintendent of Documents, U.S. Government Printing Office Website: bookstore.gpo.gov Phone: (202) 512-1800 Fax: (202)
    [Show full text]
  • Open Thweattetd1.Pdf
    The Pennsylvania State University The Graduate School CHARACTERIZATION OF PIGMENT BIOSYNTHESIS AND LIGHT-HARVESTING COMPLEXES OF SELECTED ANOXYGENIC PHOTOTROPHIC BACTERIA A Dissertation in Biochemistry, Microbiology, and Molecular Biology and Astrobiology by Jennifer L. Thweatt 2019 Jennifer L. Thweatt Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2019 ii The dissertation of Jennifer L. Thweatt was reviewed and approved* by the following: Donald A. Bryant Ernest C. Pollard Professor in Biotechnology and Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee Squire J. Booker Howard Hughes Medical Investigator Professor of Chemistry and Professor of Biochemistry and Molecular Biology Eberly Distinguished Chair in Science John H. Golbeck Professor of Biochemistry and Biophysics Professor of Chemistry Jennifer L. Macalady Associate Professor of Geosciences Timothy I. Miyashiro Assistant Professor of Biochemistry and Molecular Biology Wendy Hanna-Rose Professor of Biochemistry and Molecular Biology Department Head, Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT This dissertation describes work on pigment biosynthesis and the light-harvesting apparatus of two classes of anoxygenic phototrophic bacteria, namely the green bacteria and a newly isolated purple sulfur bacterium. Green bacteria are introduced in Chapter 1 and include chlorophototrophic members of the phyla Chlorobi, Chloroflexi, and Acidobacteria. The green bacteria are defined by their use of chlorosomes for light harvesting. Chlorosomes contain thousands of unique chlorin molecules, known as bacteriochlorophyll (BChl) c, d, e, or f, which are arranged in supramolecular aggregates. Additionally, all green bacteria can synthesize BChl a, the and green members of the phyla Chlorobi and Acidobacteria can synthesize chlorophyll (Chl) a.
    [Show full text]
  • Upflow Oil Warm Air Furnace
    il ii i_!ii I OLB5-R / OLB6-R OHB5-F / OHB6-F DNS_0562 Rev A OLB5-F UPFLOW OIL WARM AIR FURNACE Save these instructions for future reference. Printed in Canada 2001/12/03 X40083 Rev. D 445 01 4083 02 PART 1 INSTALLATION 2) SAFE INSTALLATION REQUIREMENTS Installation or repairs made by unqualified persons can result in hazards to you and others. Installation MUST conform with codes or, in the absence of local codes, with codes of the country having jurisdiction. The information contained in this manual is intended for use by a qualified service technician familiar with safety procedures and equipped with the proper tools and test instruments. Failure to carefully read and follow all instructions in this manual can result in furnace malfunction, property damage, personal injury and/or death. 1) SAFETY LABELLING AND SIGNAL WORDS 1.1) Danger, Warning and Caution: The signal words DANGER, WARNING and CAUTION are used to Fire hazard identify levels of hazard seriousness. The signal word DANGER is only used in product labels to signify an immediate hazard. The signal words WARNING and CAUTION will be used on product labels and The furnace must be installed in a level position, throughout this manual and other manuals that may apply to the never where it will slope to the front. product. If the furnace were installed in that position, oil 1.2) Signal Words: could drain into the furnace vestibule and create a fire hazard, instead of draining properly into the DANGER - Immediate hazards which WILL result in death or serious combustion chamber.
    [Show full text]
  • Popular $2.50 Canada
    ICD-08635 JUNE 1986 $1.95 POPULAR $2.50 CANADA Now Incorporating SeSC011 Magazine The Official Publication of the Scanner Association of North America www.americanradiohistory.com ASLEEP...AWAY...ON-THE-JOB... DON'T MISS ANYTHING ON YOUR SCANNER Exclusive! Monitor volume Exclusive! Voice -tailored Exclusive! Delay time con- control is independent of speaker system for trol adjusts to hold for recording volume. listening clarity. reply messages. Exclusive! VOX level light Exclusive! Attractive assures perfect adjustment. molded high -impact cabinetry. A.do 11.,,_ 00e10110110) U.L. listed power supply ERTM included. TrJer:Activator A permanent record even when you're Hear while you record. not there! "What used to drive me crazy was that MONEY BACK GUARANTEE "Before I installed NiteLogger I always anytime the recorder was plugged into If you're dissatisfied in any way with seemed to miss the big stories'..." Now the scanner, the speaker was cut-off so Nitelogger, just return it to us prepaid solve the biggest frustration of scanner I couldn't hear what was going on!" within 25 days for a prompt, courteous enthusiasts: NiteLogger makes sure you'll NiteLogger's built-in monitor speaker and refund. For One Full Year NiteLogger hear it all, even if it happens at 3:47 a.m.! Monitor Level control solves the problem. is guaranteed to be free of defects in Foolproof operation...works every You control the volume from off to full on, workmanship and materials. Simply time! independent of recording levels. send prepaid to BMI for warranty repair. "I've tried rigging up recorders before only Buy with absolute confidence.
    [Show full text]
  • Time Signal Stations 1By Michael A
    122 Time Signal Stations 1By Michael A. Lombardi I occasionally talk to people who can’t believe that some radio stations exist solely to transmit accurate time. While they wouldn’t poke fun at the Weather Channel or even a radio station that plays nothing but Garth Brooks records (imagine that), people often make jokes about time signal stations. They’ll ask “Doesn’t the programming get a little boring?” or “How does the announcer stay awake?” There have even been parodies of time signal stations. A recent Internet spoof of WWV contained zingers like “we’ll be back with the time on WWV in just a minute, but first, here’s another minute”. An episode of the animated Power Puff Girls joined in the fun with a skit featuring a TV announcer named Sonny Dial who does promos for upcoming time announcements -- “Welcome to the Time Channel where we give you up-to- the-minute time, twenty-four hours a day. Up next, the current time!” Of course, after the laughter dies down, we all realize the importance of keeping accurate time. We live in the era of Internet FAQs [frequently asked questions], but the most frequently asked question in the real world is still “What time is it?” You might be surprised to learn that time signal stations have been answering this question for more than 100 years, making the transmission of time one of radio’s first applications, and still one of the most important. Today, you can buy inexpensive radio controlled clocks that never need to be set, and some of us wear them on our wrists.
    [Show full text]
  • Radio Navigational Aids
    RADIO NAVIGATIONAL AIDS Publication No. 117 2014 Edition Prepared and published by the NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY Springfield, VA © COPYRIGHT 2014 BY THE UNITED STATES GOVERNMENT NO COPYRIGHT CLAIMED UNDER TITLE 17 U.S.C. WARNING ON USE OF FLOATING AIDS TO NAVIGATION TO FIX A NAVIGATIONAL POSITION The aids to navigation depicted on charts comprise a system consisting of fixed and floating aids with varying degrees of reliability. Therefore, prudent mariners will not rely solely on any single aid to navigation, particularly a floating aid. The buoy symbol is used to indicate the approximate position of the buoy body and the sinker which secures the buoy to the seabed. The approximate position is used because of practical limitations in positioning and maintaining buoys and their sinkers in precise geographical locations. These limitations include, but are not limited to, inherent imprecisions in position fixing methods, prevailing atmospheric and sea conditions, the slope of and the material making up the seabed, the fact that buoys are moored to sinkers by varying lengths of chain, and the fact that buoy and/or sinker positions are not under continuous surveillance but are normally checked only during periodic maintenance visits which often occur more than a year apart. The position of the buoy body can be expected to shift inside and outside the charting symbol due to the forces of nature. The mariner is also cautioned that buoys are liable to be carried away, shifted, capsized, sunk, etc. Lighted buoys may be extinguished or sound signals may not function as the result of ice or other natural causes, collisions, or other accidents.
    [Show full text]
  • Interstate Commerce Act 49 App
    Interstate Commerce Act 49 App. u.s.c. § 1 et seg. (1988) The Interstate commerce Act was partially repealed and recodified in 1978. However, according to Public Law No. 95-473, § 4(c): 92 stat. 1466-1470 (1978), those portions of the old_ICA that were repealed and recodified in 1978, nevertheless remain in effect as they existed on October 1, 1977, to the extent that these laws relate to the movement of oil by pipeline and the rates and charges related thereto. The ICA related to oil pipeline regulation is found as an appendix to Title 49 of the United States Code, and was reprinted in the second edition of Volume I of Staff's Oil Pipeline Handbook. However, the U.S. Code 1988 edition is the last to include the appendix. Although the appendix still applies to oil pipeline regulation, it was, for unknown reasons, excluded from the 1994 edition of the u.s. Code. Therefore, we are reprinting it in this volume. Interstate Commerce Act 49 App. u.s.c. § 1 et seq. (1988) TITLE .t9. APPE.SDIX-TRANSPORTATIO.S . di.x consists of sections of former Title 49 that were not included in Title 49 as enacted Tlus A~e; L 95 _473 and Pub. L. 97-449, and certain laws related to transportation that were en­ bY · l~r Pub L. 95-473. Sections /rom former Title 49 retain the same section numbers in :-f:~~endiz. 'For d~.sp.osition of all sections of former Title 49, see Table at beginning ot Title 49, Transportatlon. Sec.
    [Show full text]
  • STANDARD FREQUENCIES and TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec
    Rec. ITU-R TF.768-2 1 SYSTEMS FOR DISSEMINATION AND COMPARISON RECOMMENDATION ITU-R TF.768-2 STANDARD FREQUENCIES AND TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec. ITU-R TF.768-2 The ITU Radiocommunication Assembly, considering a) the continuing need in all parts of the world for readily available standard frequency and time reference signals that are internationally coordinated; b) the advantages offered by radio broadcasts of standard time and frequency signals in terms of wide coverage, ease and reliability of reception, achievable level of accuracy as received, and the wide availability of relatively inexpensive receiving equipment; c) that Article 33 of the Radio Regulations (RR) is considering the coordination of the establishment and operation of services of standard-frequency and time-signal dissemination on a worldwide basis; d) that a number of stations are now regularly emitting standard frequencies and time signals in the bands allocated by this Conference and that additional stations provide similar services using other frequency bands; e) that these services operate in accordance with Recommendation ITU-R TF.460 which establishes the internationally coordinated UTC time system; f) that other broadcasts exist which, although designed primarily for other functions such as navigation or communications, emit highly stabilized carrier frequencies and/or precise time signals that can be very useful in time and frequency applications, recommends 1 that, for applications requiring stable and accurate time and frequency reference signals that are traceable to the internationally coordinated UTC system, serious consideration be given to the use of one or more of the broadcast services listed and described in Annex 1; 2 that administrations responsible for the various broadcast services included in Annex 2 make every effort to update the information given whenever changes occur.
    [Show full text]
  • What Time I T
    Does Anybody Really What Time It Is? 24/7/365, Here's How Time Got On Your Best Side By Michael A. Lombardi ccasionally I'll talk to people who known to most radio buffs. He used a can't believe that some radio sta- spark-gap transmitter to successfully 0tions exist solely to transmit accu- send radio signals over a distance of more rate time. While they wouldn't poke fun than one mile in 1895. By 1899 he had at the Weather Channel or even a radio transmitted signals across the English station that plays nothing but Garth Channel, and sent signals across the Brooks records (imagine that), people Atlantic Ocean in 1901. often make jokes about time signal sta- Surprisingly, in the midst of Marconi's tions. They'll ask "Doesn't the program- early work, before any radio stations exist- ming get a little boring?'or "How does ed, or before the public even completely the announcer stay awake?'There have believed his results, a proposal was made even been parodies of time signal sta- to use the new wireless medium to broad- tions. A recent Internet spoof of WWV cast time. In November 1898. an optical containedzingers like "we'll be back with instrument maker and inventor named Sir the time on WWV in just a minute, but Howard Grubb addressed the Royal first, here's another minute." Dublin Society and proposed the concept An episode of the animated Powerpuff of a radio controlled clock. After many Girls joined in the fun with a skit featur- years of working with astronomical obser- ing a TV announcer named Sonnv Dial L, vatories.
    [Show full text]
  • Time and Frequency Users' Manual
    ,>'.)*• r>rJfl HKra mitt* >\ « i If I * I IT I . Ip I * .aference nbs Publi- cations / % ^m \ NBS TECHNICAL NOTE 695 U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Time and Frequency Users' Manual 100 .U5753 No. 695 1977 NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, a technical (3) basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics
    [Show full text]