Análisis Real

Total Page:16

File Type:pdf, Size:1020Kb

Análisis Real ANALISIS´ REAL II YAMILET QUINTANA 2020 Programa Interuniversitario de Doctorado en Matematicas´ INTEC - UASD - PUCMM Republica´ Dominicana Content is licensed under CC by 4.0 Creative Commons Attribution 4.0 International License Edition 1.0 supported by LATEX Cover design by Yamilet Quintana Contenido 1 Funcionales lineales positivos y medidas regulares ...........7 1.1 Medidas regulares7 1.1.1 Medidas exteriores de Borel.................... 16 1.2 Ejercicios propuestos 19 1.3 Teorema de representacion´ de Riesz para funcionales lineales positivos 22 1.3.1 El problema de representacion´ de funcionales lineales..... 22 1.4 Ejercicios propuestos 35 1.5 Aproximacion´ de funciones medibles por funciones continuas 41 p ≤ 1 1.5.1 Densidad de Cc(X) en L (X;µ), 1 p < ............. 41 1.5.2 El teorema de Luzin......................... 42 1.6 Ejercicios propuestos 44 2 Medidas complejas y algunas de sus propiedades .................................................... 46 2.1 Medidas complejas 46 2.2 Ejercicios propuestos 54 2.3 Teorema de Radon-Nikodym y Teorema de descomposicion´ de Lebesgue 57 2.4 Ejercicios propuestos 78 2.5 Teorema de Radon-Nikodym versus dualidad de los espacios Lp 81 2.6 Ejercicios propuestos 94 2.7 Conceptos de convergencia en Teor´ıa de la Medida y su interrelacion´ 97 2.7.1 Equicontinuidad para familias de medidas............ 106 2.7.2 Caracterizacion´ de la convergencia en Lp ............. 109 2.8 Ejercicios propuestos 113 2.9 Teorema de representacion´ de Riesz para funcionales lineales continuos 115 2.10 Ejercicios propuestos 122 3 3 Diferenciacion´ e integracion´ en R ............................ 126 3.1 Teorema Fundamental del Calculo´ en el contexto de teor´ıa de la medida126 3.2 Relacion´ entre la diferenciacion´ de medidas y diferenciacion´ de funciones 132 3.3 Teorema de cambio de variable 135 3.4 Ejercicios propuestos 136 4 Estrategia y criterios de evaluacion´ del curso .............. 138 4.1 Estrategia de evaluacion´ 138 4.2 Criterios de evaluacion´ 139 Bibliograf´ıa .................................................... 142 ´Indice alfabetico´ ............................................... 142 Introduccion´ Este material es una exposicion´ sistematica´ de los contenidos del curso de Analisis´ Real II del Programa Interuniversitario de Doctorado en Matematicas,´ ofertado en forma conjunta por el Instituto Tecnologico´ de Santo Domingo (INTEC), la Uni- versidad Autonoma´ de Santo Domingo (UASD) y la Pontificia Universidad Catolica´ Madre y Maestra (PUCMM), bajo el auspicio tecnico´ y financiero del Ministerio de Educacion´ Superior, Ciencia y Tecnolog´ıa (MESCyT). Su estructura esta´ en concordancia con la del programa de Analisis´ Real II, aunque al estar fuertemente influenciado por la experiencia y practica´ docente de la autora en distintas instituciones de educacion´ superior, tambien´ ha sido escrito con la pre- tension´ de que pueda ser un texto utilizable por todo aquel que requiera fortalecer su aprendizaje en algunos de los contenidos presentados. El texto se inicia con algunas sugerencias didactico-metodol´ ogicas´ (cfr. [3]) que pueden servir como ayuda en el momento de afrontar el proceso de ensenanza-˜ aprendizaje de un curso de estas caracter´ısticas. Seguidamente se presenta el Cap´ıtulo 1 relativo a funcionales lineales positivos y medidas regulares. El Cap´ıtulo 2 esta´ dedicado a examinar los Teoremas de Radon-Nikodym y de descomposicion´ de Le- besgue (incluyendo algunas de las versiones debiles´ de este).´ El tercer Cap´ıtulo com- prende un breve estudio sobre diferenciacion´ de medidas y diferenciacion´ de fun- ciones a valores reales, para luego abordar el Teorema Fundamental del Calculo´ en el contexto de Teor´ıa de la Medida, mientras que en el cuarto y ultimo´ Cap´ıtulo se recogen la estrateg´ıa y criterios de evaluacion´ adoptados a lo largo del curso. Vale la pena mencionar que, errores, omisiones u opiniones expresadas en este material, el cual no ha sido sometido a revision´ editorial, son de exclusiva responsa- bilidad de la autora. Finalmente, agradeciendo al Comite´ Academico´ del Programa Interuniversitario de Doctorado en Matematicas´ la oportunidad de dictar este curso, y a la Direccion´ de Recursos de Aprendizaje del INTEC el apoyo tecnico´ desde el Aula Virtual del INTEC, la autora espera que este material sirva de gu´ıa, est´ımulo y referencia, tanto a los participantes del programa, como a todas aquellas personas que tengan la opor- tunidad de leerlo. Y. Quintana 5 Sugerencias didactico-metodol´ ogicas´ A continuacion´ presentaremos algunas sugerencias didactico-metodol´ ogicas´ que pueden servir como ayuda en el momento de afrontar el proceso de ensenanza-˜ aprendizaje del curso (ver [3]), incluso cuando este proceso incluye actividades de formacion´ mediadas por Tecnolog´ıas Digitales Disponibles (TDD). 1. El profesor debe presentar el contenido en forma no confusa y arbitraria, re- spetando y destacando las relaciones de este´ con otros ambitos´ del conocimiento matematico´ y ademas,´ debe tomar en cuenta el nivel de los conocimientos previos de cada estudiante, tambien´ debe construir sus propias estrategias didactico-metodol´ ogicas,´ que le permitan motivar la presentacion´ de nuevos conceptos y resultados. 2. Recuerdese´ que un aprendizaje significativo requiere de una predisposicion´ por parte del alumno y del profesor, de modo que ambos actores deben tener interes´ por la dinamica´ que exige un proceso de ensenanza-aprendizaje˜ activo. 3. El estudiante no debe pasar a la etapa de solucion´ de problemas si no tiene claro los esquemas de conocimientos teoricos´ y la fijacion´ de estos´ en su memo- ria comprensiva ya que la informacion´ retenida por simple repeticion´ se pierde al no llegar a conectarse con nuestra estructura mental. 4. El estudiante debe escribir con sus propias palabras las definiciones y resul- tados e interpretarlos, debe llenar los detalles omitidos en los ejemplos y de- mostraciones. 5. Una tarea esencial del estudiante es resolver la mayor cantidad de ejercicios (recuerde que la Matematica´ no se aprende pasivamente), ya que estos´ le per- mitiran´ consolidar los nuevos conceptos y resultados. Ademas,´ se recomienda resolver los ejercicios sin consultar las ayudas, dejando estas ultimas´ para cuando se encuentre dificultad en la solucion.´ 6. En caso de dudas, el estudiante debe preguntar al profesor o anotar las mismas para consultarlas en las horas destinadas para tal fin. Tambien,´ puede salir de sus dudas consultando la bibliograf´ıa indicada. 7. Por ultimo,´ es necesario verificar el grado de conocimientos adquiridos. Se recomienda al profesor plantear las evaluaciones de tal manera que el estudi- ante demuestre que ha logrado formar solidos´ esquemas teoricos´ y que estos´ forman parte de su memoria comprensiva. Ademas,´ las evaluaciones deben contener problemas donde el estudiante aplique los conocimientos teoricos´ y procidimentales adquiridos. 6 1. Funcionales lineales positivos y medidas regulares 1.1 Medidas regulares 7 1.1.1 Medidas exteriores de Borel 1.2 Ejercicios propuestos 19 1.3 Teorema de representacion´ de Riesz para fun- cionales lineales positivos 22 1.3.1 El problema de representacion´ de funcionales lineales 1.4 Ejercicios propuestos 35 1.5 Aproximacion´ de funciones medibles por fun- ciones continuas 41 p 1.5.1 Densidad de Cc(X) en L (X;µ), 1 p < ≤ 1 1.5.2 El teorema de Luzin 1.6 Ejercicios propuestos 44 La idea central este cap´ıtulo es conectar los conceptos de Medida y Topolog´ıa a partir de la construccion´ de ciertas medidas haciendo uso de funcionales lineales definidos sobre espacios de funciones continuas. En la seccion´ 1.1 presentaremos la definicion´ de medidas regulares y sus propiedades. En la seccion´ 1.3 estudiaremos la con- struccion´ de ciertas medidas haciendo uso de funcionales lineales definidos sobre es- pacios de funciones continuas. Finalmente, la seccion´ 1.5 nos ocuparemos de dos resultados sobre aproximaxion´ de funciones: El teorema de densidad de las funciones continuas con soporte compacto en Lp(X;µ), 1 p < , y el teorema de Luzin sobre aproximacion´ de funciones medibles por funciones≤ continuas.1 1.1 Medidas regulares Empezaremos recordando algunos preliminares topologicos.´ Sea (X;τ) un espacio topologico.´ • Un entorno abierto de un punto x 2 X, es un subconjunto A ⊆ X tal que x 2 A:˚ Es decir, existe U 2 τ tal que x 2 U ⊆ A. 7 8 Y. Quintana • X es un espacio Hausdorff si cualquier par de puntos distintos en X poseen entornos abiertos disjuntos. Es decir, para todo x;y 2 X, x , y existen U;V 2 τ tales que x 2 U, y 2 V y U \ V = ;. • X es localmente compacto si para cualquier x 2 X y U abierto con x 2 U, existe un entorno compacto K de x contenido en U. • X es σ-compacto si es la union´ numerable de subconjuntos compactos. A partir de ahora supondremos que (X;τ) un espacio Hausdorff localmente com- pacto y denotaremos por B(X) a la σ-algebra´ de Borel en X. Definicion´ 1.1 Una medida µ : B(X) ! [0;1] es medida de Borel si µ(K) < 1; para todo compacto K ⊆ X: Definicion´ 1.2 Una medida µ : B(X) ! [0;1] es regular exterior en cada E 2 B(X) si µ(E) = inffµ(V ): E ⊆ V;V abierto g: Definicion´ 1.3 Una medida µ : B(X) ! [0;1] es regular interior en cada E 2 B(X) si µ(E) = supfµ(K): K ⊆ E; K compacto g: µ : B(X) [0; ] es regular si es regular exteriory regular interior. ! 1 Ejemplo 1.1 La restriccion´ de la medida de Lebesgue sobre Rn a la σ-algebra´ de Borel B(Rn) es una medida de Borel regular. ! 1 Ejemplo 1.2 Sea N con la topolog´ıa discreta y µ0 : P(N) [0; ] dada por µ0(A) = card(A). Entonces µ0 es una medida de Borel regular. 2 Ejemplo 1.3 Sea (X;τ) Hausdorff localmente compacto. Fijado x0 X, consid- ! f g eremos la medida de Dirac en x0, δx0 : B(X) 0;1 dada por ( 2 1; si x0 E; 2 δx0 (E) := para E B(X): 0; si x0 < E; Entonces, δx0 es una medida de Borel regular.
Recommended publications
  • Naming Infinity: a True Story of Religious Mysticism And
    Naming Infinity Naming Infinity A True Story of Religious Mysticism and Mathematical Creativity Loren Graham and Jean-Michel Kantor The Belknap Press of Harvard University Press Cambridge, Massachusetts London, En gland 2009 Copyright © 2009 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Graham, Loren R. Naming infinity : a true story of religious mysticism and mathematical creativity / Loren Graham and Jean-Michel Kantor. â p. cm. Includes bibliographical references and index. ISBN 978-0-674-03293-4 (alk. paper) 1. Mathematics—Russia (Federation)—Religious aspects. 2. Mysticism—Russia (Federation) 3. Mathematics—Russia (Federation)—Philosophy. 4. Mathematics—France—Religious aspects. 5. Mathematics—France—Philosophy. 6. Set theory. I. Kantor, Jean-Michel. II. Title. QA27.R8G73 2009 510.947′0904—dc22â 2008041334 CONTENTS Introduction 1 1. Storming a Monastery 7 2. A Crisis in Mathematics 19 3. The French Trio: Borel, Lebesgue, Baire 33 4. The Russian Trio: Egorov, Luzin, Florensky 66 5. Russian Mathematics and Mysticism 91 6. The Legendary Lusitania 101 7. Fates of the Russian Trio 125 8. Lusitania and After 162 9. The Human in Mathematics, Then and Now 188 Appendix: Luzin’s Personal Archives 205 Notes 212 Acknowledgments 228 Index 231 ILLUSTRATIONS Framed photos of Dmitri Egorov and Pavel Florensky. Photographed by Loren Graham in the basement of the Church of St. Tatiana the Martyr, 2004. 4 Monastery of St. Pantaleimon, Mt. Athos, Greece. 8 Larger and larger circles with segment approaching straight line, as suggested by Nicholas of Cusa. 25 Cantor ternary set.
    [Show full text]
  • Stewart I. Visions of Infinity.. the Great Mathematical Problems
    VISIONS OF INFINITY Also by Ian Stewart Concepts of Modern Mathematics Game, Set, and Math The Problems of Mathematics Does God Play Dice? Another Fine Math You’ve Got Me Into Fearful Symmetry (with Martin Golubitsky) Nature’s Numbers From Here to Infinity The Magical Maze Life’s Other Secret Flatterland What Shape Is a Snowflake? The Annotated Flatland Math Hysteria The Mayor of Uglyville’s Dilemma Letters to a Young Mathematician Why Beauty Is Truth How to Cut a Cake Taming the Infinite/The Story of Mathematics Professor Stewart’s Cabinet of Mathematical Curiosities Professor Stewart’s Hoard of Mathematical Treasures Cows in the Maze Mathematics of Life In Pursuit of the Unknown with Terry Pratchett and Jack Cohen The Science of Discworld The Science of Discworld II: The Globe The Science of Discworld III: Darwin’s Watch with Jack Cohen The Collapse of Chaos Figments of Reality Evolving the Alien/What Does a Martian Look Like? Wheelers (science fiction) Heaven (science fiction) VISIONS OF INFINITY The Great Mathematical Problems IAN STEWART A Member of the Perseus Books Group New York Copyright © 2013 by Joat Enterprises Published by Basic Books, A Member of the Perseus Books Group All rights reserved. Printed in the United States of America. No part of this book may be reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information, address Basic Books, 250 West 57th Street, New York, NY 10107. Books published by Basic Books are available at special discounts for bulk purchases in the United States by corporations, institutions, and other organizations.
    [Show full text]
  • Biography of N. N. Luzin
    BIOGRAPHY OF N. N. LUZIN http://theor.jinr.ru/~kuzemsky/Luzinbio.html BIOGRAPHY OF N. N. LUZIN (1883-1950) born December 09, 1883, Irkutsk, Russia. died January 28, 1950, Moscow, Russia. Biographic Data of N. N. Luzin: Nikolai Nikolaevich Luzin (also spelled Lusin; Russian: НиколайНиколаевич Лузин) was a Soviet/Russian mathematician known for his work in descriptive set theory and aspects of mathematical analysis with strong connections to point-set topology. He was the co-founder of "Luzitania" (together with professor Dimitrii Egorov), a close group of young Moscow mathematicians of the first half of the 1920s. This group consisted of the higly talented and enthusiastic members which form later the core of the famous Moscow school of mathematics. They adopted his set-theoretic orientation, and went on to apply it in other areas of mathematics. Luzin started studying mathematics in 1901 at Moscow University, where his advisor was professor Dimitrii Egorov (1869-1931). Professor Dimitrii Fedorovihch Egorov was a great scientist and talented teacher; in addition he was a person of very high moral principles. He was a Russian and Soviet mathematician known for significant contributions to the areas of differential geometry and mathematical analysis. Egorov was devoted and openly practicized member of Russian Orthodox Church and active parish worker. This activity was the reason of his conflicts with Soviet authorities after 1917 and finally led him to arrest and exile to Kazan (1930) where he died from heavy cancer. From 1910 to 1914 Luzin studied at Gottingen, where he was influenced by Edmund Landau. He then returned to Moscow and received his Ph.D.
    [Show full text]
  • Mathematics Education Policy As a High Stakes Political Struggle: the Case of Soviet Russia of the 1930S
    MATHEMATICS EDUCATION POLICY AS A HIGH STAKES POLITICAL STRUGGLE: THE CASE OF SOVIET RUSSIA OF THE 1930S ALEXANDRE V. BOROVIK, SERGUEI D. KARAKOZOV, AND SERGUEI A. POLIKARPOV Abstract. This chapter is an introduction to our ongoing more comprehensive work on a critically important period in the history of Russian mathematics education; it provides a glimpse into the socio-political environment in which the famous Soviet tradition of mathematics education was born. The authors are practitioners of mathematics education in two very different countries, England and Russia. We have a chance to see that too many trends and debates in current education policy resemble battles around math- ematics education in the 1920s and 1930s Soviet Russia. This is why this period should be revisited and re-analysed, despite quite a considerable amount of previous research [2]. Our main conclusion: mathematicians, first of all, were fighting for control over selection, education, and career development, of young mathematicians. In the harshest possible political environment, they were taking po- tentially lethal risks. 1. Introduction In the 1930s leading Russian mathematicians became deeply in- volved in mathematics education policy. Just a few names: Andrei Kolmogorov, Pavel Alexandrov, Boris Delaunay, Lev Schnirelmann, Alexander Gelfond, Lazar Lyusternik, Alexander Khinchin – they are arXiv:2105.10979v1 [math.HO] 23 May 2021 remembered, 80 years later, as internationally renowned creators of new fields of mathematical research – and they (and many of their less famous colleagues) were all engaged in political, by their nature, fights around education. This is usually interpreted as an idealistic desire to maintain higher – and not always realistic – standards in mathematics education; however, we argue that much more was at stake.
    [Show full text]
  • Waring's Problem
    MATHEMATICS MASTER’STHESIS WARING’SPROBLEM JANNESUOMALAINEN HELSINKI 2016 UNIVERSITYOFHELSINKI HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department Faculty of Science Department of Mathematics and Statistics Tekijä — Författare — Author Janne Suomalainen Työn nimi — Arbetets titel — Title Waring’s Problem Oppiaine — Läroämne — Subject Mathematics Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages Master’s Thesis 9/2016 36 p. Tiivistelmä — Referat — Abstract Waring’s problem is one of the two classical problems in additive number theory, the other being Goldbach’s conjecture. The aims of this thesis are to provide an elementary, purely arithmetic solution of the Waring problem, to survey its vast history and to outline a few variations to it. Additive number theory studies the patterns and properties, which arise when integers or sets of integers are added. The theory saw a new surge after 1770, just before Lagrange’s celebrated proof of the four-square theorem, when a British mathematician, Lucasian professor Edward Waring made the profound statement nowadays dubbed as Waring’s problem: for all integers n greater than one, there exists a finite integer s such that every positive integer is the sum of s nth powers of non- negative integers. Ever since, the problem has been taken up by many mathematicians and state of the art techniques have been developed — to the point that Waring’s problem, in a general sense, can be considered almost completely solved. The first section of the thesis works as an introduction to the problem. We give a profile of Edward Waring, state the problem both in its original form and using present-day language, and take a broad look over the history of the problem.
    [Show full text]
  • Notes for the Course in Analytic Number Theory G. Molteni
    Notes for the course in Analytic Number Theory G. Molteni Fall 2019 revision 8.0 Disclaimer These are the notes I have written for the course in Analytical Number Theory in A.Y. 2011{'20. I wish to thank my former students (alphabetical order): Gu- glielmo Beretta, Alexey Beshenov, Alessandro Ghirardi, Davide Redaelli and Fe- derico Zerbini, for careful reading and suggestions improving these notes. I am the unique responsible for any remaining error in these notes. The image appearing on the cover shows a picture of the 1859 Riemann's scratch note where in 1932 C. Siegel recognized the celebrated Riemann{Siegel formula (an identity allowing to computed with extraordinary precision the values of the Riemann zeta function inside the critical strip). This image is a resized version of the image in H. M. Edwards Riemann's Zeta Function, Dover Publications, New York, 2001, page 156. The author has not been able to discover whether this image is covered by any Copyright and believes that it can appear here according to some fair use rule. He will remove it in case a Copyright infringement would be brought to his attention. Giuseppe Molteni This work is licensed under a Creative Commons Attribution-Non- Commercial-NoDerivatives 4.0 International License. This means that: (Attribu- tion) You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. (NonCommercial) You may not use the material for commercial purposes.
    [Show full text]
  • Adding Prime Numbers
    Adding Prime Numbers University of Cambridge Faculty of Mathematics Department of Pure Mathematics and Mathematical Statistics Author Markus Schepke BSc College Wolfson College Home address Robert-Beltz-Str. 49, 19059 Schwerin, Germany eMail [email protected] Adviser Professor Ben J. Green I declare that this essay is work done as part of the Part III Examination. I have read and understood the Statement on Plagiarism for Part III and Graduate Courses issued by the Faculty of Mathematics, and have abided by it. This essay is the result of my own work, and except where explicitly stated otherwise, only includes material undertaken since the publication of the list of essay titles, and includes nothing which was performed in collaboration. No part of this essay has been submitted, or is concurrently being submitted, for any degree, diploma or similar qualification at any university or similar institution. Cambridge, November 20, 2011 Adding Prime Numbers University of Cambridge Faculty of Mathematics Department of Pure Mathematics and Mathematical Statistics Contents 1 Introduction 1 1.1 Historical Remarks and Outline . .1 1.2 Notations and Definitions . .1 2 Schnirelmann’s Theorem 3 2.1 Schnirelmann Density . .3 2.2 Proof of Schnirelmann’s Theorem . 11 2.3 Generalisations . 13 3 Chebyshev’s Theorem 16 3.1 Preliminary Notes . 17 3.2 Proof of Chebyshev’s Theorem . 20 4 The Selberg Sieve 22 4.1 Preliminary Notes . 22 4.2 Deduction of Schnirelmann’s Theorem . 28 4.3 Proof of the Selberg Sieve . 32 4.4 Applications to Twin Primes . 36 5 Waring’s Problem 40 5.1 Preliminary Notes .
    [Show full text]
  • Naming Infinity: a True Story of Religious Mysticism And
    Naming Infinity Naming Infinity A True Story of Religious Mysticism and Mathematical Creativity Loren Graham and Jean-Michel Kantor The Belknap Press of Harvard University Press Cambridge, Massachusetts London, En gland 2009 Copyright © 2009 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Graham, Loren R. Naming infinity : a true story of religious mysticism and mathematical creativity / Loren Graham and Jean-Michel Kantor. â p. cm. Includes bibliographical references and index. ISBN 978-0-674-03293-4 (alk. paper) 1. Mathematics—Russia (Federation)—Religious aspects. 2. Mysticism—Russia (Federation) 3. Mathematics—Russia (Federation)—Philosophy. 4. Mathematics—France—Religious aspects. 5. Mathematics—France—Philosophy. 6. Set theory. I. Kantor, Jean-Michel. II. Title. QA27.R8G73 2009 510.947′0904—dc22â 2008041334 CONTENTS Introduction 1 1. Storming a Monastery 7 2. A Crisis in Mathematics 19 3. The French Trio: Borel, Lebesgue, Baire 33 4. The Russian Trio: Egorov, Luzin, Florensky 66 5. Russian Mathematics and Mysticism 91 6. The Legendary Lusitania 101 7. Fates of the Russian Trio 125 8. Lusitania and After 162 9. The Human in Mathematics, Then and Now 188 Appendix: Luzin’s Personal Archives 205 Notes 212 Acknowledgments 228 Index 231 ILLUSTRATIONS Framed photos of Dmitri Egorov and Pavel Florensky. Photographed by Loren Graham in the basement of the Church of St. Tatiana the Martyr, 2004. 4 Monastery of St. Pantaleimon, Mt. Athos, Greece. 8 Larger and larger circles with segment approaching straight line, as suggested by Nicholas of Cusa. 25 Cantor ternary set.
    [Show full text]
  • Curve Shortening Flow
    Durham University Department of Mathematical Sciences Project IV Report Curve Shortening Flow Supervisors: Author: Dr Wilhelm Klingenberg Ed Gallagher Dr Fernando Galaz Garc´ıa May 1, 2020 Plagiarism Declaration This piece of work is a result of my own work except where it forms an assessment based on group project work. In the case of a group project, the work has been prepared in collaboration with other members of the group. Material from the work of others not involved in the project has been acknowledged and quotations and paraphrases suitably indicated. I have produced all the images contained in this piece of work myself using Inkscape, MathMod, and Python. i Acknowledgements My deepest thanks go to my supervisors, Dr Wilhelm Klingenberg and Dr Fer- nando Galaz Garc´ıa,for their guidance, support and advice, about this project as well as in general, over the course of this year. This report is dedicated to my two dogs, Betty and Ralph, and my cat Cat, for helping to keep my spirits up during the long sessions spent typing away at my computer. ii Abstract In this report we give an overview of curve shortening flow and some of its uses. We begin by looking at curve shortening flow in the plane, then move on to study curve shortening flow on surfaces. We discuss the main results concerning curve shortening flow on closed embedded curves and the conditions under which they apply; in particular, we look at the connection between curve shortening flow and geodesics. We also look at applications and further generalisations of curve shortening flow.
    [Show full text]
  • Music of the Primes in Search of Order
    Music of the Primes In Search of Order PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Wed, 19 Jan 2011 04:12:59 UTC Contents Articles Prime number theorem 1 Riemann hypothesis 9 Riemann zeta function 30 Balanced prime 40 Bell number 41 Carol number 46 Centered decagonal number 47 Centered heptagonal number 48 Centered square number 49 Centered triangular number 51 Chen prime 52 Circular prime 53 Cousin prime 54 Cuban prime 55 Cullen number 56 Dihedral prime 57 Dirichlet's theorem on arithmetic progressions 58 Double factorial 61 Double Mersenne prime 75 Eisenstein prime 76 Emirp 78 Euclid number 78 Even number 79 Factorial prime 82 Fermat number 83 Fibonacci prime 90 Fortunate prime 91 Full reptend prime 92 Gaussian integer 94 Genocchi number 97 Goldbach's conjecture 98 Good prime 102 Happy number 103 Higgs prime 108 Highly cototient number 109 Illegal prime 110 Irregular prime 113 Kynea number 114 Leyland number 115 List of prime numbers 116 Lucas number 131 Lucky number 133 Markov number 135 Mersenne prime 137 Mills' constant 145 Minimal prime (recreational mathematics) 146 Motzkin number 147 Newman–Shanks–Williams prime 149 Odd number 150 Padovan sequence 153 Palindromic prime 157 Partition (number theory) 158 Pell number 166 Permutable prime 174 Perrin number 175 Pierpont prime 178 Pillai prime 179 Prime gap 180 Prime quadruplet 185 Prime triplet 187 Prime-counting function 188 Primeval prime 194 Primorial prime 196 Probable prime 197 Proth number 198 Pseudoprime
    [Show full text]