FMO2) in Rhesus Monkey and Examination of Anhuman FMO2 Polymorphism

Total Page:16

File Type:pdf, Size:1020Kb

FMO2) in Rhesus Monkey and Examination of Anhuman FMO2 Polymorphism AN ABSTRACT OF THE THESIS OF Mei-Fei Yueh for the degree of Doctor of Philosophy in Toxicologypresented on January 4, 1999. Title: Identification and Characterization ofFlavin-Containing Monooxygenase Isoform 2 (FMO2) in Rhesus Monkey and Examination of anHuman FMO2 Polymorphism. Redacted for privacy Abstract Approved: David E. Williams Flavin-containing monooxygenase (FMO, EC1.14.13.8)comprises a family of xenobiotic-metabolizing enzymes that catalyze the oxygenation of awide variety of xenobiotics, most commonly nitrogen and sulfur. Mammals expressfive different FMOs in a species- and tissue- specific manner. FMO2, is expressedpredominantly in lung and differs from other FMOs in that it can catalyze the N-oxygenation ofcertain primary alkylamines. From its initial discovery as an unique form of FMO inlung, FMO2 has been studied primarily using a rabbit animal model. The initial goal of thisresearch was to characterize this protein in a primate animal model. To understand FMO2protein structure at the molecular level, we first cloned cDNAfrom a monkey lung cDNA library. Monkey FMO2 is expressed predominantly in lung. The high expressionlevels and broad substrate specificity in monkey, suggests that FMO2 plays a role in xenobioticmetabolism in this primate model. We then established a heterologous expression system to generate FMO2 with biological functionality in vitro. FMO2 from baculovirus-mediatedexpression resembled monkey and rabbit microsomal FMO2 immunochemically andcatalytically. The successful FMO2 expression in the baculovirus system will serve as a validtool for structure studies of protein functional domains, as well as, theamino acids responsible for enzyme properties of chimeras. Human FMO2encodes a truncated protein containing 471 amino acid residues, 64 amino acids shorter in its C-terminal thanorthologs in other species. We characterized human FMO2 in terms of genepolymorphism (genotyped by Dr. Hines), protein levels and catalytic activity with humanlung microsomes. An ethnically related polymorphism was observed, in which all Caucasians genotyped to date are homozygous for a truncated, enzymatically inactive enzymewhich may not even be translated. Approximately 15% of humans of African descent are heterozygous forfull- length FMO2, but the level of expression may not be sufficient to significantly effectdrug metabolism in the lung. The results of truncated FMO2 produced from baculovirus expression suggest that the C-terminal of FMO2 might be responsible for enzymestability and/or proper structure necessary to exert fully enzyme activity. We concludethat the human FMO2 possesses unique features compared to all other mammalsexamined to date including other primates. Copyright by Mei-Fei Yueh January 4, 1999 All Rights Reserved IDENTIFICATION AND CHARACTERIZATION OF FLAVIN-CONTAINING MONOOXYGENASE ISOFORM 2 (FMO2) IN RHESUS MONKEY AND EXAMINATION OF A HUMAN FMO2 POLYMORPHISM. by Mei-Fei Yueh A THESIS submitted to Oregon State University in partial fulfillment of the requirement for the degree of Doctor of Philosophy Completed January 4, 1999 Commencement June 1999 Doctor of Philosophy thesis of Mei-Fei Yueh presented on January 4, 1999 APPROVED: Redacted for privacy Major Professor, representing Toxicology Redacted for privacy Head of Depart of Environmental and Molecular Toxicology Redacted for privacy Dean of Gradu School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Redacted for privacy Mei-Fei Yueh, Auth ACKNOWLEDGEMENTS I would like to thank the many people who contributed to this project. My parents for supporting me to go abroad and encouraging me in any circumstance. Their encouragement and love were a source of strength to finish this degree.Dr. Williams for his guidance in these studies. He was always very instructive, supportive,patient and encouraging when I was with problems during all these years. Dr. Kruegerfor her technique advise and assistance. It was very helpful having her around as aconsultant for my experiments. Also, people in Dr. Williams Lab:Shelley (Dr. Su), Aram (Dr. Oganesian), Sirinmas, Beth, David (Dr. Carlson), Dustin, Adam and again Sharon(Dr. Krueger). Their techniques support facilitated my whole project, more importantly,their friendship made my life in the Lab much more interesting. My friends: Shu-Huei,John, Lily, Christine, Chu-Liang, Pei-Yu, Pei-Chien, Kung, Kevin, Yea-Huei, Richard, Maryand her family, Sam and his family, my conversant Margaret, and Jeffry, they gave me somuch pleasure in my daily life in Corvallis. This research was supported by NIH grant HL38650. CONTRIBUTION OF AUTHORS Dr. Krueger was involved in the experimental design, technique consultation,and assisted in review of manuscripts. Dr. Hines at Wayne State University (Detroit ,MI). conducted the genotyping for human FMO2 polymorphism in chapter 4. Dr.Williams was involved in the design and analysis of all experiments, especially protein immunoblotting and enzyme assay in chapter 2 and enzyme assays in chapter 4, and in thepreparation of manuscripts TABLE OF CONTENTS Page CHAPTER 1: INTRODUCTION 1 Abstract 2 History 3 Catalytic Mechanism 4 Nomenclature of FMO Gene Family 6 Two Monooxygenase Systems: CYP and FMO 8 Tissue and Cellular Distribution of FMO 10 Role of FMO in Metabolism 11 Regulation of FMO Expression 20 Characterization of FMO Gene Structure 22 Introduction of My Study 24 References 26 CHAPTER 2: PULMONARY FLAVIN-CONTAINING MONOOXYGENASE (FMO) IN RHESUS MACAQUE: EXPRESSION OF FMO2 PROTEIN, mRNA AND ANALYSIS OF THE cDNA Abstract 37 Introduction 38 Materials and Methods 40 Results 44 Discussion 53 Acknowledgements 55 References 56 CHAPTER 3. EXPRESSION OF CLONED FLAVIN-CONTAINING MONOOXYGENASE FROM MONKEY LUNG IN HETEROLOGOUS SYSTEMS Abstract 60 Introduction 61 TABLE OF CONTENTS (Continued) Page Materials and Methods 63 Results 68 Discussion 74 Acknowledgements 76 References 77 CHAPTER 4. IDENTIFICATION OF A HUMAN LUNG FMO2 VARIANT AND CHARACTERIZATION OF TRUNCATED -FMO2 WITH PCR SITE-DIRECTED MUTAGENESIS BY BACULOVIRUS-MEDIATED EXPRESSION Abstract 81 Introduction 82 Materials and Methods 85 Results 91 Discussion 100 References 102 CHAPTER 5. SUMMARY 105 BIBLIOGRAPHY 110 LIST OF FIGURES Figure Page Fig 1.1. Catalytic cycle of FMO Fig 2.1. Nucleotide and derived amino acid sequence from cDNAencoding FMO2 expressed in Rhesus monkey lung 48 Fig 2.2. Primary sequence comparison of FMO2 orthologs 50 Fig 2.3. FMO2 transcripts in Rhesus monkey tissues 51 Fig 2.4. Quantitation of FMO2 mRNA in monkey tissues by RT-PCR 52 Fig 3.1. Immunoblots of expressed proteins 70 Fig 3.2. Immunoblots of purified FMO2 from baculovirus expression 71 Fig 4.1. Human lung FMO2 identified by western blot analysis 95 Fig 4.2. Comparison of FMO2 levels in multiple species 96 Fig 4.3. Catalytic activity with substrate methimazole for expressed FMO2 ... 97 Fig 4.4. Immunoblot of monkey truncated FMO2 98 Fig 4.5. RT-PCR for quantitation of FMO2 mRNA levels 99 LIST OF TABLES Table Page 1.1. Reported Sequences of Flavin-Containing Monooxygenases 7 1.2. Substrates oxidized by FMO 12 2.1. Three pairs of primers used in PCR for FMO2 cDNA cloning 46 2.2. Immunoquantitaion and catalytic activity of FMO2 in primate pulmonary microsome 47 3.1. Protein yield and FMO2 levels in baculovirus-mediated expression 72 3.2. Catalytic activity of expressed FMO2 73 Identification and Characterization of Flavin-Containing Monooxygenase Isoform 2 (FMO2) in Rhesus Monkey and Examination of an Human FMO2 Polymorphism. Chapter 1 INTRODUCTION M.-F. Yueh and D.E. Williams Department of Environmental and Molecular Toxicology Oregon State University, Corvallis OR 2 ABSTRACT Flavin-containing monooxygenase (FMO, EC1.14.13.8) is present in endoplasmic reticulum in a number of tissues of humans and other mammals. FMO comprises a family of xenobiotic-metabolizing enzymes that oxygenate a large number and wide variety of xenobiotics. All FMOs form a kinetically stable 4a-hydroperoxyflavin enzyme intermediate in the presence of NAD(P)H and oxygen, but independent of substrates. Any soft nucleophile accessible to the enzyme-bound peroxy-flavin intermediate will be oxidized. Therefore, the microsomal FMOs catalyze the oxygenation of structurally diverse xenobiotics including amines, sulfides as well as some phosphorous- and selenium- containing compounds. Human, and other mammals, express five different flavin- containing monooxygenases (FMO1, FMO2, FMO3, FMO4, and FMO5) in a species- and tissue- specific manner and each subfamily contains a single gene. The identities among different forms are between 50 and 58% and the identities of all apparent orthologs are 82% or greater. Some of the same substrates are metabolized by both FMO and cytochrome P450, although different metabolites are often produced due to different catalytic mechanisms. In most cases, FMO converts its substrates such as tertiary amines to polar, easily excreted metabolites, although toxic compounds can be generated by FMO metabolism. Human FMOs play an important role in the biotransformation of a variety of chemicals such as the psychoactive drug chlorpromazine, the H2 antagonist cimetidine and the dietary compound trimethylamine. In my study, I characterized the lung specific isoform, FMO2, in monkey which is catalytically active toward many probe substrates and might have a significant role in xenobiotic metabolism in lung. With the information
Recommended publications
  • Regulation of Ribulose-1, 5-Bisphosphate Carboxylase
    Plant Physiol. (1993) 102: 21-28 Regulation of Ribulose- 1,5-Bisphosphate Carboxylase/Oxygenase Activity in Response to Reduced Light lntensity in C4 Plants' Rowan F. Sage* and Jeffrey R. Seemann Department of Botany, University of Georgia, Athens, Ceorgia 30602 (R.F.S.); and Department of Biochemistry, University of Nevada, Reno, Nevada 89557 (J.R.S.) tion of Rubisco activity by reversible carbamylation occurs in lhe light-dependent regulation of ribulose-1,5-bisphosphate response to changes in light intensity as well as the concen- carboxylase/oxygenase (Rubisco) activity was studied in 16 species tration of C02and 02,whereas inhibition of Rubisco activity of C, plants representing all three biochemical subtypes and a by CAlP occurs only in response to varying PPFD (Sharkey variety of taxonomic groups. Rubisco regulation was assessed by et al., 1986; Sage et al., 1990; Seemann et al., 1990). At measuring (a) the ratio of initial to total Rubisco activity, which physiological levels of COz in C3 plants (5-10 PM), full reflects primarily the carbamylation state of the enzyme, and (b) carbamylation of Rubisco requires Rubisco activase (Salvucci, total Rubisco activity per mo1 of Rubisco catalytic sites, which 1989; Portis, 1990). In the absence of Rubisco activase, only declines when 2-carboxyarabinitol I-phosphate (CAlP) binds to carbamylated Rubisco. In all species examined, the activity ratio of 20 to 40% of Rubisco catalytic sites are carbamylated under Rubisco declined with a reduction in light intensity, although sub- physiological conditions, leading to a significant inhibition of stantial variation was apparent between species in the degree of photosynthesis (Salvucci, 1989; Portis, 1990).
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Somatic Aging Pathways Regulate Reproductive Plasticity in Caenorhabditis Elegans Maria C Ow, Alexandra M Nichitean, Sarah E Hall*
    RESEARCH ARTICLE Somatic aging pathways regulate reproductive plasticity in Caenorhabditis elegans Maria C Ow, Alexandra M Nichitean, Sarah E Hall* Department of Biology, Syracuse University, Syracuse, United States Abstract In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here, we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway. Introduction Evidence indicating that experiences during early development affect behavior and physiology in a stress-specific manner later in life is abundant throughout the animal kingdom (Telang and Wells, *For correspondence: [email protected] 2004; Weaver et al., 2004; Binder et al., 2008; Pellegroms et al., 2009; van Abeelen et al., 2012; Zhao and Zhu, 2014; Canario et al., 2017; Dantzer et al., 2019; Vitikainen et al., 2019).
    [Show full text]
  • A Three-Component Dicamba O-Demethylase from Pseudomonas Maltophilia, Strain DI-6 GENE ISOLATION, CHARACTERIZATION, and HETEROLOGOUS EXPRESSION*
    THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 280, No. 26, Issue of July 1, pp. 24759–24767, 2005 © 2005 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. A Three-component Dicamba O-Demethylase from Pseudomonas maltophilia, Strain DI-6 GENE ISOLATION, CHARACTERIZATION, AND HETEROLOGOUS EXPRESSION* Received for publication, January 18, 2005, and in revised form, March 16, 2005 Published, JBC Papers in Press, April 26, 2005, DOI 10.1074/jbc.M500597200 Patricia L. Herman‡, Mark Behrens, Sarbani Chakraborty, Brenda M. Chrastil, Joseph Barycki, and Donald P. Weeks§ From the Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 65888-0664 Dicamba O-demethylase is a multicomponent enzyme The herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) from Pseudomonas maltophilia, strain DI-6, that cata- has been used to effectively control broadleaf weeds in crops lyzes the conversion of the widely used herbicide di- such as corn and wheat for almost 40 years. Like a number of camba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA other chlorinated organic compounds, dicamba does not persist (3,6-dichlorosalicylic acid). We recently described the in the soil because it is efficiently metabolized by a consortium biochemical characteristics of the three components of of soil bacteria under both aerobic and anaerobic conditions this enzyme (i.e. reductaseDIC, ferredoxinDIC, and oxy- (1–4). Studies with different soil types treated with dicamba genaseDIC) and classified the oxygenase component of have demonstrated that 3,6-dichlorosalicylic acid (DCSA),1 a dicamba O-demethylase as a member of the Rieske non- compound without herbicidal activity, is a major product of the heme iron family of oxygenases.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Regulation of Xenobiotic and Bile Acid Metabolism by the Anti-Aging Intervention Calorie Restriction in Mice
    REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE By Zidong Fu Submitted to the Graduate Degree Program in Pharmacology, Toxicology, and Therapeutics and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dissertation Committee ________________________________ Chairperson: Curtis Klaassen, Ph.D. ________________________________ Udayan Apte, Ph.D. ________________________________ Wen-Xing Ding, Ph.D. ________________________________ Thomas Pazdernik, Ph.D. ________________________________ Hao Zhu, Ph.D. Date Defended: 04-11-2013 The Dissertation Committee for Zidong Fu certifies that this is the approved version of the following dissertation: REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE ________________________________ Chairperson: Curtis Klaassen, Ph.D. Date approved: 04-11-2013 ii ABSTRACT Calorie restriction (CR), defined as reduced calorie intake without causing malnutrition, is the best-known intervention to increase life span and slow aging-related diseases in various species. However, current knowledge on the exact mechanisms of aging and how CR exerts its anti-aging effects is still inadequate. The detoxification theory of aging proposes that the up-regulation of xenobiotic processing genes (XPGs) involved in phase-I and phase-II xenobiotic metabolism as well as transport, which renders a wide spectrum of detoxification, is a longevity mechanism. Interestingly, bile acids (BAs), the metabolites of cholesterol, have recently been connected with longevity. Thus, this dissertation aimed to determine the regulation of xenobiotic and BA metabolism by the well-known anti-aging intervention CR. First, the mRNA expression of XPGs in liver during aging was investigated.
    [Show full text]
  • Flavin-Containing Monooxygenases: Mutations, Disease and Drug Response Phillips, IR; Shephard, EA
    Flavin-containing monooxygenases: mutations, disease and drug response Phillips, IR; Shephard, EA For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/1015 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Flavin-containing monooxygenases: mutations, disease and drug response Ian R. Phillips1 and Elizabeth A. Shephard2 1School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK 2Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author: Shephard, E.A. ([email protected]). and, thus, contribute to drug development. This review Flavin-containing monooxygenases (FMOs) metabolize considers the role of FMOs and their genetic variants in numerous foreign chemicals, including drugs, pesticides disease and drug response. and dietary components and, thus, mediate interactions between humans and their chemical environment. We Mechanism and structure describe the mechanism of action of FMOs and insights For catalysis FMOs require flavin adenine dinucleotide gained from the structure of yeast FMO. We then (FAD) as a prosthetic group, NADPH as a cofactor and concentrate on the three FMOs (FMOs 1, 2 and 3) that are molecular oxygen as a cosubstrate [5,6]. In contrast to most important for metabolism of foreign chemicals in CYPs FMOs accept reducing equivalents directly from humans, focusing on the role of the FMOs and their genetic NADPH and, thus, do not require accessory proteins.
    [Show full text]
  • Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 6-2019 Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity Mohammad Arifur Rahman University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Rahman, Mohammad Arifur (0000-0002-5589-0114), "Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity" (2019). Theses and Dissertations (ETD). Paper 482. http://dx.doi.org/10.21007/etd.cghs.2019.0474. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity Abstract Cytochrome P450 2E1 (CYP2E1)-mediated hepatic and extra-hepatic toxicity is of significant clinical importance. Diallyl sulfide (DAS) has been shown to prevent xenobiotics such as alcohol- (ALC/ETH), acetaminophen- (APAP) induced toxicity and disease (e.g. HIV-1) pathogenesis. DAS imparts its beneficial effect by inhibiting CYP2E1-mediated metabolism of xenobiotics, especially at high concentration. However, DAS also causes toxicity at relatively high dosages and with long exposure times. The objective of the first project was to find potent ASD analogs which can replace DAS as a research tool or as potential adjuvant therapy in CYP2E1-mediated pathologies.
    [Show full text]
  • TRANSLATIONALLY by AMPK a Dissertation
    CHOLESTEROL 7 ALPHA-HYDROXYLASE IS REGULATED POST- TRANSLATIONALLY BY AMPK A dissertation submitted to Kent State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy By Mauris E.C. Nnamani May 2009 Dissertation written by Mauris E. C. Nnamani B.S, Kent State University, 2006 Ph.D., Kent State University, 2009 Approved by Diane Stroup Advisor Gail Fraizer Members, Doctoral Dissertation Committee S. Vijayaraghavan Arne Gericke Jennifer Marcinkiewicz Accepted by Robert Dorman , Director, School of Biomedical Science John Stalvey , Dean, Collage of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………..vi ACKNOWLEDGMENTS……………………………………………………..viii CHAPTER I: INTRODUCTION……………………………………….…........1 a. Bile Acid Synthesis…………………………………………….……….2 i. Importance of Bile Acid Synthesis Pathway………………….….....2 ii. Bile Acid Transport..…………………………………...…...………...3 iii. Bile Acid Synthesis Pathway………………………………………...…4 iv. Classical Bile Acid Synthesis Pathway…..……………………..…..8 Cholesterol 7 -hydroxylase (CYP7A1)……..........………….....8 Transcriptional Regulation of Cholesterol 7 -hydroxylase by Bile Acid-activated FXR…………………………….....…10 CYP7A1 Transcriptional Repression by SHP-dependant Mechanism…………………………………………………...10 CYP7A1 Transcriptional Repression by SHP-independent Mechanism……………………………………..…………….…….11 CYP7A1 Transcriptional Repression by Activated Cellular Kinase…….…………………………...…………………….……12 v. Alternative/ Acidic Bile Acid Synthesis Pathway…………......…….12 Sterol 27-hydroxylase (CYP27A1)……………….…………….12
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Hanna Joleen 2018 Thesis.Pdf
    Validation of an In Vitro Mutagenicity Assay Based on Pulmonary Epithelial Cells from the Transgenic MutaMouse: Intra-Laboratory Variability and Metabolic Competence By: Joleen Hanna, B.Sc. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science In Biology Specializing in Chemical and Environmental Toxicology Supervisor: Dr. Paul White (University of Ottawa) Thesis Advisory Committee: Dr. Frances Pick (University of Ottawa) Dr. Iain Lambert (Carleton University) University of Ottawa Ontario, Canada March 2018 © Joleen Hanna, Ottawa, Canada, 2018 Abstract: Genetic toxicity tests used for regulatory screening must be rigorously validated to ensure accuracy, reliability and relevance. Hence, prior to establishment of an internationally- accepted test guideline, a new assay must undergo multi-stage validation. An in vitro transgene mutagenicity assay based on an immortalized cell line derived from MutaMouse lung (i.e., FE1 cells) is currently undergoing formal validation. FE1 cells retain a lacZ transgene in a λgt10 shuttle vector that can be retrieved for scoring of chemically-induced mutations. This work contributes to validation of the in vitro transgene (lacZ) mutagenicity assay in MutaMouse FE1 cells. More specifically, the work includes an intra-laboratory variability study, and a follow-up study to assess the endogenous metabolic capacity of FE1 cells. The former is essential to determine assay reliability, the latter to define the range of chemicals that can be reliably screened without an exogenous metabolic activation mixture (i.e., rat liver S9). The intra- laboratory variability assessment revealed minimal variability; thus, assay reproducibility can be deemed acceptable. Assessment of metabolic capacity involved exposure of FE1 cells to 5 known mutagens, and subsequent assessment of changes in the expression of genes involved in xenobiotic metabolism; induced transgene mutant frequency (±S9) was assessed in parallel.
    [Show full text]