Strategies to Guide the Manufacturing of Liposomes Using Microfluidics

Total Page:16

File Type:pdf, Size:1020Kb

Strategies to Guide the Manufacturing of Liposomes Using Microfluidics pharmaceutics Article The Impact of Solvent Selection: Strategies to Guide the Manufacturing of Liposomes Using Microfluidics 1, 1, 1,2 1 Cameron Webb y, Swapnil Khadke y, Signe Tandrup Schmidt , Carla B. Roces , Neil Forbes 1, Gillian Berrie 1 and Yvonne Perrie 1,* 1 Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; [email protected] (C.W.); [email protected] (S.K.); [email protected] (S.T.S.); [email protected] (C.B.R.); [email protected] (N.F.); [email protected] (G.B.) 2 Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark * Correspondence: [email protected]; Tel.: +0141-548-2244 These authors contributed equally to this work. y Received: 26 October 2019; Accepted: 30 November 2019; Published: 4 December 2019 Abstract: The aim of this work was to assess the impact of solvent selection on the microfluidic production of liposomes. To achieve this, liposomes were manufactured using small-scale and bench-scale microfluidics systems using three aqueous miscible solvents (methanol, ethanol or isopropanol, alone or in combination). Liposomes composed of different lipid compositions were manufactured using these different solvents and characterised to investigate the influence of solvents on liposome attributes. Our studies demonstrate that solvent selection is a key consideration during the microfluidics manufacturing process, not only when considering lipid solubility but also with regard to the resultant liposome critical quality attributes. In general, reducing the polarity of the solvent (from methanol to isopropanol) increased the liposome particle size without impacting liposome short-term stability or release characteristics. Furthermore, solvent combinations such as methanol/isopropanol mixtures can be used to modify solvent polarity and the resultant liposome particle size. However, the impact of solvent choice on the liposome product is also influenced by the liposome formulation; liposomes containing charged lipids tended to show more sensitivity to solvent selection and formulations containing increased concentrations of cholesterol or pegylated-lipids were less influenced by the choice of solvent. Indeed, incorporation of 14 wt% or more of pegylated-lipid was shown to negate the impact of solvent selection. Keywords: liposomes; microfluidics; solvents; formulation; particle size; pegylation; alcohol 1. Introduction Liposomes are a versatile group of nanoparticles, which are approved for use in the clinic to improve the delivery of cancer agents, antifungal agents and vaccine adjuvants [1,2]. Currently, most approved liposome products contain already-approved drugs (e.g., amphotericin B, doxorubicin, bupivacaine, verteporfin) [3]. Recently, there has been a rise in follow-on ‘nanosimilars’ or generic liposome products being approved for use. Indeed, this has resulted in new recommendations for the naming of liposomal medicines such that the qualifier ‘liposomal’ or ‘pegylated liposomal’ should be added to the name. This recommendation, made jointly by the EMA’s human medicines committee and the Coordination Group for the mutual Recognition and Decentralised Procedures, aims to provide clearer distinctions between liposomal and non-liposomal formulations and hence avoid medication errors [4]. Pharmaceutics 2019, 11, 653; doi:10.3390/pharmaceutics11120653 www.mdpi.com/journal/pharmaceutics PharmaceuticsPharmaceutics 20192019,, 1111,, 653653 2 of 1615 However, despite the increase in their use, the manufacturing processes used in the production of liposomesHowever, remains despite therelatively increase unchanged, in their use, with the manufacturingtime-consuming, processes multi-stage used batch in the production ofprocedures liposomes being remains common. relatively Furthermore, unchanged, in many with time-consuming,liposome research multi-stage studies, small-scale batch production methods proceduresare still used being that common. do not offer Furthermore, realistic line-of-sight in many liposome to a manufacturing research studies, process. small-scale This methodsreduces our are stillability used to thattranslate do not liposome offer realistic technology line-of-sight from bench to a manufacturing to patient. To process. address This this, reduces new manufacturing our ability to translatemethods liposomeare being technology investigated, from benchwhich tocan patient. offer Toscale-independent address this, new manufacturingproduction. In methods particular, are beingmicrofluidics investigated, is being which widely can oinvestigatedffer scale-independent as a scale-independent production. In production particular, microfluidicsmethod (e.g., is [5–7]). being widelyThis method investigated generally as arelies scale-independent on the bottom productionup self-assembly method of the (e.g., liposom [5–7]).es This by methodcontrolled generally mixing reliesof lipids on dissolved the bottom in upan self-assemblyaqueous soluble of theorganic liposomes solvent by with controlled an aqueous mixing buffer of lipids[8,9]. Using dissolved this inmethod, an aqueous we have soluble demonstrated organic solvent the ability with to an entrap aqueous small bu moleculesffer [8,9]. [10,11], Using thisnucleic method, acids we[12] have and demonstratedproteins [13,14] the within ability liposomes. to entrap small We have molecules also demonstrated [10,11], nucleic the acids scale-independent [12] and proteins production [13,14] within of liposomes.liposomal adjuvants We have also using demonstrated this method the [15–18]. scale-independent production of liposomal adjuvants using this methodWhen adopting [15–18]. microfluidics as a production method for liposomes, the lipids are dissolved in an organicWhen adoptingsolvent (normally microfluidics alcohol), as a productionwhich is then method mixed for with liposomes, the aqueous the lipids phase are to dissolved promote innanoprecipitation an organic solvent and (normally liposome alcohol),production. which Therefor is thene, the mixed solvent with selected the aqueous must phasedissolve to promotethe lipid nanoprecipitationcomponent and be and water liposome soluble. production. The water Therefore, miscibility the of solvent organic selected solvents must is directly dissolve related the lipid to componentcarbon chain and length be water and soluble.surface tension The water as miscibilityshown in Figure of organic 1 (adapted solvents from is directly [19]). relatedAs the tolength carbon of chainthe carbon length chain and surface increases, tension the as polar shown OH in Figuregroup1 (adaptedbecomes froma smaller [ 19]). component As the length of of the the solvent carbon chainmolecule. increases, The solubility the polar and OH the group polarity becomes of alcohol a smaller decreases component correspondingly. of the solvent The molecule. solubility The of solubilityorganic solvents and the in polarity water ofis alcoholalso driven decreases by hydrogen-bonding correspondingly. Theinteractions solubility between of organic water solvents and insolvent. water For is also example, driven water by hydrogen-bonding and short-chain solvents interactions such betweenas ethanol water are completely and solvent. miscible For example, due to waterthe ability and short-chainof the ethanol solvents molecules such as to ethanol form hydrogen are completely bonds miscible with water due tomolecules the ability as of well the ethanolas with moleculeseach other to[20]. form However, hydrogen when bonds considering with water solvent molecules selection as wellfor use as in with microfluidics, each other [lipid20]. However,solubility whenand water considering miscibility solvent are not selection the only for factors. use in microfluidics, Whilst in the lipidpurification solubility process and water solvent miscibility is removed, are notworking the only with factors. solvents Whilst that have in the low purification toxicity potential process and solvent defined is removed, as Class working3 in the ICH with Q3C solvents (R6) that[21] (e.g., have ethanol low toxicity and isopropanol potential and (IPA)) defined is preferable as Class 3 followed in the ICH by Q3Cthose (R6) in Class [21] (e.g.,2 (e.g., ethanol methanol) and isopropanol(Figure 1). (IPA)) is preferable followed by those in Class 2 (e.g., methanol) (Figure1). Figure 1.1. The relationship between aqueous solubility andand the number of carbon atoms inin alcoholsalcohols determined by by surface surface tension tension (adapted (adapted from from [19]) [19 and]) and physical physical properties properties of methanol, of methanol, ethanol, ethanol, and andisopropanol. isopropanol. Typically, IPAIPA hashas beenbeen usedused asas thethe lipidlipid solventsolvent inin microfluidicmicrofluidic processesprocesses [[8,22–24],8,22–24], withwith fewer studies exploring other solvents such as ethanol as a less toxic alternative for medicinal applications, whichwhich wouldwould alsoalso comply with routine industrial processesprocesses [[25].25]. However, thethe choice of solvent used during microfluidics may have an impact; Zook and Vreeland hypothesised that liposomes formed Pharmaceutics 2019, 11, 653 3 of 15 duePharmaceutics to the alcohol2019, 11 ,and 653 aqueous phase mixing, increasing the polarity of the solvent, which3 of 16caused the lipids to become progressively less soluble and self-assemble into planar
Recommended publications
  • A Novel Lipid Screening Platform That Provides a Complete Solution for Lipidomics Research
    A Novel Lipid Screening Platform that Provides a Complete Solution for Lipidomics Research The Lipidyzer™ Platform, powered by Metabolon® Baljit K Ubhi1, Alex Conner1, Eva Duchoslav3, Annie Evans1, Richard Robinson1, Paul RS Baker4 and Steve Watkins1 1SCIEX, CA, USA, 2Metabolon, USA, 3SCIEX, Ontario, Canada and 4SCIEX, MA, USA INTRODUCTION MATERIALS AND METHODS A major challenge in lipid analysis is the many isobaric Applying the kit for simplified sample extraction and preparation, interferences present in highly complex samples that confound a serum matrix was used following the protocols provided. A identification and accurate quantitation. This problem, coupled QTRAP® System with SelexION® DMS Technology (SCIEX) with complicated sample preparation techniques and data was used for targeted profiling of over a thousand lipid species analysis, highlights the need for a complete solution that from 13 different lipid classes (Figure 2) allowing for addresses these difficulties and provides a simplified method for comprehensive coverage. Two methods were used covering analysis. A novel lipidomics platform was developed that thirteen lipid classes using a flow injection analysis (FIA); one includes simplified sample preparation, automated methods, and injection with SelexION® Technology ON and another with the streamlined data processing techniques that enable facile, SelexION® Technology turned OFF. The lipid molecular species quantitative lipid analysis. Herein, serum samples were analyzed were measured using MRM and positive/negative switching. quantitatively using a unique internal standard labeling protocol, Positive ion mode detected the following lipid classes – a novel selectivity tool (differential mobility spectrometry; DMS) SM/DAG/CE/CER/TAG. Negative ion mode detected the and novel lipid data analysis software.
    [Show full text]
  • Seasonal Growth and Lipid Storage of the Circumgiobal, Subantarctic Copepod, Neocalanus Tonsus (Brady)
    Deep-Sea Research, Vol. 36, No. 9, pp, 1309-1326, 1989. 0198-0149/89$3.00 + 0.00 Printed in Great Britain. ~) 1989 PergamonPress pie. Seasonal growth and lipid storage of the circumgiobal, subantarctic copepod, Neocalanus tonsus (Brady) MARK D. OHMAN,* JANET M. BRADFORDt and JOHN B. JILLETr~ (Received 20 January 1988; in revised form 14 April 1989; accepted 24 April 1989) Abstraet--Neocalanus tonsus (Brady) was sampled between October 1984 and September 1985 in the upper 1000 m of the water column off southeastern New Zealand. The apparent spring growth increment of copepodid stage V (CV) differed depending upon the constituent con- sidered: dry mass increased 208 Ixg, carbon 162 Ixg, wax esters 143 Itg, but nitrogen only 5 ltg. Sterols and phospholipids remained relatively constant over this interval. Wax esters were consistently the dominant lipid class present in CV's, increasing seasonally from 57 to 90% of total lipids. From spring to winter, total lipid content of CV's increased from 22 to 49% of dry mass. Nitrogen declined from 10.9 to 5.4% of CV dry mass as storage compounds (wax esters) increased in importance relative to structural compounds. Egg lipids were 66% phospholipids. Upon first appearance of males and females in deep water in winter, lipid content and composition did not differ from co-occurring CV's, confirming the importance of lipids rather than particulate food as an energy source for deep winter reproduction of this species. Despite contrasting life histories, N. tonsus and subarctic Pacific Neocalanus plumchrus CV's share high lipid content, a predominance of wax esters over triacylglycerols as storage lipids, and similar wax ester fatty acid and fatty alcohol composition.
    [Show full text]
  • Molecular Insights of Adsorption and Structure of Surfactants and Inorganic Ions at Fluid – Liquid Interfaces
    Molecular Insights of Adsorption and Structure of Surfactants and Inorganic Ions at Fluid – Liquid Interfaces Afshin Asadzadeh Shahir B.Sc. Applied Chemistry, M.Sc. Physical Chemistry A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemical Engineering Abstract Traditional approaches to studying fluid – liquid interfaces include the macroscopic measuring of interfacial properties such as surface tension and matching the collected data against adsorption models. This method is capable of producing valuable data about the thermodynamics of adsorption and has been widely used by the community to extract information about the adsorption of thousands of different surface-active molecules. Nonetheless, this methodology cannot produce any molecular-level information about the microscopic structure of adsorption layers and interfaces. As a result, the molecular origins of many interfacial phenomena remained unknown until the advent of surface-sensitive techniques such as computer simulation and non-linear spectroscopy. The new insights provided by these methods have challenged the traditional views about the origins of some interfacial phenomena and promise modification of classical theories which were developed to explain these phenomena. In general, this thesis aims to study the interfacial structure and adsorption of ionic surfactants, some surface-active alcohols as model nonionic surfactants including, n-pentanol, methyl isobutyl carbinol (MIBC) and n-hexanol and inorganic salts including LiCl, NaCl and CsCl at both microscopic and macroscopic levels. The employed methodology involves a combination of traditional adsorption modelling with some macroscopic measurements and sum frequency generation (SFG) spectroscopy, which is capable of distinguishing between bulk and interfacial molecules.
    [Show full text]
  • Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis
    International Journal of Molecular Sciences Review Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis Olga Cañadas 1,2,Bárbara Olmeda 1,2, Alejandro Alonso 1,2 and Jesús Pérez-Gil 1,2,* 1 Departament of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; [email protected] (O.C.); [email protected] (B.O.); [email protected] (A.A.) 2 Research Institut “Hospital Doce de Octubre (imasdoce)”, 28040 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-913944994 Received: 9 May 2020; Accepted: 22 May 2020; Published: 25 May 2020 Abstract: Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface. Keywords: pulmonary surfactant film; surfactant metabolism; surface tension; respiratory air–liquid interface; inflammation; antimicrobial activity; apoptosis; efferocytosis; tissue repair 1.
    [Show full text]
  • Soluble Surfactant and Nanoparticle Effects on Lipid Monolayer Assembly and Stability
    Soluble Surfactant and Nanoparticle Effects on Lipid Monolayer Assembly and Stability Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Matthew D. Nilsen, B.S., M.Sc. Graduate Program in Chemical Engineering The Ohio State University 2010 Dissertation Committee: Dr. James F. Rathman, Advisor Dr. L. James Lee Dr. Isamu Kusaka c Copyright by Matthew D. Nilsen 2010 Abstract The study of self-assembly dynamics that lead to ultra-thin films at an interface remains a very active research topic because of the ability to generate interesting and useful structures that can perform specific tasks such as aiding in magnetic separa- tions, acting as two-dimensional biosensors and the modification of surfaces without changing their morphology. In some cases this is critical to surface functionality. This area is also important because it may ultimately yield simple screening techniques for novel surfactants and nanoparticle species before they are introduced onto the market, as is already happening. In the work presented here we studied the assembly dynamics of the insoluble lipid DPPC, common to most mammalian cell lines, in the presence of soluble surfactant and nanoparticle species. Preliminarily, we investigated the anomalous behavior of soluble surfactants at the air/water interface as an exten- sion to work done previously and then used these results in an attempt to explain the behavior of the combined surfactant/lipid monolayer under dynamic and static conditions. Separately, we performed nanoparticle dynamics studies for a commer- cially available product and for particles created in-house before performing similar statics/dynamics work on the combined nanoparticle/lipid monolayer.
    [Show full text]
  • The Mars Project: Avoiding Decompression Sickness on a Distant Planet
    NASA/TM--2000-210188 The Mars Project: Avoiding Decompression Sickness on a Distant Planet Johnny Conkin, Ph.D. National Space Biomedical Research Institute Houston, Texas 77030-3498 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058-3696 May 2000 Acknowledgments The following people provided helpful comments and suggestions: Amrapali M. Shah, Hugh D. Van Liew, James M. Waligora, Joseph P. Dervay, R. Srini Srinivasan, Michael R. Powell, Micheal L. Gernhardt, Karin C. Loftin, and Michael N. Rouen. The National Aeronautics and Space Administration supported part of this work through the NASA Cooperative Agreement NCC 9-58 with the National Space Biomedical Research Institute. The views expressed by the author do not represent official views of the National Aeronautics and Space Administration. Available from: NASA Center for AeroSpace Information National Technical Information Service 7121StandardDrive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 301-621-0390 703-605-6000 This report is also available in electronic form at http://techreports.larc.nasa.gov/cgi-bin/NTRS Contents Page Acronyms and Nomenclature ................................................................................................ vi Abstract ................................................................................................................................. vii Introduction ..........................................................................................................................
    [Show full text]
  • Adsorption at the Liquid/Gas Interface
    1.1. SurfaceSurface tensiontension ofof solutionssolutions Adsorption at the liquid/gas interface In the case of solutions, contrary to pure liquids, simultaneously with the changes of surface area, the surface tension γ may change. If a two-component solution behaves as a regular one, its surface tension changes as a function of the surface composition, according to the equation derived by Prigogine and Defay. γ = γ1x1 + γ2x2 −βpx1x2 (1) where: γγγ1 and γγγ2 are the surface tensions of pure liquid 1 and 2, respectively, x1 and x2 are the molar rations of these liquids, βp is the semi-empirical constant. Just to recall, a regular solution is a solution that diverges from the behavior of an ideal one only moderately. For regular solutions: o o o o Cpi −Cpi =0 µi −µi =RT ln ai Si − Si =−RT ln xi Hi −Hi =f (xi ) Note that the Margules function always contains the opposite mole fraction. In contrast to the case of ideal solutions, regular solutions do possess an enthalpy of mixing and their volume solutions are not strictly additive and must be calculated from the partial molar volumes that are a function of x. Adsorption at the liquid/gas interface The activity coefficients of the liquids (expressed via molar ratio) which form the mixed solutions satisfy the following relations (Margules functions): 2 RT ln f1 = − αx 2 (2) and 2 RT ln f 2 = −αx1 (3) A typical mixed solution of two liquids is acetone-chloroform , whose surface tension is shown in Fig.1.1. The surface tensions of these liquids are comparable, ( γ = 23.7 mN m –1 for acetone , and γ = 27.1 mN m –1 for chloroform ).
    [Show full text]
  • Phospholipid Monolayers Supported on Spun Cast Polystyrene Films John T
    Langmuir 2003, 19, 2275-2283 2275 Phospholipid Monolayers Supported on Spun Cast Polystyrene Films John T. Elliott,*,†,‡ Daniel L. Burden,§ John T. Woodward,† Amit Sehgal,| and Jack F. Douglas| Biotechnology Division, Chemical Science and Technology Laboratory, and Polymers Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, and Chemistry Department, Wheaton College, Wheaton, Illinois 60817 Received June 12, 2002. In Final Form: November 19, 2002 We investigated the use of spun cast polystyrene (PS) films as a hydrophobic solid support for phospholipid monolayers. Fluorescent microscopy indicated that a 1-palmitoyl-2-oleoyl-SN-glycero-3-phosphocholine (POPC) monolayer containing fluorescent lipid formed on ∼80 nm thick films of 2450 Mr PS exposed to phospholipid vesicle solutions. Qualitative fluorescence photobleaching experiments suggested that the phospholipid layer was continuous and the lipid diffusion rate was similar to those observed in glass- supported POPC bilayers. Examination of lipid diffusion by real-time, single-molecule fluorescence detection and fluorescence correlation spectroscopy (FCS) indicated that the lipid diffusion contained multiple components. We interpreted this as being caused by the presence of surface heterogeneities that confine lipid diffusion. In situ atomic force microscopy revealed the presence of 5-20 nm outgrowths on the PS film resulting from surface rearrangement upon exposure of the film to aqueous conditions. It is possible that such rearrangements play a role in determining the lipid translational dynamics. Our studies indicate that PS films can be suitable supports for phospholipid monolayers, but that immersion into an aqueous environment can significantly influence the film topography and the dynamics of the lipid in the supported monolayer.
    [Show full text]
  • Microemulsion Microstructure(S): a Tutorial Review
    nanomaterials Review Microemulsion Microstructure(s): A Tutorial Review Giuseppe Tartaro 1 , Helena Mateos 1 , Davide Schirone 1 , Ruggero Angelico 2 and Gerardo Palazzo 1,* 1 Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; [email protected] (G.T.); [email protected] (H.M.); [email protected] (D.S.) 2 Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 18 August 2020; Published: 24 August 2020 Abstract: Microemulsions are thermodynamically stable, transparent, isotropic single-phase mixtures of two immiscible liquids stabilized by surfactants (and possibly other compounds). The assortment of very different microstructures behind such a univocal macroscopic definition is presented together with the experimental approaches to their determination. This tutorial review includes a necessary overview of the microemulsion phase behavior including the effect of temperature and salinity and of the features of living polymerlike micelles and living networks. Once these key learning points have been acquired, the different theoretical models proposed to rationalize the microemulsion microstructures are reviewed. The focus is on the use of these models as a rationale for the formulation of microemulsions with suitable features. Finally, current achievements and challenges of the use of microemulsions are reviewed. Keywords: microemulsions; wormlike micelles; packing parameter; flexible surface model; hydrophilic–lipophilic difference (HLD); net average curvature (NAC) 1. Introduction As a matter of fact, water and oil do not mix. There are several applications in which this is a bitter truth and the coexistence of oil and water as separate macroscopic phases, interacting just through a small interface, is highly disappointing.
    [Show full text]
  • Solid Supported Lipid Monolayer: from Biophysical Properties to Sensor Application
    Aix-Marseille Université Thèse de Doctorat Pour l’obtention du grade de Docteur de l’université d’Aix Marseille Discipline : Physique Ecole doctorale Physique et Sciences de la Matière Présentée par Racha EL ZEIN Solid supported lipid monolayer: From biophysical properties to sensor application Centre Interdisiplinaire de Nano-sciences à Marseille (CINaM)-CNRS Campus de Luminy, Case 913, 13288 Marseille Cedex 9. Soutenance le : 15 mai 2013. Rapporteurs: Dominique Ausserré, IMMM, Université du Maine Thierry Charitat, ICS, Université de Strasbourg Examinateurs: Catherine Henry de Villeneuve, LPMC, Ecole Polytechnique Pierre-Henri Puech, LAI, Aix-Marseille Université Hervé Dallaporta, CINaM, Aix-Marseille Université (Directeur de thèse) Anne Charrier, CINaM, Aix-Marseille Université (Directrice de thèse) 2 Table de matière Introduction .............................................................................................................................. 9 1 Experimental techniques ................................................................................................. 15 1.1 Atomic Force Microscopy (AFM) .............................................................................. 15 1.1.1 Introduction .................................................................................................... 15 1.1.2 Description ...................................................................................................... 15 1.1.3 Forces in AFM .................................................................................................
    [Show full text]
  • Orientational Texture of Lipid Bilayer and Monolayer Domains
    Orientational Texture of Lipid Bilayer and Monolayer Domains PhD Thesis Jes Dreier Supervised by Associate Professor Adam Cohen Simonsen MEMPHYS – center for biomembrane physics Department of1 Physics, Chemistry and Pharmacy MEMPHYS University of Southern Denmark ovember 2012 Preface his thesis covers the scientific work I have conducted during the last three year during my PhD education in biophysic at MEMPHYS – center for T biomembrane physics, Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark. This work has been done under the qualified supervision of Associated Professor Adam Cohen Simonsen, and I am thankful for his help and advice during the last three years. Research Assistant Professor Jonathan R. Brewer should be acknowledged for the valuable help regarding the 2-photon microscope, its use, and interpretation of the results. I am very grateful to have had the opportunity to spend 6 month at University California Davis during my PhD. I owe many thanks to Professor Tonya Kuhl and Professor Margie Longo and their respectively research groups, for the help during my time there. I would like to acknowledge all the people at MEMPHYS for the help, support, and for making MEMPHYS what it is. A special thanks goes to the Ph.D. students Morten Christensen, Thomas E. Rasmussen and Mathias P. Clausen, both the help with this thesis, but also for countless discussions, (and much need coffee breaks) during my time at MEMPHYS. Your help have been invaluable. Most importantly a special thanks to my wife Signe, especially for the incredible support during the writing process of this thesis. The work in this thesis has lead to the following papers and manuscripts: J.
    [Show full text]
  • In-Situ Measurement of Metabolic Status in Three Coral Species from the Florida Reef Tract
    TITLE: In-situ measurement of metabolic status in three coral species from the Florida Reef Tract AUTHORS: Erica K. Towle*1, Renée Carlton2, 3, Chris Langdon1, Derek P. Manzello3 1Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149 2Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149 3Atlantic Oceanographic and Meteorological Laboratories (AOML), NOAA, 4301 Rickenbacker Cswy, Miami, FL 33149 *Corresponding author: Erica K. Towle, [email protected] Key words: Coral calcification, lipids, Florida Keys, Florida Reef Tract Abstract: The goal of this study was to gain an understanding of intra-and inter-specific variation in calcification rate, lipid content, symbiont density, and chlorophyll a of corals in the Florida Reef Tract to improve our insight of in-situ variation and resilience capacity in coral physiology. The Florida Keys are an excellent place to assess this question regarding resilience because coral cover has declined dramatically since the late 1970s, yet has remained relatively high on some inshore patch reefs. Coral lipid content has been shown to be an accurate predictor of resilience under stress, however much of the current lipid data in the literature comes from laboratory- based studies, and previous in-situ lipid work has been highly variable. The calcification rates o three species were monitored over a seven-month period at three sites and lipid content was quantified at two seasonal time points at each of the three sites. Montastraea cavernosa had the highest mean calcification rate (4.7 mg cm-2 day-1) and lowest mean lipid content (1.6 mg cm-2 ) across sites and seasons.
    [Show full text]