Molecular Insights of Adsorption and Structure of Surfactants and Inorganic Ions at Fluid – Liquid Interfaces

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Insights of Adsorption and Structure of Surfactants and Inorganic Ions at Fluid – Liquid Interfaces Molecular Insights of Adsorption and Structure of Surfactants and Inorganic Ions at Fluid – Liquid Interfaces Afshin Asadzadeh Shahir B.Sc. Applied Chemistry, M.Sc. Physical Chemistry A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemical Engineering Abstract Traditional approaches to studying fluid – liquid interfaces include the macroscopic measuring of interfacial properties such as surface tension and matching the collected data against adsorption models. This method is capable of producing valuable data about the thermodynamics of adsorption and has been widely used by the community to extract information about the adsorption of thousands of different surface-active molecules. Nonetheless, this methodology cannot produce any molecular-level information about the microscopic structure of adsorption layers and interfaces. As a result, the molecular origins of many interfacial phenomena remained unknown until the advent of surface-sensitive techniques such as computer simulation and non-linear spectroscopy. The new insights provided by these methods have challenged the traditional views about the origins of some interfacial phenomena and promise modification of classical theories which were developed to explain these phenomena. In general, this thesis aims to study the interfacial structure and adsorption of ionic surfactants, some surface-active alcohols as model nonionic surfactants including, n-pentanol, methyl isobutyl carbinol (MIBC) and n-hexanol and inorganic salts including LiCl, NaCl and CsCl at both microscopic and macroscopic levels. The employed methodology involves a combination of traditional adsorption modelling with some macroscopic measurements and sum frequency generation (SFG) spectroscopy, which is capable of distinguishing between bulk and interfacial molecules. Using SFG spectroscopy, the interfacial structure of adsorption layers and the composition of interfaces were investigated in detail and independently of the bulk solution. Specifically, the surface saturation of solutions of MIBC was identified directly using SFG spectroscopy and was then compared to equilibrium surface tension data to find that surface tension surprisingly continued to decrease even after full surface saturation. This is in contradiction to the traditional view that all surfactants adsorb at the outermost adsorption monolayer. Because of the limited surface area of the topmost adsorption monolayer, its full saturation is considered as the end of the adsorption process. This view is based on the notion of Gibbs dividing plane, which is usually taken as being equal to the physical adsorption monolayer in a surfactant solution. The post- saturation surface tension decrease, therefore, cannot be explained by the Gibbs convention. A different adsorption geometry, which considers the under-monolayer adsorption of alcohols, was proposed based on the Guggenheim extended interface model. In Chapter 5, a recent controversy about the applicability of the famous Gibbs adsorption isotherm to the analysis of surface tension data was addressed with regards to the new concept of under-monolayer adsorption. The results showed that the linearity of a surface tension plot is not necessarily indicative of a fully saturated i surface. The same adsorption geometry was also proposed for two other alcohols in Chapter 6. It was observed that adsorption geometry was not distinguishable by equilibrium surface tension plots but by dynamic characteristics of fluid – liquid interfaces. In other words, the under-monolayer adsorption significantly affected the rheological properties of the interface. This behaviour was also discussed as being responsible for the observed self-defoaming property of low-molecular-weight alcohols. In Chapter 7, immersion of the ionic headgroups of surfactants into the subsurface region was incorporated into some of popular adsorption models. The modified models could successfully explain why sodium dodecylsulphate (SDS) surface excess decreases at the oil – water interface compared to the air – water interface as well as with hydrophobicity of the non-aqueous phase. Finally, SFG spectroscopy was complemented with thin film pressure balance measurements in Chapter 8 to show that monovalent cations, in analogy to anions, can create an ion specific effect on the solution surface electric potential and interfacial water structure. The results also revealed the concentration-dependence of the water SFG response in the presence of salts. We explained these phenomena in terms of the polarizabilities of ions, which lead to the creation of an interfacial charge separation, i.e. ionic capacitance, as well as the kosmotropic-chaotropic effect of ions on water structure. From the findings of this thesis, adsorption geometry seems to be a major factor affecting the physicochemical characteristics of fluid – liquid interfaces and adsorption layers. However, it has often been undervalued by the majority of classical adsorption models while making simplifying assumptions. Now that the community has access to a variety of surface-sensitive techniques with molecular resolutions, the traditional approaches to studying interfaces should be reconsidered and complemented by the new advancements. This will open up new opportunities to shed light on the molecular origins of interfacial phenomena and resolve the existing controversies in the field, a few examples of which are covered in this thesis. ii Declaration by author This thesis is composed of my original work and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. iii Publications during candidature • Peer-reviewed papers 1. Khoi T. Nguyen, Afshin A. Shahir, Anh V. Nguyen, Probing the Molecular Orientation of Methyl Isobutyl Carbinol at the Air–Water Interface, J. Surfactants Deterg., 2017, 20, 969 – 976. 2. Afshin A. Shahir, Dimitrinka Arabadzhieva, Hristina Petkova, Stoyan I. Karakashev, Anh V. Nguyen, Elena Mileva, Effect of Under-Monolayer Adsorption on Foamability, Rheological Characteristics and Dynamic Behaviour of Fluid Interfaces: Experimental Evidence for the Guggenheim Extended Interface Model, J. Phys. Chem. C, 2017, 121, 11472 – 11487. 3. Afshin A. Shahir, Anh V. Nguyen, Stoyan I. Karakashev, A Quantification of Immersion of the Adsorbed Ionic Surfactants at Fluid – Liquid Interfaces, Colloids Surf. A, 2016, 509, 279 – 292. 4. Afshin A. Shahir, Khoi T. Nguyen, Anh V. Nguyen, A Sum-Frequency Generation Spectroscopic Study of the Gibbs Analysis Paradox: Monolayer or Under-Monolayer Adsorption?, Phys. Chem. Chem. Phys., 2016, 18, 8794 – 8805. Publications included in this thesis • Afshin A. Shahir, Khoi T. Nguyen, Anh V. Nguyen, A Sum-Frequency Generation Spectroscopic Study of the Gibbs Analysis Paradox: Monolayer or Under-Monolayer Adsorption?, Phys. Chem. Chem. Phys., 2016, 18, 8794 – 8805, incorporated as Chapter 5. Contributor Statement of contribution Designed/performed experiments (75%) Afshin Asadzadeh Shahir Interpreted/analysed data (80%) Wrote/revised the paper (85%) Designed/performed experiments (15%) Khoi Tan Nguyen Interpreted/analysed data (15%) Wrote/revised the paper (10%) Designed/performed experiments (10%) Anh Van Nguyen Interpreted/analysed data (5%) Wrote/revised the paper (5%) iv • Afshin A. Shahir, Dimitrinka Arabadzhieva, Hristina Petkova, Stoyan I. Karakashev, Anh V. Nguyen, Elena Mileva, Effect of Under-Monolayer Adsorption on Foamability, Rheological Characteristics and Dynamic Behaviour of Fluid Interfaces: Experimental Evidence for the Guggenheim Extended Interface Model, J. Phys. Chem. C, 2017, 121, 11472 – 11487, incorporated as Chapter 6. Contributor Statement of contribution Designed/performed experiments (70%) Afshin Asadzadeh Shahir Interpreted/analysed data (75%) Wrote/revised the paper (85%) Performed experiments (10%) Dimitrinka Arabadzhieva Interpreted/analysed data (10%) Designed/performed experiments (15%) Hristina Petkova Interpreted/analysed data (10%) Interpreted/analysed data (5%) Stoyan Ivanov Karakashev Wrote/revised the paper (5%) Anh Van Nguyen
Recommended publications
  • By Erwin Hendarto a Dissertation Submitted in Partial Fulfillment of The
    APPLICATIONS OF MARANGONI FORCES IN ACTUATING SOLID PHASE OBJECTS by Erwin Hendarto A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in the University of Michigan 2013 Doctoral Committee: Professor Yogesh B. Gianchandani, Chair Assistant Professor Anastasios John Hart Assistant Research Scientist Tao Li Assistant Professor Sunitha Nagrath Professor Euisik Yoon © 2013 Erwin Hendarto i To my parents, my wife, and my daughters ii ACKNOWLEDGMENTS It is truly a great privilege to acknowledge the contributions of the many people around me who have played a part in my quest for a Ph.D. This work certainly would not have been possible without their help and support. It is with immense gratitude that, first and foremost, I acknowledge the teachings and guidance of my research advisor, Professor Yogesh Gianchandani, who presented me with the numerous opportunities and challenges that broadened my expertise and research proficiency beyond all boundaries. I appreciated the frequent one-on-one technical discussions I had with him. But the only exchanges I cherish the most were the ones where he constantly advised me to prioritize my family above anything else. Despite his busy schedule, he would never fail to allocate a few minutes of his time whenever I needed to have a discussion with him, and I sincerely thank him for that. Along with him, I would also like to thank the dissertation committee for being very supportive in shaping the outcome of this work. I would not have embarked on this eventful journey had it not been for the persistent encouragement of my undergraduate research advisors, the late Professor Jacob Phang of the National University of Singapore, and Professor Ludwig Balk of the University of Wuppertal.
    [Show full text]
  • Marangoni Convection : Numerical Model and Experiments
    Marangoni convection : numerical model and experiments Citation for published version (APA): Boer, den, A. W. J. P. (1996). Marangoni convection : numerical model and experiments. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR470785 DOI: 10.6100/IR470785 Document status and date: Published: 01/01/1996 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Experimental Study on Coherent Structures by Particles Suspended in Half-Zone Thermocapillary Liquid Bridges: Review
    fluids Article Experimental Study on Coherent Structures by Particles Suspended in Half-Zone Thermocapillary Liquid Bridges: Review Ichiro Ueno Department of Mechanical Engineering, Faculty of Science & Technology, Tokyo University of Science, Chiba 278-8510, Japan; [email protected] Abstract: Coherent structures by the particles suspended in the half-zone thermocapillary liquid bridges via experimental approaches are introduced. General knowledge on the particle accumulation structures (PAS) is described, and then the spatial–temporal behaviours of the particles forming the PAS are illustrated with the results of the two- and three-dimensional particle tracking. Variations of the coherent structures as functions of the intensity of the thermocapillary effect and the particle size are introduced by focusing on the PAS of the azimuthal wave number m = 3. Correlation between the particle behaviour and the ordered flow structures known as the Kolmogorov–Arnold—Moser tori is discussed. Recent works on the PAS of m = 1 are briefly introduced. Keywords: thermocapillary-driven convection; half-zone liquid bridges; particles; coherent struc- tures; particle accumulation structure (PAS); high Prandtl number fluids Citation: Ueno, I. Experimental 1. Introduction Study on Coherent Structures by Coherent structures by suspended particles were first found in thermocapillary half- Particles Suspended in Half-Zone zone liquid bridges by Schwabe et al. [1]. In the geometry of a “half-zone liquid bridge,” Thermocapillary Liquid Bridges: a liquid is bridged between the coaxial face-to-face disks by its surface tension, and each Review. Fluids 2021, 6, 105. https:// disk is kept at a constant but different temperature to impose a non-uniform temperature doi.org/10.3390/fluids6030105 distribution over the free surface of the liquid bridge.
    [Show full text]
  • Adsorption at the Liquid/Gas Interface
    1.1. SurfaceSurface tensiontension ofof solutionssolutions Adsorption at the liquid/gas interface In the case of solutions, contrary to pure liquids, simultaneously with the changes of surface area, the surface tension γ may change. If a two-component solution behaves as a regular one, its surface tension changes as a function of the surface composition, according to the equation derived by Prigogine and Defay. γ = γ1x1 + γ2x2 −βpx1x2 (1) where: γγγ1 and γγγ2 are the surface tensions of pure liquid 1 and 2, respectively, x1 and x2 are the molar rations of these liquids, βp is the semi-empirical constant. Just to recall, a regular solution is a solution that diverges from the behavior of an ideal one only moderately. For regular solutions: o o o o Cpi −Cpi =0 µi −µi =RT ln ai Si − Si =−RT ln xi Hi −Hi =f (xi ) Note that the Margules function always contains the opposite mole fraction. In contrast to the case of ideal solutions, regular solutions do possess an enthalpy of mixing and their volume solutions are not strictly additive and must be calculated from the partial molar volumes that are a function of x. Adsorption at the liquid/gas interface The activity coefficients of the liquids (expressed via molar ratio) which form the mixed solutions satisfy the following relations (Margules functions): 2 RT ln f1 = − αx 2 (2) and 2 RT ln f 2 = −αx1 (3) A typical mixed solution of two liquids is acetone-chloroform , whose surface tension is shown in Fig.1.1. The surface tensions of these liquids are comparable, ( γ = 23.7 mN m –1 for acetone , and γ = 27.1 mN m –1 for chloroform ).
    [Show full text]
  • Phospholipid Monolayers Supported on Spun Cast Polystyrene Films John T
    Langmuir 2003, 19, 2275-2283 2275 Phospholipid Monolayers Supported on Spun Cast Polystyrene Films John T. Elliott,*,†,‡ Daniel L. Burden,§ John T. Woodward,† Amit Sehgal,| and Jack F. Douglas| Biotechnology Division, Chemical Science and Technology Laboratory, and Polymers Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, and Chemistry Department, Wheaton College, Wheaton, Illinois 60817 Received June 12, 2002. In Final Form: November 19, 2002 We investigated the use of spun cast polystyrene (PS) films as a hydrophobic solid support for phospholipid monolayers. Fluorescent microscopy indicated that a 1-palmitoyl-2-oleoyl-SN-glycero-3-phosphocholine (POPC) monolayer containing fluorescent lipid formed on ∼80 nm thick films of 2450 Mr PS exposed to phospholipid vesicle solutions. Qualitative fluorescence photobleaching experiments suggested that the phospholipid layer was continuous and the lipid diffusion rate was similar to those observed in glass- supported POPC bilayers. Examination of lipid diffusion by real-time, single-molecule fluorescence detection and fluorescence correlation spectroscopy (FCS) indicated that the lipid diffusion contained multiple components. We interpreted this as being caused by the presence of surface heterogeneities that confine lipid diffusion. In situ atomic force microscopy revealed the presence of 5-20 nm outgrowths on the PS film resulting from surface rearrangement upon exposure of the film to aqueous conditions. It is possible that such rearrangements play a role in determining the lipid translational dynamics. Our studies indicate that PS films can be suitable supports for phospholipid monolayers, but that immersion into an aqueous environment can significantly influence the film topography and the dynamics of the lipid in the supported monolayer.
    [Show full text]
  • Microemulsion Microstructure(S): a Tutorial Review
    nanomaterials Review Microemulsion Microstructure(s): A Tutorial Review Giuseppe Tartaro 1 , Helena Mateos 1 , Davide Schirone 1 , Ruggero Angelico 2 and Gerardo Palazzo 1,* 1 Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; [email protected] (G.T.); [email protected] (H.M.); [email protected] (D.S.) 2 Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 18 August 2020; Published: 24 August 2020 Abstract: Microemulsions are thermodynamically stable, transparent, isotropic single-phase mixtures of two immiscible liquids stabilized by surfactants (and possibly other compounds). The assortment of very different microstructures behind such a univocal macroscopic definition is presented together with the experimental approaches to their determination. This tutorial review includes a necessary overview of the microemulsion phase behavior including the effect of temperature and salinity and of the features of living polymerlike micelles and living networks. Once these key learning points have been acquired, the different theoretical models proposed to rationalize the microemulsion microstructures are reviewed. The focus is on the use of these models as a rationale for the formulation of microemulsions with suitable features. Finally, current achievements and challenges of the use of microemulsions are reviewed. Keywords: microemulsions; wormlike micelles; packing parameter; flexible surface model; hydrophilic–lipophilic difference (HLD); net average curvature (NAC) 1. Introduction As a matter of fact, water and oil do not mix. There are several applications in which this is a bitter truth and the coexistence of oil and water as separate macroscopic phases, interacting just through a small interface, is highly disappointing.
    [Show full text]
  • Solid Supported Lipid Monolayer: from Biophysical Properties to Sensor Application
    Aix-Marseille Université Thèse de Doctorat Pour l’obtention du grade de Docteur de l’université d’Aix Marseille Discipline : Physique Ecole doctorale Physique et Sciences de la Matière Présentée par Racha EL ZEIN Solid supported lipid monolayer: From biophysical properties to sensor application Centre Interdisiplinaire de Nano-sciences à Marseille (CINaM)-CNRS Campus de Luminy, Case 913, 13288 Marseille Cedex 9. Soutenance le : 15 mai 2013. Rapporteurs: Dominique Ausserré, IMMM, Université du Maine Thierry Charitat, ICS, Université de Strasbourg Examinateurs: Catherine Henry de Villeneuve, LPMC, Ecole Polytechnique Pierre-Henri Puech, LAI, Aix-Marseille Université Hervé Dallaporta, CINaM, Aix-Marseille Université (Directeur de thèse) Anne Charrier, CINaM, Aix-Marseille Université (Directrice de thèse) 2 Table de matière Introduction .............................................................................................................................. 9 1 Experimental techniques ................................................................................................. 15 1.1 Atomic Force Microscopy (AFM) .............................................................................. 15 1.1.1 Introduction .................................................................................................... 15 1.1.2 Description ...................................................................................................... 15 1.1.3 Forces in AFM .................................................................................................
    [Show full text]
  • Orientational Texture of Lipid Bilayer and Monolayer Domains
    Orientational Texture of Lipid Bilayer and Monolayer Domains PhD Thesis Jes Dreier Supervised by Associate Professor Adam Cohen Simonsen MEMPHYS – center for biomembrane physics Department of1 Physics, Chemistry and Pharmacy MEMPHYS University of Southern Denmark ovember 2012 Preface his thesis covers the scientific work I have conducted during the last three year during my PhD education in biophysic at MEMPHYS – center for T biomembrane physics, Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark. This work has been done under the qualified supervision of Associated Professor Adam Cohen Simonsen, and I am thankful for his help and advice during the last three years. Research Assistant Professor Jonathan R. Brewer should be acknowledged for the valuable help regarding the 2-photon microscope, its use, and interpretation of the results. I am very grateful to have had the opportunity to spend 6 month at University California Davis during my PhD. I owe many thanks to Professor Tonya Kuhl and Professor Margie Longo and their respectively research groups, for the help during my time there. I would like to acknowledge all the people at MEMPHYS for the help, support, and for making MEMPHYS what it is. A special thanks goes to the Ph.D. students Morten Christensen, Thomas E. Rasmussen and Mathias P. Clausen, both the help with this thesis, but also for countless discussions, (and much need coffee breaks) during my time at MEMPHYS. Your help have been invaluable. Most importantly a special thanks to my wife Signe, especially for the incredible support during the writing process of this thesis. The work in this thesis has lead to the following papers and manuscripts: J.
    [Show full text]
  • Numerical Modelling of the Impact of Energy Distribution and Marangoni
    Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material Qiang Chen, Gildas Guillemot, Charles-André Gandin, Michel Bellet To cite this version: Qiang Chen, Gildas Guillemot, Charles-André Gandin, Michel Bellet. Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material. Additive Manufacturing, Elsevier, 2018, 21, pp.713 - 723. 10.1016/j.addma.2018.03.003. hal-01809287 HAL Id: hal-01809287 https://hal-mines-paristech.archives-ouvertes.fr/hal-01809287 Submitted on 15 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Additive Manufacturing 21 (2018) 713-723 https://doi.org/10.1016/j.addma.2018.03.003 Free access to the published article until June 20, 2018 through this link: https://authors.elsevier.com/a/1WztD7tcTWPeXU Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material Qiang Chen, Gildas Guillemot, Charles-André Gandin and Michel Bellet* MINES ParisTech, PSL Research University, CEMEF – Centre de mise en forme des matériaux, CNRS UMR 7635, 1 rue Claude Daunesse, CS 10207, 06904 Sophia Antipolis Cedex, France Abstract: The present study is based on a formerly developed 3D finite element modelling of the selective laser melting process (SLM) at the track scale.
    [Show full text]
  • Surface Tensions of Fe–(30–40Mol%) Si–C Alloys at 1523–1773K
    Materials Transactions, Vol. 54, No. 10 (2013) pp. 1968 to 1974 ©2013 The Japan Institute of Metals and Materials Surface Tensions of Fe­(30­40 mol%)Si­C Alloys at 1523­1723 K Takeshi Yoshikawa Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan To analyze the Marangoni effect on fluid flow in an Fe­Si solution during solution growth of SiC, knowledge of the temperature coefficient of surface tension of the solution is essential. In this investigation, the surface tensions of Fe­(30­40 mol%) Si alloys and alloys with added carbon were measured at 1523­1723 K by the maximum bubble pressure method. Surface tensions and temperature coefficients were precisely determined. The measured surface tensions were also compared with estimations based on the modified Butler’s model, and the effect of carbon on the surface tension of Fe­Si­C alloys was assessed. [doi:10.2320/matertrans.M2013211] (Received June 4, 2013; Accepted July 23, 2013; Published September 6, 2013) Keywords: iron­silicon alloy, surface tension, Marangoni effect, surface active effect, modified Butler’s model 1. Introduction heating.9) A remarkable SiC grown ridge on the seed crystal was observed at the edge of the area that was in contact with Silicon carbide (SiC) is a wide band gap semiconductor, the cylindrical liquid bridge. However, the growth was and is a promising base material for high temperature insignificant in interior regions. Because the growth of the electronics and high-voltage power devices because of its low ridge became larger with larger temperature gradients, the on-resistance and high electrical breakdown field.
    [Show full text]
  • Influence of Dynamic Surface Tension on Foams: Application in Gas Well
    Influence of dynamic surface tension on foams: Application in gas well deliquification MSC THESIS DELFT UNIVERSITY OF TECHNOLOGY FACULTY OF APPLIED SCIENCES DEPARTMENT OF MULTI-SCALE PHYSICS Starting date: 5 September 2011 Defence date: 31 August 2012 Author: Durgesh KAWALE Student number: 4123344 Supervisors: Ir. A.T. van NIMWEGEN Dr. Eng. L.M. PORTELA Dr. M. van DIJK (Shell) Prof. Dr. Ir. R.A.W.M. Henkes Reviewer: Dr. ing. G.J.M. KOPER The experimental work described in this thesis has been carried out during a 10 month visit at the Shell Technology Center in Amsterdam. The work is linked to the PhD project by Ir. Dries van Nimwegen on well deliquification using foamers, funded by the Nederlandse Aardolie Maatschappij (NAM). Shell and NAM are acknowledged for their support, including their technical input during progress meetings. iii Picture courtesy: Chris Lord c , Reproduced with permission. Website: www.pixielatedpixels.com “There are things known and things unknown and in between are the doors of perception.” — Jim Morrison (1943 – 1971) Table of contents Abstract xi 1 Introduction 1 1.1 Motivation . 1 1.2 Foams . 2 1.2.1 Surface active agents . 3 1.2.2 Physio-chemical properties of surfactants in water . 3 1.2.3 Foamability . 4 1.2.4 Foam formation . 4 1.3 Rosen’s empirical approach . 5 1.4 Other correlations for foamability .................... 6 1.5 Research question . 8 1.6 Outline . 8 2 Background theories 9 2.1 Surfactant properties in aqueous solutions . 9 2.1.1 Equilibrium surface tension . 9 2.1.2 Dyanamic surface tension .
    [Show full text]
  • Synergistic Behavior of Mixed Monolayer/Mixed Micelle Formation Between Cationic Monomeric and Dimeric Surfactants with PEO-PPO-PEO Triblock Copolymer
    Int. J. Electrochem. Sci., 13 (2018) 2090 – 2101, doi: 10.20964/2018.02.74 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Synergistic Behavior of Mixed Monolayer/Mixed Micelle Formation between Cationic Monomeric and Dimeric Surfactants with PEO-PPO-PEO Triblock Copolymer Naved Azum1,*, Andleeb Z. Naqvi2 1 Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 2 Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India *E-mail: [email protected] Received: 19 October 2017 / Accepted: 18 December 2017 / Published: 28 December 2017 The micellar and surface properties of PEO-PPO-PEO triblock copolymer (Pluronic F-127) with cationic monomeric (hexadecyltrimethylammonium bromide), and gemini or dimeric (Pentanediyl-1, 5-bis (dimethylcetylammonium bromide)) surfactants was investigated using surface tension and conductivity measurements in aqueous solution. Various micellar, interfacial and thermodynamic parameters were evaluated. All the mixtures of binary systems show synergism. The synergistic interactions are found to be more with dimeric surfactant. The copolymer contribution in mixed micelles also increases with gemini surfactant. Keywords: Triblock co-polymer, Gemini surfactant, Conventional surfactant, Mixed micelle, Synergism 1. INTRODUCTION The interactions between polymers and surfactants in aqueous solutions have gained wide interest because of their extensive industrial applications [1-4]. The addition of polymers to surfactant solutions may alter micellar properties due to the interactions between polymer chains and surfactant micelles [5-9] which results in conformational changes in polymer chains [10]. The triblock copolymers, Pluronics, with general formula PEOn–PPOm–PEOn (where PEO is poly(ethyleneoxide), PPO is poly(propyleneoxide) blocks and n, m are the number of blocks), have been the subject of intense research due to their industrial applications.
    [Show full text]