Fermullerj) by Clarke (1971), Uresiphita Polygonalis Maorialis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impacts of Alien Land Arthropods and Mollusks on Native Plants and Animals in Hawaii
7. IMPACTS OF ALIEN LAND ARTHROPODS AND MOLLUSKS ON NATIVE PLANTS AND ANIMALS IN HAWAIfI Francis G. Howarth ABSTRACT Over 2,000 alien arthropod species and about 30 alien non-marine mollusks are established in the wild in Hawai'i, While the data are too meager to assess fully the impacts of any of these organisms on the na- tive biota, the documentation suggests several areas of critical concern. Alien species feed directly on na- tive plants or their products, thus competing with na- tive herbivores and affecting host plants. Alien pred- ators and parasites critically reduce the populations of many native species and seriously deplete the food resources of native predators. Some immigrant species spread diseases that infect elements of the native bio- ta. Others are toxic to native predators. There is also competition for other resources, such as nesting and resting sites. Even apparently innocuous intro- duced species may provide food for alien predators, thus keeping predator populations high with an atten- dant greater impact on native prey. Control measures targeted at alien pests may be hazardous to natives. Mitigative measures must be based on sound research and firmer understanding of the complex interactions and dynamics of functioning ecosystems. Strict quarantine procedures are cost effective in preventing or delaying the establishment of potential pests. Strict control or fumigation is needed for nonessential importations (such as cow chips, Christmas trees, and flowers in bulk). Improved review of introductions for biological control is required in order to prevent repeating past mistakes. Biocontrol introductions must be used only for bona fide pests and used in native ecosystems only in special circumstances. -
Pu'u Wa'awa'a Biological Assessment
PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9 -
Teline Monspessulana Michael Winka, Clytia B
Uresiphita reversalis (Lepidoptera: Pyralidae): Carrier-Mediated Uptake and Sequestration of Quinolizidine Alkaloids Obtained from the Host Plant Teline monspessulana Michael Winka, Clytia B. Montllorb, Elizabeth A. Bernaysbc, and Ludger Witted a Institut für Pharmazeutische Biologie, Universität Heidelberg. Im Neuenheimer Feld 364, D-6900 Heidelberg, Bundesrepublik Deutschland b Division of Biological Control, University of California, Albany, Cal. 94706, U.S.A.* c Department of Entomology, University of Arizona, Tuscon, Ariz. 85721, U.S.A. d Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Mendelssohnstraße 1, D-3300 Braunschweig, Bundesrepublik Deutschland Z. Naturforsch. 46c, 1080- 1088 (1991); received July 1, 1991 Uresiphita reversalis, Cytisine, Transport, Carrier, Alkaloid, Teline monspessulana Larvae o f Uresiphita reversalis feed almost exclusively on legumes of the tribe Genisteae, whose characteristic secondary metabolites are quinolizidine alkaloids (QA). Aposematic lar vae store host plant-derived QA in their integument, while the pupae are almost alkaloid-free. In the last instar larvae, alkaloids were concentrated in the larval head, possibly in the silk glands. About 80% of the alkaloids were transferred to the cocoon silk and 19% were lost with larval exuviae. The larval alkaloid pattern was characterized by capillary GLC and GLC-MS and com pared to that of the host plant, Teline monspessulana. Whereas the host plant contained mainly epiaphylline, dehydroaphylline and aphylline, larvae selectively accumulated N-methylcyti- sine, a relatively minor component of the plant QA; the faeces contained mainly epiaphylline and dehydroaphylline. Thus uptake and sequestration must be selective processes. Uptake by isolated larval midguts was time-, pH- and temperature-dependent and displayed an activation energy between 50 and 80 kJ/mol. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Additions, Deletions and Corrections to An
Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe. -
The Lepidoptera Rapa Island
J. F. GATES CLA, The Lepidoptera Rapa Island SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1971 NUMBER 56 .-24 f O si % r 17401 •% -390O i 112100) 0 is -•^ i BLAKE*w 1PLATEALP I5 i I >k =(M&2l2Jo SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 56 j. F. Gates Clarke The Lepidoptera of Rapa Island SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1971 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. -
The Entomologist's Record and Journal of Variation
M DC, — _ CO ^. E CO iliSNrNVINOSHilWS' S3ldVyan~LIBRARlES*"SMITHS0N!AN~lNSTITUTl0N N' oCO z to Z (/>*Z COZ ^RIES SMITHSONIAN_INSTITUTlON NOIiniIiSNI_NVINOSHllWS S3ldVaan_L: iiiSNi'^NviNOSHiiNS S3iavyan libraries Smithsonian institution N( — > Z r- 2 r" Z 2to LI ^R I ES^'SMITHSONIAN INSTITUTlON'"NOIini!iSNI~NVINOSHilVMS' S3 I b VM 8 11 w </» z z z n g ^^ liiiSNi NviNOSHims S3iyvyan libraries Smithsonian institution N' 2><^ =: to =: t/J t/i </> Z _J Z -I ARIES SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHilWS SSIdVyan L — — </> — to >'. ± CO uiiSNi NViNosHiiws S3iyvaan libraries Smithsonian institution n CO <fi Z "ZL ~,f. 2 .V ^ oCO 0r Vo^^c>/ - -^^r- - 2 ^ > ^^^^— i ^ > CO z to * z to * z ARIES SMITHSONIAN INSTITUTION NOIinillSNl NVINOSHllWS S3iaVdan L to 2 ^ '^ ^ z "^ O v.- - NiOmst^liS^> Q Z * -J Z I ID DAD I re CH^ITUCnMIAM IMOTtTIITinM / c. — t" — (/) \ Z fj. Nl NVINOSHIIINS S3 I M Vd I 8 H L B R AR I ES, SMITHSONlAN~INSTITUTION NOIlfl :S^SMITHS0NIAN_ INSTITUTION N0liniliSNI__NIVIN0SHillMs'^S3 I 8 VM 8 nf LI B R, ^Jl"!NVINOSHimS^S3iavyan"'LIBRARIES^SMITHS0NIAN~'lNSTITUTI0N^NOIin L '~^' ^ [I ^ d 2 OJ .^ . ° /<SS^ CD /<dSi^ 2 .^^^. ro /l^2l^!^ 2 /<^ > ^'^^ ^ ..... ^ - m x^^osvAVix ^' m S SMITHSONIAN INSTITUTION — NOIlfliliSNrNVINOSHimS^SS iyvyan~LIBR/ S "^ ^ ^ c/> z 2 O _ Xto Iz JI_NVIN0SH1I1/MS^S3 I a Vd a n^LI B RAR I ES'^SMITHSONIAN JNSTITUTION "^NOlin Z -I 2 _j 2 _j S SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHilWS S3iyVaan LI BR/ 2: r- — 2 r- z NVINOSHiltNS ^1 S3 I MVy I 8 n~L B R AR I Es'^SMITHSONIAN'iNSTITUTIOn'^ NOlin ^^^>^ CO z w • z i ^^ > ^ s smithsonian_institution NoiiniiiSNi to NviNosHiiws'^ss I dVH a n^Li br; <n / .* -5^ \^A DO « ^\t PUBLISHED BI-MONTHLY ENTOMOLOGIST'S RECORD AND Journal of Variation Edited by P.A. -
867-1119, Ender, the Effect
www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online ISSN 1308-5301 Print Research article/Araştırma makalesi DOI: 10.46309/biodicon.2020.739497 13/2 (2020) 178-186 The effects of various carbohydrates and tannic acid on the food consumption and growth performance of Uresiphita gilvata (Lepidoptera: Crambidae) Ender ALTUN1, Mahmut BİLGENER1 Nurver ALTUN2*1 ORCID: 0000-0001-6072-2302; 0000-0001-7883-6973; 0000-0002-2657-9263 1 Department of Biology, Faculty of Science and Arts, Ondokuz Mayıs University, Samsun, Turkey 2 Department of Biology, Faculty of Science and Arts, Recep Tayyip Erdoğan University, Rize, Turkey Abstract The effects of carbohydrates and tannen on the development and food preferences of Uresiphita gilvata larvae were investigated in this study. In addition, with the addition of tannin, the importance of plant-herbivore co-evolution in the food choice of the larvae was mentioned. For this reason, thirteen different artificial diets were prepared. Each diet contains sucrose, glucose, galactose, maltose, fructose, arabinose, mannose, or starch at the same concentration. To investigate the effect of tannic acid, 5 % tannic acid was added to the diets each containing sucrose, starch, glucose or maltose at the same concentration. According to the results of the study, sucrose was consumed by larvae more than glucose and fructose. However, the maximum food consumption of U. gilvata larvae was on the diet containing arabinose and their minimum consumption was on the diet containing mannose. Galactose is more consumed by larvae. However, intake galactose can not converted to pupal lipid by larvae. The addition of tannin to the diet reduced the amount of consumption of diet the dry pupal weight and lipid amount of pupae. -
Palila Restoration Research, 1996−2012 Summary and Management Implications
Technical Report HCSU-046A PALILA RESTOratION RESEarch, 1996−2012 SUMMARY AND MANAGEMENT IMPLIcatIONS Paul C. Banko1 and Chris Farmer2, Editors 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, P.O. Box 44, Hawaii National Park, HI 96718 2 American Bird Conservancy, Kīlauea Field Station, P.O. Box 44, Hawaii National Park, HI 96718 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 October 2014 Citation: Banko, P. C., and C. Farmer, editors. 2014. Palila restoration research, 1996–2012: summary and management implications. Hawai‘i Cooperative Studies Unit Technical Report HCSU-046A. University of Hawai‘i at Hilo. 70 pages. This product was prepared under Cooperative Agreements CA03WRAG0036-3036WS0012, CA03WRAG0036-3036WS0032, and CAG09AC00041 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. This article has been peer reviewed and approved for publication consistent with USGS Fundamental Science Practices (http://pubs.usgs.gov/circ/1367/). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. PALILA RESTORATION RESEARCH, 1996–2012: SUMMARY AND MANAGEMENT IMPLICATIONS A palila (Loxioides bailleui) selects a seedpod from a māmane (Sophora chrysophylla) tree high on the western slope of Mauna Kea, Hawai‘i. The palila’s ecology and existence are inextricably linked to green māmane seeds, their critically important food. Chronic shortfalls in the supply of māmane seedpods could lead to the extinction of the palila. Photo by Jack Jeffrey (http://www.jackjeffreyphoto.com/). -
Southeast Farallon Island Arthropod Survey Jeffrey Honda San Jose State University
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2017 Southeast Farallon Island arthropod survey Jeffrey Honda San Jose State University Bret Robinson San Jose State University Michael Valainis San Jose State University Rick Vetter University of California Riverside Jaime Jahncke Point Blue Conservation Science Petaluma, CA Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Honda, Jeffrey; Robinson, Bret; Valainis, Michael; Vetter, Rick; and Jahncke, Jaime, "Southeast Farallon Island arthropod survey" (2017). Insecta Mundi. 1037. http://digitalcommons.unl.edu/insectamundi/1037 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0532 Southeast Farallon Island arthropod survey Jeffrey Honda San Jose State University, Department of Entomology San Jose, CA 95192 USA Bret Robinson San Jose State University, Department of Entomology San Jose, CA 95192 USA Michael Valainis San Jose State University, Department of Entomology San Jose, CA 95192 USA Rick Vetter University of California Riverside, Department of Entomology Riverside, CA 92521 USA Jaime Jahncke Point Blue Conservation Science 3820 Cypress Drive #11 Petaluma, CA 94954 USA Date of Issue: March 31, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Jeffrey Honda, Bret Robinson, Michael Valainis, Rick Vetter, and Jaime Jahncke Southeast Farallon Island arthropod survey Insecta Mundi 0532: 1–15 ZooBank Registered: urn:lsid:zoobank.org:pub:516A503A-78B9-4D2A-9B16-477DD2D6A58E Published in 2017 by Center for Systematic Entomology, Inc. -
Notes on the Oviposition Preferences of Uresiphita Maorialis (Felder & Rogenhofer) (Lepidoptera: Crambidae) on Three Sophora Species in Laboratory Conditions
38 Enrique Mundaca Notes on the oviposition preferences of Uresiphita maorialis (Felder & Rogenhofer) (Lepidoptera: Crambidae) on three Sophora species in laboratory conditions Enrique A. Mundaca Universidad Católica del Maule, Facultad de Ciencias Agrarias y Forestales, Escuela de Agronomía, Casilla 7-D, Curicó, Chile. Email: [email protected] Running title: Oviposition preferences of the kowhai moth Abstract Between 2008 and 2009, and as part of my PhD studies, I carried out a number of short experiments to observe oviposition preferences of the kowhai moth, U. maorialis, on three species of Sophora plants of common occurrence in Wellington urban gardens. The results of such experiments indicate that U. maorialis females prefer Sophora microphylla and S. tetraptera as oviposition substrates when simultaneously confronted with the three choices. Sophora prostrata does not seem to be an oviposition substrate for the female moths. Regardless of the plant species, the adaxial surface of the leaflet was the preferred area to oviposit egg clusters. These results provide preliminary insights that may help to understand the presence of high loads of larvae on individuals of S. tetraptera and S. microphylla normally seen in urban gardens in the Wellington city area. Key words: Wellington urban gardens, kowhai moth, egg clusters. Introduction In New Zealand, U. maorialis is considered to be an ornamental pest, particularly of Sophora (kowhai) plants (Mulvay 1978; Leen 1997). The taxon was formerly treated as a subspecies of U. polygonalis (now U. gilvata), but is currently listed as an endemic New Zealand species (Nuss et al. 2003-2013). In the Wellington city area, especially urban gardens and parks, larvae of U. -
Redalyc.Host-Plant Relationships of 29 Mediterraneanlepidoptera Species
SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Hausmann, A.; Scalercio, S. Host-plant relationships of 29 MediterraneanLepidoptera species in forested ecosystemsunveiled by DNA Barcoding(Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 44, núm. 175, septiembre, 2016, pp. 463-471 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45549999011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 44 (175) septiembre 2016: 463-471 eISSN: 2340-4078 ISSN: 0300-5267 Host-plant relationships of 29 Mediterranean Lepidoptera species in forested ecosystems unveiled by DNA Barcoding (Insecta: Lepidoptera) A. Hausmann & S. Scalercio Abstract A total of 45 Lepidoptera larvae were collected in ethanol from 16 target plant species in southern Italy, requiring a few hours of field work only. Identification was performed by DNA barcoding unveiling host-plant relationships for 29 Lepidoptera species. The authors propose a larger-scale approach using this rapid and efficient method and encourage entomologists to join the team. KEY WORDS: Insecta, Lepidoptera, caterpillar, feeding behavior, tree species, larval identification, Italy. Relación de las plantas nutricias de 29 especies de Lepidoptera mediterráneas en ecosistemas forestales revelados por el Código de barras de ADN (Insecta: Lepidoptera) Resumen Se colectaron un total de 45 larvas de Lepidoptera en etanol de 16 especies de plantas en el sur de Italia, requiriendo sólo unas pocas horas de trabajo de campo.