Arctic Shipping: Uncertain Waters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward Sustainable Arctic Shipping: Perspectives from China
sustainability Article Toward Sustainable Arctic Shipping: Perspectives from China Qiang Zhang , Zheng Wan * and Shanshan Fu College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China; [email protected] (Q.Z.); [email protected] (S.F.) * Correspondence: [email protected] Received: 21 September 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: As a near-Arctic state and a shipping power, China shows great interest in developing polar shortcuts from East Asia to Europe against the background of shrinking Arctic sea ice. Due to the Arctic’s historic inaccessibility and corresponding vulnerable ecosystems, Arctic shipping activities must be carried out sustainably. In this study, a content analysis method was adopted to detect Chinese perspectives toward sustainable Arctic shipping based on qualitative data collected from the websites of several Chinese government agencies. Results show that, first, China emphasizes the fundamental role played by scientific expeditions and studies in developing Arctic shipping routes. Second, China encourages its shipping enterprises to conduct commercial and regularized Arctic voyages and intends to strike a good balance between shipping development and environmental protection. Third, China actively participates in Arctic shipping governance via extensive international cooperation at the global and regional levels. Several policy recommendations on how China can develop sustainable Arctic shipping are proposed accordingly. Keywords: sustainability; Arctic shipping; governance; China 1. Introduction Arctic sea ice is undergoing an extraordinary transition from generally thick multi-year sea ice to seasonal sea ice that is younger and less thick because of global warming [1]. Specifically, the volume of Arctic sea ice has declined by 75% since 1979 [1]. -
Revisiting Trans-Arctic Maritime Navigability in 2011–2016 from the Perspective of Sea Ice Thickness
remote sensing Article Revisiting Trans-Arctic Maritime Navigability in 2011–2016 from the Perspective of Sea Ice Thickness Xiangying Zhou 1,2, Chao Min 1,2 , Yijun Yang 1,2, Jack C. Landy 3,4, Longjiang Mu 5 and Qinghua Yang 1,2,* 1 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; [email protected] (X.Z.); [email protected] (C.M.); [email protected] (Y.Y.) 2 Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China 3 Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway; [email protected] 4 Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol BS8 1 HB, UK 5 Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; [email protected] * Correspondence: [email protected] Abstract: Arctic navigation has become operational in recent decades with the decline in summer sea ice. To assess the navigability of trans-Arctic passages, combined model and satellite sea ice thickness (CMST) data covering both freezing seasons and melting seasons are integrated with the Arctic Transportation Accessibility Model (ATAM). The trans-Arctic navigation window and transit time are thereby obtained daily from modeled sea ice fields constrained by satellite observations. Our results indicate that the poorest navigability conditions for the maritime Arctic occurred in 2013 and 2014, particularly in the Northwest Passage (NWP) with sea ice blockage. The NWP has generally Citation: Zhou, X.; Min, C.; Yang, Y.; exhibited less favorable navigation conditions and shorter navigable windows than the Northern Landy, J.C.; Mu, L.; Yang, Q. -
North Pole: the Ultimate Arctic Adventure
NORTH POLE: THE ULTIMATE ARCTIC ADVENTURE Imagine standing at the top of the Earth, glass of champagne in hand – and everywhere you look is south. That is the essence of the 14-day North Pole: The Ultimate Arctic Adventure aboard 50 Years of Victory, the most powerful nuclear icebreaker in the world. Crush through multiyear ice on the Arctic Ocean, sightsee by helicopter on the lookout for walruses, seals, whales, and polar bears, or take a tethered hot-air balloon ride at 90º N, weather permitting. Possible stops at the island of Franz Josef Land will have you in awe of the flora and fauna as you visit seabird colonies and retrace the footsteps of early explorers. 2019 MANDATORY TRANSFER PACKAGE INCLUDES One night’s pre- and post-expedition hotel accommodation in Helsinki with breakfast Round-trip flights from Helsinki to Murmansk Transfer to and from the ship Transfers between the airport and hotel in Helsinki 2020 MANDATORY TRANSFER PACKAGE INCLUDES: One night’s pre-expedition hotel accommodation in Helsinki Group transfer from hotel to charter flight in Helsinki on Day 2 Charter flight from Helsinki to Murmansk 01432 507 280 (within UK) [email protected] | small-cruise-ships.com Transfers to and from the ship From Helsinki, your charter flight will take you to Murmansk, Charter flight from Murmansk to Helsinki Russia, where you’ll embark on your voyage to the North Pole Group transfer from charter flight to hotel in Helsinki on and get acquainted with 50 Years of Victory, the world’s largest disembarkation day and most powerful icebreaker. -
The Maritime Dimension of Csdp
DIRECTORATE-GENERAL FOR EXTERNAL POLICIES OF THE UNION DIRECTORATE B POLICY DEPARTMENT STUDY THE MARITIME DIMENSION OF CSDP: GEOSTRATEGIC MARITIME CHALLENGES AND THEIR IMPLICATIONS FOR THE EUROPEAN UNION Abstract The global maritime security environment is in the midst of an important transformation, driven by a simultaneous intensification of global maritime flows, the growing interconnectedness of maritime regions, the diffusion of maritime power to emerging powers, and the rise of a number of maritime non-state actors. These changes are having a profound impact on the maritime security environment of the EU and its member states and require an upgrading of the maritime dimension of the EU’s Common Security and Defence Policy (CSDP). This study analysis the impact that the changing maritime security context is having on the EU’s maritime neighbourhood and along the EU’s sea lines of communications (SLOCs) and takes stock of the EU’s existing policies and instruments in the maritime security domain. Based on this analysis, the study suggests that the EU requires a comprehensive maritime security strategy that creates synergies between the EU’s Integrated Maritime Policy and the maritime dimension of CSDP and that focuses more comprehensively on the security and management of global maritime flows and sea-based activities in the global maritime commons. EP/EXPO/B/SEDE/FWC/2009-01/Lot6/21 January 2013 PE 433.839 EN Policy Department DG External Policies This study was requested by the European Parliament's Subcommittee on Security and -
Arctic Marine Aviation Transportation
SARA FRENCh, WAlTER AND DuNCAN GORDON FOundation Response CapacityandSustainableDevelopment Arctic Transportation Infrastructure: Transportation Arctic 3-6 December 2012 | Reykjavik, Iceland 3-6 December2012|Reykjavik, Prepared for the Sustainable Development Working Group Prepared fortheSustainableDevelopment Working By InstituteoftheNorth,Anchorage, Alaska,USA PROCEEDINGS: 20 Decem B er 2012 ICElANDIC coast GuARD INSTITuTE OF ThE NORTh INSTITuTE OF ThE NORTh SARA FRENCh, WAlTER AND DuNCAN GORDON FOundation Table of Contents Introduction ................................................................................ 5 Acknowledgments ......................................................................... 6 Abbreviations and Acronyms .......................................................... 7 Executive Summary ....................................................................... 8 Chapters—Workshop Proceedings................................................. 10 1. Current infrastructure and response 2. Current and future activity 3. Infrastructure and investment 4. Infrastructure and sustainable development 5. Conclusions: What’s next? Appendices ................................................................................ 21 A. Arctic vignettes—innovative best practices B. Case studies—showcasing Arctic infrastructure C. Workshop materials 1) Workshop agenda 2) Workshop participants 3) Project-related terminology 4) List of data points and definitions 5) List of Arctic marine and aviation infrastructure AlASkA DepartmENT OF ENvIRONmental -
Canadian Arctic Shipping
Canadian Arctic Shipping: Issues and Perspectives Papers by: Adam Lajeunesse Will Russell A.E. Johnston INTERNATIONAL CENTRE FOR NORTHERN GOVERNANCE AND DEVELOPMENT Occasional Paper Series, Vol. 11-01 November 2011 Copyright © 2011 Adam Lajeunesse, Will Russell and A.E. Johnston International Centre for Northern Governance and Development University of Saskatchewan All rights reserved. No part of this publication may be reproduced in any form or by any means without the prior written permission of the publisher. In the case of photocopying or other forms of reprographic reproduction, please consult Access Copyright, the Canadian Copyright Licensing Agency, at 1–800–893–5777. Editing, design, and layout by Heather Exner-Pirot and Colleen Cameron. International Centre for Northern Governance and Development 117 Science Place University of Saskatchewan Saskatoon SK Canada S7N 5C8 Phone: (306) 966–1238 / Fax: (306) 966–7780 E-mail: [email protected] Website: www.usask.ca/icngd CONTENTS Executive Summary ................................................................................................................................. 2 A New Mediterranean? Arctic Shipping Prospects for the 21st Century, by Adam Lajeunesse ................................................................................................................................................... 4 Introduction ....................................................................................................................................................................................... -
Development in the Arctic
Take ourWin reader a WWF survey: Arctic panda.org/thecircle gift pack! MAGAZINE Working together 9 No. 1 A wave of investment 16 2018 THE CIRCLE Energy in a changing north 20 WHAT’S NEXT FOR THE ARCTIC? PUBLISHED BY THE WWF ARCTIC PROGRAMME THE CIRCLE 1.2018 WHAT’S NEXT FOR THE ARCTIC? Contents EDITORIAL Change: the big picture 3 IN BRIEF 4 JANET PAWLAK Snow, water, ice and permafrost 6 CINDY DICKSON Working together 9 EMILY MCKENZIE and KATHERINE WYATT Connections with nature 10 JAMES E. PASS Development in the Arctic 12 KATHARINA SCHNEIDER-ROOS and LORENA ZEMP Sustain- able and resilient infrastructure 14 ALAN ATKISSON A wave of investment 16 OKALIK EEGEESIAK Inuit and the Ice Blue Economy 18 NILS ANDREASSEN Energy in a changing North 20 SVEIN VIGELAND ROTTEM The Arctic Council – a need for reform 21 TOM BARRY and COURTNEY PRICE Arctic biodiversity: challenges 22 The contest 24 The Circle is published quarterly Publisher: Editor in Chief: Leanne Clare, COVER: Snow mobile travel over by the WWF Arctic Programme. WWF Arctic Programme [email protected] sea ice in Uummannaq, Green- Reproduction and quotation with 8th floor, 275 Slater St., Ottawa, land appropriate credit are encour- ON, Canada K1P 5H9. Managing Editor: Becky Rynor, Photo: Lawrence Hislop, www.grida.no/resources/1151 aged. Articles by non-affiliated Tel: +1 613-232-8706 [email protected] sources do not necessarily reflect Fax: +1 613-232-4181 ABOVE: Boy on bicycle, Nuuk, the views or policies of WWF. Design and production: Send change of address and sub- Internet: www.panda.org/arctic Film & Form/Ketill Berger, Greenland. -
International Dimensions
CHAPTER 9 International Dimensions NATIONAL ISSUES REPORT NATIONAL ISSUES REPORT 624 Coordinating lead author Jimena Eyzaguirre, ESSA Technologies Ltd. Lead authors Cedar Morton, PhD, ESSA Technologies Ltd. Colette Wabnitz, PhD, University of British Columbia and Stanford University Michael Copage, Environment and Climate Change Canada Robert McLeman, PhD, Wilfrid Laurier University Contributing authors Danica Lassaline, Environment and Climate Change Canada Juliano Palacios-Abrantes, PhD, University of British Columbia Kamleshan Pillay, PhD,, Independent Adaptation Finance Specialist Recommended citation Eyzaguirre, J., Morton, C., Wabnitz, C., Copage, M. and McLeman, R. (2021): International Dimensions; Chapter 9 in Canada in a Changing Climate: National Issues Report, (ed.) F.J. Warren and N. Lulham; Government of Canada, Ottawa, Ontario. NATIONAL ISSUES REPORT 625 Table of contents Key messages 627 9.1 Introduction 628 9.1.1 Overview of findings from past assessments 630 9.2 Climate change affects Arctic shipping and threatens sovereignty 631 9.2.1 Introduction 631 9.2.2 Climate, sea ice and Arctic navigation 631 9.2.3 Climate-related risks to Canada’s control over the Northwest Passage 637 9.2.4 Strategies to adapt to increased shipping activity in the Northwest Passage 640 Case Story 9.1: Adaptation strategies for cruise ship tourism in the Canadian Arctic 643 9.3 Transboundary marine and freshwater agreements generally do not consider climate change 644 9.3.1 Introduction 645 Case Story 9.2: The Canada–U.S. Pacific Salmon Treaty 646 9.3.2 Marine agreements 648 9.3.3 Freshwater agreements 652 Case Story 9.3: Modernizing the Canada–U.S. -
Atomic Icebreakers of “Taimyr” Type: Propulsion Capacity – 32 MW; Propulsion Capacity – 35 MW; Water Displacement – 19240 T
ROSATOMFLOT 2010 Summer-Autumn Transit Voyages Russian Atomic Fleet First Atomic Icebreaker “Lenin” - 03.12.1959 Atomic Icebreakers of “Taimyr” type: Propulsion Capacity – 32 MW; Propulsion Capacity – 35 MW; Water displacement – 19240 t. Water displacement 21000 t; i/b “Taimyr” – 30.06.1989 i/b “Yaygach” – 25.07.1990 Atomic icebreakers of “Arktika” type: Propulsion Capacity – 54 MW; Water displacement – 23000 t; Atomic container carrier i/b “Arktika” – 25.04.1975 “Sevmorput” – 30.12.1988 i/b “Sibir” – 28.12.1978 Propulsion Capacity – 32,5 MW; i/b “Rossia” – 21.12.1985 Water displacement – 61000 t; i/b “Sovetsky Soyuz” – 29.12.1989 Deadweight – 33900 t. i/b “Yamal” – 28.10.1992 i/b “50 Let Pobedy” – 23.03.2007 ROSATOMFLOT The Fleet On-shore Infrastructure 1308 employees 714 employees Atomic Fleet Special Vessels 4 special 6 atomic Decommissioned vessels Decommissioned icebreakers Atomic Container Carrier Sevmorput 4 i/b of Arktika mv Lepse type i/b Lenin mv Volodarsky i/b Sibir 2 i/b of Taimyr type i/b Arktika On-shore works: • base for the atomic icebreaking fleet; Atomic fleet has 16 vessels: • full complex of ship repair; Nuclear powered vessels - 10 • nuclear fuel handling; Atomic icebreakers - 9 • radioactive wastes handling. Atomic container carrier - 1 Special vessels - 6 The summer-autumn period of 2010 was marked by a number shipping operations which involved atomic icebreakers under operation of Rosatomflot. For the first time in the history of shipping a tanker of a 100 000 tons deadweight was piloted along the Northern Sea Route. Tanker SCF-Baltica (Aframax) under the flag of Liberia of 117 000 t deadweight and ice-class Arc 5 loaded 70 thousand tons of gas condensate and left the port of Murmansk (Russia) on 14 August. -
Northern Sea Route: Development Prospects and Uncertainties
Northern Sea Route: Development Prospects and Uncertainties January 2020 Northern Sea Route: Development Prospects and Uncertainties In 2018, the Northern Sea Route development project was added to Russia’s “2019-2024 Comprehensive Long-Haul Infrastructure Modernization and Expansion Plan” with a budget of over RUB 580 billion (USD 9.25 billion). Rosatom, the Russian state nuclear agency, has announced plans to establish a commercial shipping company and compete with the largest companies in the container shipping business. On the global market, the idea of developing the Northern Sea Route has generated controversial discussions on ecology, climate change and strong competition in the market. The largest shippers and manufacturers, including CMA CGM, MSC and Nike, have stated they will not ship goods through the Arctic Ocean due to the high impact on the regional ecology. PwC has recently completed a comprehensive analysis of the opportunities and threats related to developing the Northern Sea Route. Below, we summarize the major issues and challenges covered in our research. Who needs the Northern Sea Route? Although the Northern Sea Route was opened for The development of the Northern Sea Route took a international navigation back in 1991, step traffic new step forward when Yamal LNG facilities were dynamics was recorded only after 2012. The commissioned in 2017, followed by the inclusion of increase was driven by amendments to Federal Law the Northern Sea Route project in the “2019-2024 No. 155 “On Internal Waters, Territorial Sea and Comprehensive Long-Haul Infrastructure Contiguous Zone”, which legally defined the Modernization and Expansion Plan” with a total boundaries of the Northern Sea Route and budget of over RUB 580 billion for the next five established the Northern Sea Route Administration years. -
The Opening of the Transpolar Sea Route: Logistical, Geopolitical, Environmental, and Socioeconomic Impacts
Marine Policy xxx (xxxx) xxx Contents lists available at ScienceDirect Marine Policy journal homepage: http://www.elsevier.com/locate/marpol The opening of the Transpolar Sea Route: Logistical, geopolitical, environmental, and socioeconomic impacts Mia M. Bennett a,*, Scott R. Stephenson b, Kang Yang c,d,e, Michael T. Bravo f, Bert De Jonghe g a Department of Geography and School of Modern Languages & Cultures (China Studies Programme), Room 8.09, Jockey Club Tower, Centennial Campus, The University of Hong Kong, Hong Kong b RAND Corporation, Santa Monica, CA, USA c School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China d Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing, 210023, China e Collaborative Innovation Center for the South Sea Studies, Nanjing University, Nanjing, 210023, China f Scott Polar Research Institute, University of Cambridge, Cambridge, UK g Graduate School of Design, Harvard University, Cambridge, MA, USA ABSTRACT With current scientifc models forecasting an ice-free Central Arctic Ocean (CAO) in summer by mid-century and potentially earlier, a direct shipping route via the North Pole connecting markets in Asia, North America, and Europe may soon open. The Transpolar Sea Route (TSR) would represent a third Arctic shipping route in addition to the Northern Sea Route and Northwest Passage. In response to the continued decline of sea ice thickness and extent and growing recognition within the Arctic and global governance communities of the need to anticipate -
Nuclear Reactors in Arctic Russia
NUCLEAR REACTORS IN ARCTIC RUSSIA Scenario 2035 The nuclearification of Russian Arctic territories is by Moscow given highest priority for development in shipping, infrastructure and exploration of natural resources. Additionally, the number of navy military reactors in the north will increase substantially over the next 15 years. This scenario paper gives an overview of the situation. The paper is part of the Barents Observer’s analytical popular science studies on developments in the Euro-Arctic Region. Thomas Nilsen June 2019 June 2019 The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 1 June 2019 Published by: The Independent Barents Observer Address: Storgata 5, 9900 Kirkenes, Norway E-mail: [email protected] thebarentsobserver.com (English, Russian and Chinese versions of the news-portal) Twitter @BarentsNews Instagram: @BarentsObserver Facebook.com/BarentsObserver/ Author: Thomas Nilsen, E-mail: [email protected] Twitter: @NilsenThomas Photos and illustrations: Rosatom, Rosatomflot, Thomas Nilsen, Oleg Kuleshov, H I Sutton, Atle Staalesen, Alexey Mkrtchyan, Wikimedia Commons. Keywords: Nuclear, Reactors, Icebreakers, Submarines, Northern Fleet, Russia, Arctic, Northern Sea Route, Nuclear Power, Kola Peninsula, Siberia, Arkhangelsk, Severodvinsk, Severomorsk, Murmansk, Pevek, Barents Sea, Kara Sea, White Sea. This publication is financially supported with a grant from the Norwegian Government’s Nuclear Action Plan administrated by the Norwegian Radiation and Nuclear Safety Authority. (www.dsa.no/en/). The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 2 June 2019 Introduction At the peak of the Cold War some 150 nuclear-powered submarines were based on the Barents Sea coast of the Kola Peninsula. Many ships were transporting and storing nuclear waste and at shipyards and bases, spent nuclear fuel and radioactive waste was accumulated.