Experiences from Large-Scale Model Checking: Verification of a Vehicle Control System Jonas Fritzsch Tobias Schmid Stefan Wagner University of Stuttgart BMW AG University of Stuttgart Institute of Software Engineering Munich, Germany Institute of Software Engineering Stuttgart, Germany
[email protected] Stuttgart, Germany
[email protected] [email protected] Abstract—In the age of autonomously driving vehi- safety that depends on a system or equipment operating cles, functionality and complexity of embedded systems correctly in response to its inputs” [3] is associated with the are increasing tremendously. Safety aspects become involved electrical, electronic, and programmable systems. more important and require such systems to operate with the highest possible level of fault tolerance. Simu- Car manufacturers thus need to “prove that the designed lation and systematic testing techniques have reached system fulfills the functional safety requirements according their limits in this regard. Here, formal verification to ISO 26262” [4] which is mandatory for the certification as a long established technique can be an appropriate of automated driving systems [5]. complement. However, the necessary preparatory work Traditional testing and simulation techniques, or failure like adequately modeling a system and specifying prop- erties in temporal logic are anything but trivial. In this mode and effects analysis (FMEA) alone reach their limits paper, we report on our experiences applying model in this regard. An exhaustive verification with limited checking to verify the arbitration logic of a Vehicle resources and time is difficult to achieve or even im- Control System. We balance pros and cons of different possible.