Amphibian Taxon Advisory Group Regional Collection Plan

Total Page:16

File Type:pdf, Size:1020Kb

Amphibian Taxon Advisory Group Regional Collection Plan 1 Table of Contents ATAG Definition and Scope ............................................................................................................ 4 Mission Statement .................................................................................................................................................... 4 Addressing the Amphibian Crisis at a Global Level ........................................................................................... 5 Metamorphosis of the ATAG Regional Collection Plan .................................................................................... 5 Taxa Within ATAG Purview ............................................................................................................ 6 Priority Species and Regions ................................................................................................................................... 6 Priority Conservations Activities ............................................................................................................................ 7 Institutional Capacity of AZA Communities ................................................................................... 7 Space Needed for Amphibians ............................................................................................................................... 8 Table 1: Space Analysis Summary of Managed SSP Programs .................................................................. 11 Species Selection Criteria ................................................................................................................ 12 The Global Prioritization Process ....................................................................................................................... 12 Selection Tool: Amphibian Ark’s Prioritization Tool for Ex situ Conservation .......................................... 12 Management Categories ................................................................................................................. 13 Results of Species Selection Process ............................................................................................... 14 Key to Categorical Designations .......................................................................................................................... 14 Priority I Taxa for Recommended for Ex situ Management ........................................................................ 15 Table 2: Recommended Priority I Taxa ..................................................................................................... 15 Priority II Taxa for Recommended for In situ and Ex situ Management .................................................... 16 Table 3: Recommended Priority II Taxa.................................................................................................... 16 Priority III Taxa for Recommended for In situ Efforts ................................................................................. 17 Table 4: Recommended Priority III Taxa .................................................................................................. 17 Program Status and Data Summary Tables of Current SSP Programs .......................................... 18 Table 5: Program Status Table of Priority I Taxa .............................................................................................. 18 Table 6: Animal Program Summary Data Table of Priority I Taxa ................................................................ 19 SSP Program Accounts .................................................................................................................... 20 Puerto Rican Crested Toad SSP ........................................................................................................................... 20 Wyoming Toad SSP ............................................................................................................................................... 22 Panamanian Golden Frog SSP(s) ......................................................................................................................... 24 Dusky Gopher Frog SSP ....................................................................................................................................... 26 Houston Toad SSP ................................................................................................................................................. 28 Recommendation Update Table ..................................................................................................... 30 Table 7: Recommended Updates from Species Listed in 2008 RCP .............................................................. 30 Considerations for New Studbook and Managed Ex situ Programs ............................................. 32 Decision Matrix for Forming New Ex situ Amphibian Populations for Conservation ............................... 33 2 Amphibian Husbandry .................................................................................................................... 34 Amphibian Disease Management in Captivity ............................................................................... 34 Amphibian Population Management and Data Entry Guidelines ................................................. 35 Suggested Taxa for Exhibit ............................................................................................................ 36 Table 8: Suggested Taxa for Exhibit .................................................................................................................... 36 Exhibit Species Examples ..................................................................................................................................... 37 Suggested Taxa for Outreach.......................................................................................................... 40 Table 9: Suggested Taxa for Outreach ................................................................................................................ 40 ATAG Recommendations ............................................................................................................... 41 Responsible Population Management: Humane Euthanasia ........................................................................... 41 Amphibians and Outreach .................................................................................................................................... 41 Amphibians in Classroom Settings ...................................................................................................................... 41 Contact Information ........................................................................................................................ 42 ATAG Steering Committee .................................................................................................................................. 42 ATAG Advisory Committee ................................................................................................................................. 42 Program Leaders ..................................................................................................................................................... 43 Species Champions/Contacts ............................................................................................................................... 44 Links to Amphibian Resources ...................................................................................................... 46 References ....................................................................................................................................... 47 Appendix I: AArk Amphibian Species Prioritization Ranking Process and Results ..................... 48 Appendix II: Creating Isolation Space for Amphibian Programs .................................................. 59 3 ATAG Definition and Scope Mission Statement To support the conservation of amphibians, both in situ and ex situ, through scientific management of assurance colonies, education and research. Amphibians are in Trouble! In 2008, the International Union for Conservation of Nature (IUCN) conducted the Global Amphibian Assessment (GAA), which evaluated the status of 6,285 amphibian species. The GAA reported that the sizes of more than 43% of all measured amphibian populations had declined and less than 1% of populations had increased, indicating a troubling trend. Almost one-third Photo: Ian Recchio (32%) of amphibians are threatened with extinction Bolitoglossa sp. globally and 159 amphibian species may have already been lost. The majority of threatened amphibians reside in the New World, with the highest numbers in Columbia, “If the current rapid Mexico and Ecuador. Nevertheless, the bulk of endemic extermination of animals, plants species in rapid decline (80-90%) are from the Dominican and other species really is the Republic, Haiti, Cuba and Jamaica (IUCN, 2014). “sixth mass extinction,” then the amphibian branch of the tree of life is undergoing the most drastic pruning.” -Camila Ruz, Guardian UK, 2011 Photo: Dustin Smith Globally, habitat degradation, chemical pollutants, invasive species, climate change and disease have been the driving culprits behind amphibian declines. 4 Addressing the Amphibian Crisis at a Global Level The IUCN, WAZA (World Association of Zoos & Aquariums), CBSG (Conservation Breeding Specialist Group), the ASG (Amphibian Specialist Group) have called on zoos and aquariums to join in
Recommended publications
  • Species Assessment for Boreal Toad (Bufo Boreas Boreas)
    SPECIES ASSESSMENT FOR BOREAL TOAD (BUFO BOREAS BOREAS ) IN WYOMING prepared by 1 2 MATT MCGEE AND DOUG KEINATH 1 Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3023 2 Zoology Program Manager, Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3013; [email protected] drawing by Summers Scholl prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming March 2004 McGee and Keinath – Bufo boreas boreas March 2004 Table of Contents INTRODUCTION ................................................................................................................................. 3 NATURAL HISTORY ........................................................................................................................... 4 Morphological Description ...................................................................................................... 4 Taxonomy and Distribution ..................................................................................................... 5 Habitat Requirements............................................................................................................. 8 General ............................................................................................................................................8 Spring-Summer ...............................................................................................................................9
    [Show full text]
  • ENDANGERED SPECIES: Groups Petition FWS to List Amargosa Toad (02/28/2008)
    ENDANGERED SPECIES: Groups petition FWS to list Amargosa toad (02/28/2008) April Reese, Land Letter Western reporter The Amargosa toad should be added to the federal endangered species list, according to a petition filed Tuesday with the U.S. Fish and Wildlife Service by environmental groups. In their petition, filed Feb. 26, the Center for Biological Diversity and Public Employees for Environmental Responsibility argue that urban development, water diversions and increased off- road vehicle use throughout the toad's range in Nevada's Oasis Valley have pushed the species toward extinction. According to the groups, the Amargosa toad is already restricted to a 10-mile stretch of the Amargosa River -- one of Nevada's last free- flowing rivers -- and adjacent desert uplands. "It only has a small amount of habitat," said Daniel Patterson, PEER's southwest director, who formerly worked for the Bureau of Land Management in Nevada as an ecologist. "It's got no where to go. There's really no room for error." FWS considered listing the toad in the 1990s after receiving a petition from environmental groups but decided the species did not warrant Males tend to be smaller, reaching 3 to 4 inches, while federal protection. At the time, FWS concluded females may reach 3.5 to 5 inches. Unlike most frogs and toads, the Amargosa toad is voiceless except for “release that the toad was more widespread than the calls” or chirps made by males when grasped below their petition suggested, although it also said more forelimbs by another toad or human. Photo courtesy of FWS.
    [Show full text]
  • Managing Diversity in the Riverina Rice Fields—
    Reconciling Farming with Wildlife —Managing diversity in the Riverina rice fields— RIRDC Publication No. 10/0007 RIRDCInnovation for rural Australia Reconciling Farming with Wildlife: Managing Biodiversity in the Riverina Rice Fields by J. Sean Doody, Christina M. Castellano, Will Osborne, Ben Corey and Sarah Ross April 2010 RIRDC Publication No 10/007 RIRDC Project No. PRJ-000687 © 2010 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 983 7 ISSN 1440-6845 Reconciling Farming with Wildlife: Managing Biodiversity in the Riverina Rice Fields Publication No. 10/007 Project No. PRJ-000687 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Notophthalmus Perstriatus) Version 1.0
    Species Status Assessment for the Striped Newt (Notophthalmus perstriatus) Version 1.0 Striped newt eft. Photo credit Ryan Means (used with permission). May 2018 U.S. Fish and Wildlife Service Region 4 Jacksonville, Florida 1 Acknowledgements This document was prepared by the U.S. Fish and Wildlife Service’s North Florida Field Office with assistance from the Georgia Field Office, and the striped newt Species Status Assessment Team (Sabrina West (USFWS-Region 8), Kaye London (USFWS-Region 4) Christopher Coppola (USFWS-Region 4), and Lourdes Mena (USFWS-Region 4)). Additionally, valuable peer reviews of a draft of this document were provided by Lora Smith (Jones Ecological Research Center) , Dirk Stevenson (Altamaha Consulting), Dr. Eric Hoffman (University of Central Florida), Dr. Susan Walls (USGS), and other partners, including members of the Striped Newt Working Group. We appreciate their comments, which resulted in a more robust status assessment and final report. EXECUTIVE SUMMARY This Species Status Assessment (SSA) is an in-depth review of the striped newt's (Notophthalmus perstriatus) biology and threats, an evaluation of its biological status, and an assessment of the resources and conditions needed to maintain species viability. We begin the SSA with an understanding of the species’ unique life history, and from that we evaluate the biological requirements of individuals, populations, and species using the principles of population resiliency, species redundancy, and species representation. All three concepts (or analogous ones) apply at both the population and species levels, and are explained that way below for simplicity and clarity as we introduce them. The striped newt is a small salamander that uses ephemeral wetlands and the upland habitat (scrub, mesic flatwoods, and sandhills) that surrounds those wetlands.
    [Show full text]
  • EFFECTS of LATITUDE, SEASON, ELEVATION, and MICROHABITAT on FIELD BODY TEMPERATURES of NEOTROPICAL and TEMPERATE ZONE Salamandersl
    Ecology, 63(6), 1982, pp. 1657-1664 © 1982 by the Ecological Society of America EFFECTS OF LATITUDE, SEASON, ELEVATION, AND MICROHABITAT ON FIELD BODY TEMPERATURES OF NEOTROPICAL AND TEMPERATE ZONE SALAMANDERSl MARTIN E. FEDER Department ofAnatomy and Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois 60637 USA, and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 USA AND JAMES F. LYNCH Chesapeake Bay Center for Environmental Studies, Smithsonian Institution, P.O. Box 28, Edgewater, Maryland 21037 USA, and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 USA Abstract. We analyzed field body temperatures of neotropical salamanders (Feder et al. 1982b) to examine existing generalizations about salamander thermal ecology, which have been based almost entirely upon data for temperate zone species. Our findings can be summarized as follows: 1) Behavioral thermoregulation in the field is evidently uncommon among the vast majority of tropical and temperate salamander species. Body temperatures of tropical salamanders closely parallel seasonal and altitudinal changes in the thermal environment. 2) Body temperatures of salamanders show a complex relationship with latitude. Temperate zone species experience lower minimum temperatures than neotropical salamanders, but there are no consistent latitudinal trends in maximum body temperatures. Tropical plethodontids and ambysto­ matids show similar rates of decline in mean body temperature with increasing elevation, but am­ bystomatid temperatures are significantly warmer than plethodontid temperatures at the same ele­ vation. 3) Variation in body temperature is greater seasonally for temperate salamanders than tropical salamanders. At a given time or locality, however, variation in field body temperature among members of a population is similar for tropical and temperate salamanders.
    [Show full text]
  • Review Article Distribution and Conservation Status of Amphibian
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.7 (1):1-25 2014 Review Article Distribution and conservation status of amphibian and reptile species in the Lacandona rainforest, Mexico: an update after 20 years of research Omar Hernández-Ordóñez1, 2, *, Miguel Martínez-Ramos2, Víctor Arroyo-Rodríguez2, Adriana González-Hernández3, Arturo González-Zamora4, Diego A. Zárate2 and, Víctor Hugo Reynoso3 1Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; Av. Universidad 3000, C.P. 04360, Coyoacán, Mexico City, Mexico. 2 Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico. 3Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. 4División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Camino antiguo a Coatepec No. 351, Xalapa 91070, Veracruz, Mexico. * Corresponding author: Omar Hernández Ordóñez, email: [email protected] Abstract Mexico has one of the richest tropical forests, but is also one of the most deforested in Mesoamerica. Species lists updates and accurate information on the geographic distribution of species are necessary for baseline studies in ecology and conservation of these sites. Here, we present an updated list of the diversity of amphibians and reptiles in the Lacandona region, and actualized information on their distribution and conservation status. Although some studies have discussed the amphibians and reptiles of the Lacandona, most herpetological lists came from the northern part of the region, and there are no confirmed records for many of the species assumed to live in the region.
    [Show full text]
  • Pseudoeurycea Naucampatepetl. the Cofre De Perote Salamander Is Endemic to the Sierra Madre Oriental of Eastern Mexico. This
    Pseudoeurycea naucampatepetl. The Cofre de Perote salamander is endemic to the Sierra Madre Oriental of eastern Mexico. This relatively large salamander (reported to attain a total length of 150 mm) is recorded only from, “a narrow ridge extending east from Cofre de Perote and terminating [on] a small peak (Cerro Volcancillo) at the type locality,” in central Veracruz, at elevations from 2,500 to 3,000 m (Amphibian Species of the World website). Pseudoeurycea naucampatepetl has been assigned to the P. bellii complex of the P. bellii group (Raffaëlli 2007) and is considered most closely related to P. gigantea, a species endemic to the La specimens and has not been seen for 20 years, despite thorough surveys in 2003 and 2004 (EDGE; www.edgeofexistence.org), and thus it might be extinct. The habitat at the type locality (pine-oak forest with abundant bunch grass) lies within Lower Montane Wet Forest (Wilson and Johnson 2010; IUCN Red List website [accessed 21 April 2013]). The known specimens were “found beneath the surface of roadside banks” (www.edgeofexistence.org) along the road to Las Lajas Microwave Station, 15 kilometers (by road) south of Highway 140 from Las Vigas, Veracruz (Amphibian Species of the World website). This species is terrestrial and presumed to reproduce by direct development. Pseudoeurycea naucampatepetl is placed as number 89 in the top 100 Evolutionarily Distinct and Globally Endangered amphib- ians (EDGE; www.edgeofexistence.org). We calculated this animal’s EVS as 17, which is in the middle of the high vulnerability category (see text for explanation), and its IUCN status has been assessed as Critically Endangered.
    [Show full text]
  • Cyprinodon Nevadensis Mionectes Ash Meadows Amargosa Pupfish
    Ash Meadows Amargosa pupfsh Cyprinodon nevadensis mionectes WAP 2012 species due to impacts from introduced detrimental aquatc species, habitat degradaton, and federal endangered status. Agency Status NV Natural Heritage G2T2S2 USFWS LE BLM-NV Sensitve State Prot Threatened Fish NAC 503.065.3 CCVI Presumed Stable TREND: Trend is stable to increasing with contnued on-going restoraton actvites. DISTRIBUTION: Springs and associated springbrooks, outlow stream systems and terminal marshes within Ash Meadows Natonal Wildlife Refuge, Nye Co., NV. GENERAL HABITAT AND LIFE HISTORY: This species is isolated to warm springs and outlows in Ash Meadows NWR including Point of Rocks, Crystal Springs, and the Carson Slough drainage. Pupfshes feed generally on substrate; feeding territories are ofen defended by pupfshes. Diet consists of mainly algae and detritus however, aquatc insects, crustaceans, snails and eggs are also consumed. Spawning actvity is typically from February to September and in some cases year round. Males defend territories vigorously during breeding season (Soltz and Naiman 1978). In warm springs, fsh may reach sexual maturity in 4-6 weeks. Reproducton variable: in springs, pupfsh breed throughout the year, may have 8-10 generatons/year; in streams, breeds in spring and summer, 2-3 generatons/year (Moyle 1976). In springs, males establish territories over sites suitable for ovipositon. Short generaton tme allows small populatons to be viable. Young adults typically comprise most of the biomass of a populaton. Compared to other C. nevadensis subspecies, this pupfsh has a short deep body and long head with typically low fn ray and scale counts (Soltz and Naiman 1978). CONSERVATION CHALLENGES: Being previously threatened by agricultural use of the area (loss and degradaton of habitat resultng from water diversion and pumping) and by impending residental development, the TNC purchased property, which later became the Ash Meadows NWR.
    [Show full text]
  • Across Watersheds in the Klamath Mountains
    Diversity 2013, 5, 657-679; doi:10.3390/d5030657 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article Genetic Diversity of Black Salamanders (Aneides flavipunctatus) across Watersheds in the Klamath Mountains Sean B. Reilly 1,*, Mitchell F. Mulks 2, Jason M. Reilly 3, W. Bryan Jennings 4, and David B. Wake 1 1 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3160, USA; E-Mail: [email protected] 2 Department of Ecology and Evolutionary Biology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; E-Mail: [email protected] 3 Bureau of Land Management, Medford Interagency Office, Medford, OR 97504, USA; E-Mail: [email protected] 4 Museu Nacional, Departamento de Vertebrados, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ 20940-040, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-510-642-3567; Fax: +1-510-643-8238. Received: 31 May 2013; in revised form: 2 August 2013 / Accepted: 8 August 2013 / Published: 29 August 2013 Abstract: Here we characterize the genetic structure of Black Salamanders (Aneides flavipunctatus) in the Klamath Mountains of northwestern California and southwestern Oregon using mitochondrial and nuclear DNA sequences. We hypothesized that the Sacramento, Smith, Klamath, and Rogue River watersheds would represent distinct genetic populations based on prior ecological results, which suggest that Black Salamanders avoid high elevations such as the ridges that separate watersheds. Our mitochondrial results revealed two major lineages, one in the Sacramento River watershed, and another containing the Klamath, Smith, and Rogue River watersheds.
    [Show full text]
  • Geographic Variation, Genetic Structure, and Conservation Unit Designation in the Larch Mountain Salamander (Plethodon Larselli)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2005 Geographic Variation, Genetic Structure, and Conservation Unit Designation in the Larch Mountain Salamander (Plethodon larselli) R. Steven Wagner Central Washington University Mark P. Miller Utah State University, [email protected] Charles M. Crisafulli US Forest Service Susan M. Haig U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Wagner, R. Steven; Miller, Mark P.; Crisafulli, Charles M.; and Haig, Susan M., "Geographic Variation, Genetic Structure, and Conservation Unit Designation in the Larch Mountain Salamander (Plethodon larselli)" (2005). USGS Staff -- Published Research. 674. https://digitalcommons.unl.edu/usgsstaffpub/674 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 396 Geographic variation, genetic structure, and conservation unit designation in the Larch Mountain salamander (Plethodon larselli) R. Steven Wagner, Mark P. Miller, Charles M. Crisafulli, and Susan M. Haig Abstract: The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific north- western United States facing threats related to habitat destruction. To facilitate development of conservation strategies, we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations of this species. Phylogenetic analyses of cytochrome b revealed a clade of haplotypes from populations north of the Columbia River derived from a clade containing haplotypes from the river’s southwestern region.
    [Show full text]
  • A Checklist and Annotated Bibliography of the Subterranean Aquatic Fauna of Texas
    A CHECKLIST AND ANNOTATED BIBLIOGRAPHY OF THE SUBTERRANEAN AQUATIC FAUNA OF TEXAS JAMES R. REDDELL and ROBERT W. MITCHELL Texas Technological College WATER RESOURCES \ CENTER Lubbock, Texas WRC 69-6 INTERNATIONAL CENTER for ARID and August 1969 SEMI-ARID LAND STUDIES A CHECKLIST AND ANNOTATED BIBLIOGRAPHY OF THE SUBTERRANEAN AQUATIC FAUNA OF TEXAS James R. Reddell and Robert W. Mitchell Department of Biology Texas Tech University Lubbock, Texas INTRODUCTION In view of the ever-increasing interest in all studies relating to the water resources of Texas, we have found it timely to prepare this guide to the fauna and biological literature of our subterranean waters. The value of such a guide has already been demonstrated by Clark (1966) in his "Publications, Personnel, and Government Organizations Related to the Limnology, Aquatic Biology and Ichthyology of the Inland Waters of Texas". This publication dea ls primarily with inland surface waters, however, barely touching upon the now rather extensive literature which has accumulated on the biology of our subterranean waters. To state a n obvious fact, it is imperative that our underground waters receive the attention due them. They are one of our most important resources. Those subterranean waters for which biological data exi st are very un­ equally distributed in the state. The best known are those which are acces­ sible to collection and study via the entrances of caves. Even in cavernous regions there exist inaccessible deep aquifers which have yielded little in­ formation as yet. Biological data from the underground waters of non-cave rn­ ous areas are virtually non-existant.
    [Show full text]
  • Plant Section Introduction
    Re-introduction Practitioners Directory - 1998 RE-INTRODUCTION PRACTITIONERS DIRECTORY 1998 Compiled and Edited by Pritpal S. Soorae and Philip J. Seddon Re-introduction Practitioners Directory - 1998 © National Commission for Wildlife Conservation and Development, 1998 Printing and Publication details Legal Deposit no. 2218/9 ISBN: 9960-614-08-5 Re-introduction Practitioners Directory - 1998 Copies of this directory are available from: The Secretary General National Commission for Wildlife Conservation and Development Post Box 61681, Riyadh 11575 Kingdom of Saudi Arabia Phone: +966-1-441-8700 Fax: +966-1-441-0797 Bibliographic Citation: Soorae, P. S. and Seddon, P. J. (Eds). 1998. Re-introduction Practitioners Directory. Published jointly by the IUCN Species Survival Commission’s Re-introduction Specialist Group, Nairobi, Kenya, and the National Commission for Wildlife Conservation and Development, Riyadh, Saudi Arabia. 97pp. Cover Photo: Arabian Oryx Oryx leucoryx (NWRC Photo Library) Re-introduction Practitioners Directory - 1998 CONTENTS FOREWORD Professor Abdulaziz Abuzinadai PREFACE INTRODUCTION Dr Mark Stanley Price USING THE DIRECTORY ACKNOWLEDGEMENTS PART A. ANIMALS I MOLLUSCS 1. GASTROPODS 1.1 Cittarium pica Top Shell 1.2 Placostylus ambagiosus Flax Snail 1.3 Placostylus ambagiosus Land Snail 1.4 Partula suturalis 1.5 Partula taeniata 1.6 Partula tahieana 1.7 Partula tohiveana 2. BIVALVES 2.1 Freshwater Mussels 2.2 Tridacna gigas Giant Clam II ARTHROPODS 3. ORTHOPTERA 3.1 Deinacrida sp. Weta 3.2 Deinacrida rugosa/parva Cook’s Strait Giant Weta Re-introduction Practitioners Directory - 1998 3.3 Gryllus campestris Field Cricket 4. LEPIDOPTERA 4.1 Carterocephalus palaemon Chequered Skipper 4.2 Lycaena dispar batavus Large Copper 4.3 Lycaena helle 4.4 Lycaeides melissa 4.5 Papilio aristodemus ponoceanus Schaus Swallowtail 5.
    [Show full text]