High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species Orly Razgour1, Elizabeth L. Clare1, Matt R. K. Zeale1, Julia Hanmer2, Ida Bærholm Schnell3, Morten Rasmussen3, Thomas P. Gilbert3 & Gareth Jones1 1School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK 2Bat Conservation Trust, Quadrant House, 250 Kennington Lane, London SE11 5RD, UK 3Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark Keywords Abstract Diet, interspecific competition, molecular scatology, next generation sequencing, Sympatric cryptic species, characterized by low morphological differentiation, pose Plecotus. a challenge to understanding the role of interspecific competition in structuring ecological communities. We used traditional (morphological) and novel molecular Correspondence methods of diet analysis to study the diet of two cryptic bat species that are sympatric Orly Razgour, School of Biological Sciences, in southern England (Plecotus austriacus and P. auritus )(Fig.1).UsingRocheFLX University of Bristol, Woodland Road, Bristol BS8 1UG, UK. Tel: (44)0117-9546386; 454 (Roche, Basel, CH) high-throughput sequencing (HTS) and uniquely tagged Fax: (44) 0117-9257374; generic arthropod primers, we identified 142 prey Molecular Operational Taxo- E-mail:
[email protected] nomic Units (MOTUs) in the diet of the cryptic bats, 60% of which were assigned to a likely species or genus. The findings from the molecular study supported the Funded by the Hon. Vincent Weir through the results of microscopic analyses in showing that the diets of both species were dom- Bat Conservation Trust, UK, and from the inated by lepidopterans. However, HTS provided a sufficiently high resolution of Danish National Research Foundation prey identification to determine fine-scale differences in resource use.