Molecular Evolution of MADS-Box Genes in Cotton (Gossypium L.)

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Evolution of MADS-Box Genes in Cotton (Gossypium L.) University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2007 Molecular Evolution of MADS-box Genes in Cotton (Gossypium L.) Wusheng Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Botany Commons, and the Plant Breeding and Genetics Commons Recommended Citation Liu, Wusheng, "Molecular Evolution of MADS-box Genes in Cotton (Gossypium L.). " PhD diss., University of Tennessee, 2007. https://trace.tennessee.edu/utk_graddiss/231 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Wusheng Liu entitled "Molecular Evolution of MADS-box Genes in Cotton (Gossypium L.)." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Botany. Randall Small, Major Professor We have read this dissertation and recommend its acceptance: Karen Hughes, Barry Bruce, Beth Mullin Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting here with a dissertation written by Wusheng Liu entitled “Molecular Evolution of MADS-box genes in Cotton (Gossypium L.)”. I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Botany. Randall Small Major Professor We have read this dissertation and recommend its acceptance: Karen Hughes Barry Bruce Beth Mullin Acceptance for the Council: Linda Painter Interim Dean of Graduate Studies (Original signatures are on file with official student records.) MOLECULAR EVOLUTION OF MADS-BOX GENES IN COTTON (Gossypium L.) A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Wusheng Liu May 2007 DEDICATION This dissertation is dedicated to my dear mother, Shuqin Xu, who passed away when I was seven years old, and my dear father, Yonghui Liu, who passed away when I was a freshman in college, and my brother, Zaisheng Liu, for always caring about me, educating me, and encouraging me to achieve my goals. ii ACKNOWLEDGEMENTS I wish to thank all those who helped me in completing my doctoral degree in Botany. Special thanks go to my committee chair, Dr. Small, and to the dissertation committee members Dr. Bruce, Dr. Hughes and Dr. Mullin, for their inspiring guidance and efforts through this research. I would like to thank Dr. Nebenführ and Dr. von Arnim for valuable discussions and ideas for this project. I would also like to thank Dr. McFarland for taking care of my plants growing in the greenhouse, and Dr J. Wendel (Iowa State University) for providing flower buds of Gossypium raimondii. Lastly, I would like to thank all the people in former Botany Department, and Ecology and Evolutionary Biology Department, for teaching, being friends and providing assistantships. iii ABSTRACT The purpose of this study was to examine the molecular evolution of floral developmental MADS-box genes in diploid and allotetraploid cotton (Gossypium, Malvaceae). We isolated and characterized both cDNA and genomic DNA sequences of four MADS-box genes, B-sister, APETALA3 (AP3), PISTILLATA (PI, two copies) and AGAMOUS (AG), in seven Gossypium species (2 A-genome species, 2 D-genome species, 1 C-genome species and 2 AD-genome species) as well as an outgroup species, Gossypioides kirkii. We then studied the expression patterns of each gene by reverse- transcriptase PCR (RT-PCR) in each flower part for different flower stages of G. arboreum (A-genome), G. raimondii (D-genome) and G. hirsutum (AD-genome). We found that these MADS-box genes are evolving independently at the DNA sequence level but exhibit highly variable expression patterns in allotetraploid G. hirsutum. These MADS-box genes contain highly conserved exon lengths and exon/intron structures, high nucleotide identity with homologs in Arabidopsis thaliana and Antirrhinum majus, and conserved gene phylogeny within the genus Gossypium. All the genes exhibit evidence of codon bias. The AP3 gene in Gossypium appears to be subject to positive selection, while the PI-small copy of the PI gene appears to be subject to strong functional constraints together with a very low mutation rate. Within G. hirsutum, the B-sister gene exhibits gene silencing of the A-subgenomic homoeolog and the PI-big copy of the PI gene has experienced pseudogenization by insertion of a copia-like retroelement. The AP3, PI-small and AG genes show biased expression patterns in G. hirsutum. These MADS-box genes also demonstrated developmentally regulated expression patterns in G. arboreum, G. raimondii and G. hirsutum. iv TABLE OF CONTENTS CHAPTER 1...................................................................................................................... 2 INTRODUCTION............................................................................................................. 2 Part I MADS-box gene family........................................................................................ 2 1. The genetic hierarchy of flower pattern formation process.................................... 2 2. Floral organ identity genes...................................................................................... 2 (1) Phylogeny of all the MADS-box genes in plants and animals.......................... 4 (2) Type II plant MADS-box genes--- MIKCc- and MIKC*-type genes ................ 4 3. MIKCc-type MADS-box genes............................................................................... 6 (1) Models of the expression patterns of MIKCc-type genes for floral organ identity .................................................................................................................... 6 (2) Phylogeny of MIKCc-type genes ...................................................................... 7 (3) Evolution of MIKCc-type genes...................................................................... 13 (4) Summary and future prospects........................................................................ 15 Part II Polyploidy.......................................................................................................... 16 1. Initial stages of polyploidy formation................................................................... 17 (1) Cytonuclear stabilization following polyploidization..................................... 17 (2) Rapid genetic changes..................................................................................... 17 (3) Rapid epigenetic changes................................................................................ 18 2. Longer-term genic and genomic evolution........................................................... 19 (1) Longer-term genic evolution........................................................................... 19 (2) Longer-term genomic evolution...................................................................... 22 Part III The Genus of Gossypium L. ............................................................................. 24 1. Phylogeny of the genus Gossypium L................................................................... 24 (1) Genealogical framework and main divergence of genus Gossypium ............. 24 (2) Possible origin and dispersal pathways of the genus of Gossypium ............... 27 2. Molecular Evolution of genes and genomes in Gossypium.................................. 29 (1) Genomic Evolution in the genus Gossypium .................................................. 29 (2) Allopolyploidy-induced Genic Evolution in the tetraploid Gossypium.......... 30 CHAPTER II................................................................................................................... 33 MATERIALS AND METHODS ................................................................................... 33 Part I Plant Materials .................................................................................................... 33 Part II Methods ............................................................................................................. 34 1. Cloning and sequencing of MADS-box genes...................................................... 34 (1) RNA extraction ............................................................................................... 34 v (2) Isolation of cDNAs of MADS-box domains by RT-PCR, Cloning and Sequencing............................................................................................................ 34 (3) Isolation of the whole cDNAs and genomic sequences of each gene by 5´/ 3´ RACE and PCR amplification followed by cloning and sequencing ................... 35 2. Gene structure analyses......................................................................................... 36 3. Expression pattern studies by RT-PCR................................................................. 36 4. Phylogenetic analysis...........................................................................................
Recommended publications
  • Polyploidy and the Evolutionary History of Cotton
    POLYPLOIDY AND THE EVOLUTIONARY HISTORY OF COTTON Jonathan F. Wendel1 and Richard C. Cronn2 1Department of Botany, Iowa State University, Ames, Iowa 50011, USA 2Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, Oregon 97331, USA I. Introduction II. Taxonomic, Cytogenetic, and Phylogenetic Framework A. Origin and Diversification of the Gossypieae, the Cotton Tribe B. Emergence and Diversification of the Genus Gossypium C. Chromosomal Evolution and the Origin of the Polyploids D. Phylogenetic Relationships and the Temporal Scale of Divergence III. Speciation Mechanisms A. A Fondness for Trans-oceanic Voyages B. A Propensity for Interspecific Gene Exchange IV. Origin of the Allopolyploids A. Time of Formation B. Parentage of the Allopolyploids V. Polyploid Evolution A. Repeated Cycles of Genome Duplication B. Chromosomal Stabilization C. Increased Recombination in Polyploid Gossypium D. A Diverse Array of Genic and Genomic Interactions E. Differential Evolution of Cohabiting Genomes VI. Ecological Consequences of Polyploidization VII. Polyploidy and Fiber VIII. Concluding Remarks References The cotton genus (Gossypium ) includes approximately 50 species distributed in arid to semi-arid regions of the tropic and subtropics. Included are four species that have independently been domesticated for their fiber, two each in Africa–Asia and the Americas. Gossypium species exhibit extraordinary morphological variation, ranging from herbaceous perennials to small trees with a diverse array of reproductive and vegetative
    [Show full text]
  • Analyses of the Sucrose Synthase Gene Family in Cotton
    Chen et al. BMC Plant Biology 2012, 12:85 http://www.biomedcentral.com/1471-2229/12/85 RESEARCH ARTICLE Open Access Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns Aiqun Chen1,2, Shae He1, Feifei Li1, Zhao Li1, Mingquan Ding1, Qingpo Liu1 and Junkang Rong1* Abstract Background: In plants, sucrose synthase (Sus) is widely considered as a key enzyme involved in sucrose metabolism. Several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, while limited information of Sus genes is available to date for cotton. Results: Here, we report the molecular cloning, structural organization, phylogenetic evolution and expression profiles of seven Sus genes (GaSus1 to 7) identified from diploid fiber cotton (Gossypium arboreum). Comparisons between cDNA and genomic sequences revealed that the cotton GaSus genes were interrupted by multiple introns. Comparative screening of introns in homologous genes demonstrated that the number and position of Sus introns are highly conserved among Sus genes in cotton and other more distantly related plant species. Phylogenetic analysis showed that GaSus1, GaSus2, GaSus3, GaSus4 and GaSus5 could be clustered together into a dicot Sus group, while GaSus6 and GaSus7 were separated evenly into other two groups, with members from both dicot and monocot species. Expression profiles analyses of the seven Sus genes indicated that except GaSus2,of which the transcripts was undetectable in all tissues examined, and GaSus7, which was only expressed in stem and petal, the other five paralogues were differentially expressed in a wide ranges of tissues, and showed development- dependent expression profiles in cotton fiber cells.
    [Show full text]
  • Normas Para Confecção Da Versão
    UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma Aluna: Rafaela Cabral Marinho Orientadora: Profª. Drª. Ana Maria Bonetti Co-orientador: Prof. Dr. Paulo Eugênio Alves Macedo de Oliveira UBERLÂNDIA - MG 2017 UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma Aluna: Rafaela Cabral Marinho Orientadora: Profª. Drª. Ana Maria Bonetti Co-orientador: Prof. Dr. Paulo Eugênio Alves Macedo de Oliveira Tese apresentada à Universidade Federal de Uberlândia como parte dos requisitos para obtenção do Título de Doutora em Genética e Bioquímica (Área Genética) UBERLÂNDIA – MG 2017 ii Dados Internacionais de Catalogação na Publicação (CIP) Sistema de Bibliotecas da UFU, MG, Brasil. M338p Marinho, Rafaela Cabral, 1988 2017 Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma / Rafaela Cabral Marinho. - 2017. 100 f. : il. Orientadora: Ana Maria Bonetti. Coorientador: Paulo Eugênio Alves Macedo de Oliveira. Tese (doutorado) - Universidade Federal de Uberlândia, Programa de Pós-Graduação em Genética e Bioquímica. Disponível em: http://dx.doi.org/10.14393/ufu.di.2018.134 Inclui bibliografia. 1. Genética - Teses. 2. Malvaceae
    [Show full text]
  • Review and Advances in Style Curvature for the Malvaceae Cheng-Jiang Ruan*
    ® International Journal of Plant Developmental Biology ©2010 Global Science Books Review and Advances in Style Curvature for the Malvaceae Cheng-Jiang Ruan* Key Laboratory of Biotechnology & Bio-Resources Utilization, Dalian Nationalities University, Dalian City, Liaoning 116600, China Correspondence : * [email protected] ABSTRACT The flowers of the Malvaceae with varying levels of herkogamy via style curvature have long intrigued evolutionary botanists. This review covers the flower opening process, approach herkogamy, style curvature and character evolution based on molecular phylogenetic trees, adaptive significances of style curvature and the mating system in some portions of the genera in this family. Hermaphroditic flowers of some species have showy petals and pollen and nectar rewards to pollinators. Approach herkogamy, in which stigmas are located on the top of a monadelphous stamen, has evolved as a mechanism to reduce the frequency of intra-floral self-pollination or the interference between male-female organs. Protandrous or monochogamous flowers in the fields open at about 5-7 days and 1-2 days respectively, and pollination is conducted by insects and birds. Interestingly, un-pollinated styles in some species curve when pollination fails. According to our observations and published or internet data, this curvature occurs in 23 species distributed in eight genera of four tribes (Malvavisceae, Ureneae, Hibisceae, Malveae) and appears to have evolved at least eight times. A shift to use style curvature is associated with a shift to annual or perennial herbs, and an unpredictable pollinator environment is likely an important trigger for this evolution. The adaptive significances of style curvature in the Malvaceae include delayed selfing, promotion of outcrossing or reduction in intrafloral male-female interference, sometimes two or three of which simultaneously occur in style curvature of one species (e.g., Kosteletzkya virginica).
    [Show full text]
  • Phylogeny of the New World Diploid Cottons (Gossypium L., Malvaceae) Based on Sequences of Three Low-Copy Nuclear Genes
    P1. Syst. Evol. 252: 199-214 (2005) Plant Systematics DO1 SO. 1007/~00606-004-0294-0 and Evo1utiua Printed in Austria Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes I. ~lvarez',R. cronn2, and J. F. wende13 '~ealJardin Botiinico de Madrid, CSIC, Madrid, Spain 2 Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon, USA 3 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA Received October 4, 2004; accepted December 15, 2004 Published online: May 9, 2005 O Springer-Verlag 2005 Abstract. American diploid cottons (Gossypium L., Introduction subgenus Houzingenia Fryxell) form a monophy- letic group of 13 species distributed mainly in New World, diploid Gossypium species com- western Mexico, extending into Arizona, Baja prise a morphological and cytogenetic California, and with one disjunct species each in (D-genome) assemblage (Cronn et al. 2002, the Galapagos Islands and Peru. Prior phylogenetic Endrizzi et al. 1985, Wendel 1995, Wendel and analyses based on an alcohol dehydrogenase gene Cronn 2003) that taxonomically is recognized (AdhA) and nuclear ribosomal DNA indicated the as subgenus Houzingenia (Fryxell 1969, 1979, need for additional data from other molecular 1992). This group of plants includes 11 species markers to resolve phylogenetic relationships with- distributed primarily in SW Mexico and in this subgenus. Toward this end, we sequenced extending northward into Arizona, in addition three nuclear genes, the anonymous locus A1341, to two other species with disjunct distributions an alcohol dehydrogenase gene (AdhC), and a cellulose synthase gene (CesA 1b). Independent and in Peru and the Galapagos Islands (Fryxell combined analyses resolved clades that are congru- 1992).
    [Show full text]
  • U5b5c4e4 OA.Pdf
    Downloaded from genome.cshlp.org on September 9, 2019 - Published by Cold Spring Harbor Laboratory Press Letter Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium Jennifer S. Hawkins,1 HyeRan Kim,2 John D. Nason,1 Rod A. Wing,2 and Jonathan F. Wendel1,3 1Iowa State University, Department of Ecology, Evolution and Organismal Biology, Ames, Iowa 50011, USA; 2University of Arizona, Department of Plant Sciences, Arizona Genomics Institute, Tucson, Arizona 85721, USA The DNA content of eukaryotic nuclei (C-value) varies ∼200,000-fold, but there is only a ∼20-fold variation in the number of protein-coding genes. Hence, most C-value variation is ascribed to the repetitive fraction, although little is known about the evolutionary dynamics of the specific components that lead to genome size variation. To understand the modes and mechanisms that underlie variation in genome composition, we generated sequence data from whole genome shotgun (WGS) libraries for three representative diploid (n = 13) members of Gossypium that vary in genome size from 880 to 2460 Mb (1C) and from a phylogenetic outgroup, Gossypioides kirkii, with an estimated genome size of 588 Mb. Copy number estimates including all dispersed repetitive sequences indicate that 40%–65% of each genome is composed of transposable elements. Inspection of individual sequence types revealed differential, lineage-specific expansion of various families of transposable elements among the different plant lineages. Copia-like retrotransposable element sequences have differentially accumulated in the Gossypium species with the smallest genome, G. raimondii, while gypsy-like sequences have proliferated in the lineages with larger genomes.
    [Show full text]
  • Types, Levels and Patterns of Low-Copy DNA Sequence Divergence, and Phylogenetic Implications, for Gossypium Genome Types
    Heredity (2012) 108, 500–506 & 2012 Macmillan Publishers Limited All rights reserved 0018-067X/12 www.nature.com/hdy ORIGINAL ARTICLE Types, levels and patterns of low-copy DNA sequence divergence, and phylogenetic implications, for Gossypium genome types J Rong1,2, X Wang1,3, SR Schulze1, RO Compton1, TD Williams-Coplin1, V Goff1, PW Chee4 and AH Paterson1 To explore types, levels and patterns of genetic divergence among diploid Gossypium (cotton) genomes, 780 cDNA, genomic DNA and simple sequence repeat (SSR) loci were re-sequenced in Gossypium herbaceum (A1 genome), G. arboreum (A2), G. raimondii (D5), G. trilobum (D8), G. sturtianum (C1) and an outgroup, Gossypioides kirkii. Divergence among these genomes ranged from 7.32 polymorphic base pairs per 100 between G. kirkii and G. herbaceum (A1) to only 1.44 between G. herbaceum (A1) and G. arboreum (A2). SSR loci are least conserved with 12.71 polymorphic base pairs and 3.77 polymorphic sites per 100 base pairs, whereas expressed sequence tags are most conserved with 3.96 polymorphic base pairs and 2.06 sites. SSR loci also exhibit the highest percentage of ‘extended polymorphisms’ (spanning multiple consecutive nucleotides). The A genome lineage was particularly rapidly evolving, with the D genome also showing accelerated evolution relative to the C genome. Unexpected asymmetry in mutation rates was found, with much more transition than transversion mutation in the D genome after its divergence from a common ancestor shared with the A genome. This large quantity of orthologous DNA sequence strongly supports a phylogeny in which A–C divergence is more recent than A–D divergence, a subject that is of much importance in view of A–D polyploid formation being key to the evolution of the most productive and finest-quality cottons.
    [Show full text]
  • Host Choice in Rotylenchulus Species
    Available online at www.ijpab.com Rathore Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6878 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) Research Article Host Choice in Rotylenchulus Species Y. S. Rathore* Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur-208 024 (U.P.) India *Corresponding Author E-mail: [email protected] Received: 12.09.2018 | Revised: 9.10.2018 | Accepted: 16.10.2018 ABSTRACT The reniformis nematodes of the genus Rotylenchulus (Haplolaimidae: Nematoda) are sedentary semi-endoparasites of numerous crops. There are ten species out of which R. reniformis and R. parvus are important, and three species (R. amanictus, R. clavicadatus, R. leptus) are monophagous: two on monocots and one on Rosids. In general, Rotylenchulus species are capable of feeding from very primitive Magnoliids to plants of advanced category. Preference was distinctly observed towards the plants in Rosids (42.779%) followed by monocots (23.949%) and Asterids (21.755%). The SAI values were also higher for these groups of plants. The study on lineages further revealed intimate affinity to febids (25.594%), followed by commelinids (18.647%), malvids (16.088%), lamiids (11.883%), and campanulids (9.141%). Poales contribution within commelinids was 65.353%. Maximum affinity of Rotylenchulus species was observed by their association with plants from families Poaceae (7), followed by Fabaceae (6), Malvaceae (6), Asteraceae (4), Oleaceae (4), Soanaceae (4) and so on. Key words: Agiosperms, Gymnosperms, APG IV system, Reniform nemtodes, Monocots, Rosids, Asterids INTRODUCTION number of crops, whereas the other eight Plant parasitic nematodes pose a great species are of limited importance.
    [Show full text]
  • An Annotated Checklist of the Coastal Forests of Kenya, East Africa
    A peer-reviewed open-access journal PhytoKeys 147: 1–191 (2020) Checklist of coastal forests of Kenya 1 doi: 10.3897/phytokeys.147.49602 CHECKLIST http://phytokeys.pensoft.net Launched to accelerate biodiversity research An annotated checklist of the coastal forests of Kenya, East Africa Veronicah Mutele Ngumbau1,2,3,4, Quentin Luke4, Mwadime Nyange4, Vincent Okelo Wanga1,2,3, Benjamin Muema Watuma1,2,3, Yuvenalis Morara Mbuni1,2,3,4, Jacinta Ndunge Munyao1,2,3, Millicent Akinyi Oulo1,2,3, Elijah Mbandi Mkala1,2,3, Solomon Kipkoech1,2,3, Malombe Itambo4, Guang-Wan Hu1,2, Qing-Feng Wang1,2 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Gar- den, Chinese Academy of Sciences, Wuhan 430074, Hubei, China 2 Sino-Africa Joint Research Center (SA- JOREC), Chinese Academy of Sciences, Wuhan 430074, Hubei, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 East African Herbarium, National Museums of Kenya, P. O. Box 45166 00100, Nairobi, Kenya Corresponding author: Guang-Wan Hu ([email protected]) Academic editor: P. Herendeen | Received 23 December 2019 | Accepted 17 March 2020 | Published 12 May 2020 Citation: Ngumbau VM, Luke Q, Nyange M, Wanga VO, Watuma BM, Mbuni YuM, Munyao JN, Oulo MA, Mkala EM, Kipkoech S, Itambo M, Hu G-W, Wang Q-F (2020) An annotated checklist of the coastal forests of Kenya, East Africa. PhytoKeys 147: 1–191. https://doi.org/10.3897/phytokeys.147.49602 Abstract The inadequacy of information impedes society’s competence to find out the cause or degree of a prob- lem or even to avoid further losses in an ecosystem.
    [Show full text]
  • Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids
    Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids Qin Xu1, Guanjun Xiong1, Pengbo Li1,2, Fei He3, Yi Huang4, Kunbo Wang5, Zhaohu Li1, Jinping Hua1* 1 College of Agronomy & Biotechnology, China Agricultural University, Beijing, China, 2 Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng, China, 3 College of Biological Sciences, China Agricultural University, Beijing, China, 4 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China, 5 Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, China Abstract Background: Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings: The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having .98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids.
    [Show full text]
  • Journal of East African Natural History
    ISSN 0012-8317 Journal of East African Natural History Volume 110 Part 1 2021 A Journal of Biodiversity Journal of East African Natural History A Journal of Biodiversity Editor-in-chief Benny Bytebier University of KwaZulu-Natal, South Africa Editors Charles Warui Geoffrey Mwachala Nature Kenya, Kenya & National Museums of Kenya, Kenya Murang'a University of Technology, Kenya Editorial Committee Thomas Butynski Norbert Cordeiro Eastern Africa Primate Diversity and Conversation Roosevelt University & The Field Museum, USA Program, Kenya and Lolldaiga Hills Research Programme, Kenya Yvonne de Jong Marc De Meyer Eastern Africa Primate Diversity and Conversation Royal Museum for Central Africa, Belgium Program, Kenya Ian Gordon James Kalema University of Rwanda, Rwanda Makerere University, Uganda Quentin Luke Muthama Muasya East African Herbarium, Kenya Universtiy of Cape Town, South Africa Deborah Manzolillo Nightingale Henry Ndangalasi Nature Kenya, Kenya University of Dar es Salaam, Tanzania Darcy Ogada Francesco Rovero The Peregrine Fund, Kenya University of Florence, Italy Stephen Spawls Patrick Van Damme Independent, United Kingdom Czech University of Life Sciences, Czech Republic Martin Walsh Paul Webala Nelson Mandela African Institution of Science and Maasai Mara University, Kenya Technology, Tanzania Production: Lorna A. Depew Published: 30 June 2021 Front cover: Chlorocypha tenuis, a species of damselfly found in Kakamega Forest. Drawing by K.-D. B. Dijkstra. Journal of East African Natural History 110(1): 13–74 (2021) ANNOTATED CHECKLIST OF THE PLANTS OF ARABUKO-SOKOKE FOREST, COASTAL KENYA Anthony N. Githitho Centre for Biodiversity, National Museums of Kenya P.O Box 80108-596, Kilifi, Kenya [email protected], [email protected] ABSTRACT A total of 605 vascular plant species, including flowering plants, gymnosperms and ferns, are included in this annotated checklist for Arabuko-Sokoke Forest Reserve in Kilifi County in the Coast Region of Kenya.
    [Show full text]
  • Cenh3 Evolution in Diploids and Polyploids of Three Angiosperm Genera Rick E
    Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 12-2014 CenH3 Evolution in Diploids and Polyploids of Three Angiosperm Genera Rick E. Masonbrink Iowa State University Joseph P. Gallagher Iowa State University, [email protected] Josef J. Jareczek Iowa State University, [email protected] Simon Renny-Byfield Iowa State University Corrinne E. Grover Iowa State University, [email protected] SeFoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: http://lib.dr.iastate.edu/eeob_ag_pubs Part of the Ecology and Evolutionary Biology Commons, Genetics Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ eeob_ag_pubs/69. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. CenH3 Evolution in Diploids and Polyploids of Three Angiosperm Genera Abstract Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene.
    [Show full text]