Reteaching (Continued) Midsegments of Triangles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Point of Concurrency the Three Perpendicular Bisectors of a Triangle Intersect at a Single Point
3.1 Special Segments and Centers of Classifications of Triangles: Triangles By Side: 1. Equilateral: A triangle with three I CAN... congruent sides. Define and recognize perpendicular bisectors, angle bisectors, medians, 2. Isosceles: A triangle with at least and altitudes. two congruent sides. 3. Scalene: A triangle with three sides Define and recognize points of having different lengths. (no sides are concurrency. congruent) Jul 249:36 AM Jul 249:36 AM Classifications of Triangles: Special Segments and Centers in Triangles By angle A Perpendicular Bisector is a segment or line 1. Acute: A triangle with three acute that passes through the midpoint of a side and angles. is perpendicular to that side. 2. Obtuse: A triangle with one obtuse angle. 3. Right: A triangle with one right angle 4. Equiangular: A triangle with three congruent angles Jul 249:36 AM Jul 249:36 AM Point of Concurrency The three perpendicular bisectors of a triangle intersect at a single point. Two lines intersect at a point. The point of When three or more lines intersect at the concurrency of the same point, it is called a "Point of perpendicular Concurrency." bisectors is called the circumcenter. Jul 249:36 AM Jul 249:36 AM 1 Circumcenter Properties An angle bisector is a segment that divides 1. The circumcenter is an angle into two congruent angles. the center of the circumscribed circle. BD is an angle bisector. 2. The circumcenter is equidistant to each of the triangles vertices. m∠ABD= m∠DBC Jul 249:36 AM Jul 249:36 AM The three angle bisectors of a triangle Incenter properties intersect at a single point. -
Lesson 3: Rectangles Inscribed in Circles
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M5 GEOMETRY Lesson 3: Rectangles Inscribed in Circles Student Outcomes . Inscribe a rectangle in a circle. Understand the symmetries of inscribed rectangles across a diameter. Lesson Notes Have students use a compass and straightedge to locate the center of the circle provided. If necessary, remind students of their work in Module 1 on constructing a perpendicular to a segment and of their work in Lesson 1 in this module on Thales’ theorem. Standards addressed with this lesson are G-C.A.2 and G-C.A.3. Students should be made aware that figures are not drawn to scale. Classwork Scaffolding: Opening Exercise (9 minutes) Display steps to construct a perpendicular line at a point. Students follow the steps provided and use a compass and straightedge to find the center of a circle. This exercise reminds students about constructions previously . Draw a segment through the studied that are needed in this lesson and later in this module. point, and, using a compass, mark a point equidistant on Opening Exercise each side of the point. Using only a compass and straightedge, find the location of the center of the circle below. Label the endpoints of the Follow the steps provided. segment 퐴 and 퐵. Draw chord 푨푩̅̅̅̅. Draw circle 퐴 with center 퐴 . Construct a chord perpendicular to 푨푩̅̅̅̅ at and radius ̅퐴퐵̅̅̅. endpoint 푩. Draw circle 퐵 with center 퐵 . Mark the point of intersection of the perpendicular chord and the circle as point and radius ̅퐵퐴̅̅̅. 푪. Label the points of intersection . -
Regents Exam Questions G.GPE.A.2: Locus 1 Name: ______
Regents Exam Questions G.GPE.A.2: Locus 1 Name: ________________________ www.jmap.org G.GPE.A.2: Locus 1 1 If point P lies on line , which diagram represents 3 The locus of points equidistant from two sides of the locus of points 3 centimeters from point P? an acute scalene triangle is 1) an angle bisector 2) an altitude 3) a median 4) the third side 1) 4 Chantrice is pulling a wagon along a smooth, horizontal street. The path of the center of one of the wagon wheels is best described as 1) a circle 2) 2) a line perpendicular to the road 3) a line parallel to the road 4) two parallel lines 3) 5 Which equation represents the locus of points 4 units from the origin? 1) x = 4 2 2 4) 2) x + y = 4 3) x + y = 16 4) x 2 + y 2 = 16 2 In the accompanying diagram, line 1 is parallel to line 2 . 6 Which equation represents the locus of all points 5 units below the x-axis? 1) x = −5 2) x = 5 3) y = −5 4) y = 5 Which term describes the locus of all points that are equidistant from line 1 and line 2 ? 1) line 2) circle 3) point 4) rectangle 1 Regents Exam Questions G.GPE.A.2: Locus 1 Name: ________________________ www.jmap.org 7 The locus of points equidistant from the points 9 Dan is sketching a map of the location of his house (4,−5) and (4,7) is the line whose equation is and his friend Matthew's house on a set of 1) y = 1 coordinate axes. -
Theorems and Postulates
Theorems and Postulates JJJG Given AB and a number r between 0 and 180, there Postulate 1-A is exactly one JrayJJG with endpoint A , extending on Protractor Postulate either side of AB , such that the measure of the angle formed is r . ∠A is a right angle if mA∠ is 90. Definition of Right, Acute ∠A is an acute angle if mA∠ is less than 90. and Obtuse Angles ∠A is an obtuse angle if mA∠ is greater than 90 and less than 180. Postulate 1-B If R is in the interior of ∠PQS , then mPQRmRQSmPQS∠ +∠ =∠ . Angle Addition If mP∠+∠=∠QRmRQSmPQS, then R is in the interior of ∠PQS. Vertical angles are congruent. The sum of the measures of the angles in a linear pair is 180˚. The sum of the measures of complementary angles is 90˚. Two points on a line can be paired with real numbers so that, given Postulate 2-A any two points R and S on the line, R corresponds to zero, and S Ruler corresponds to a positive number. Point R could be paired with 0, and S could be paired with 10. R S -2 -1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 Postulate 2-B If N is between M and P, then MN + NP = MP. Segment Addition Conversely, if MN + NP = MP, then N is between M and P. Theorem 2-A In a right triangle, the sum of the squares of the measures Pythagorean of the legs equals the square of the measure of the Theorem hypotenuse. -
Read Book Advanced Euclidean Geometry Ebook
ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years. -
The Stoics and the Practical: a Roman Reply to Aristotle
DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in -
Geometry: Neutral MATH 3120, Spring 2016 Many Theorems of Geometry Are True Regardless of Which Parallel Postulate Is Used
Geometry: Neutral MATH 3120, Spring 2016 Many theorems of geometry are true regardless of which parallel postulate is used. A neutral geom- etry is one in which no parallel postulate exists, and the theorems of a netural geometry are true for Euclidean and (most) non-Euclidean geomteries. Spherical geometry is a special case of Non-Euclidean geometries where the great circles on the sphere are lines. This leads to spherical trigonometry where triangles have angle measure sums greater than 180◦. While this is a non-Euclidean geometry, spherical geometry develops along a separate path where the axioms and theorems of neutral geometry do not typically apply. The axioms and theorems of netural geometry apply to Euclidean and hyperbolic geometries. The theorems below can be proven using the SMSG axioms 1 through 15. In the SMSG axiom list, Axiom 16 is the Euclidean parallel postulate. A neutral geometry assumes only the first 15 axioms of the SMSG set. Notes on notation: The SMSG axioms refer to the length or measure of line segments and the measure of angles. Thus, we will use the notation AB to describe a line segment and AB to denote its length −−! −! or measure. We refer to the angle formed by AB and AC as \BAC (with vertex A) and denote its measure as m\BAC. 1 Lines and Angles Definitions: Congruence • Segments and Angles. Two segments (or angles) are congruent if and only if their measures are equal. • Polygons. Two polygons are congruent if and only if there exists a one-to-one correspondence between their vertices such that all their corresponding sides (line sgements) and all their corre- sponding angles are congruent. -
Chapter 14 Locus and Construction
14365C14.pgs 7/10/07 9:59 AM Page 604 CHAPTER 14 LOCUS AND CONSTRUCTION Classical Greek construction problems limit the solution of the problem to the use of two instruments: CHAPTER TABLE OF CONTENTS the straightedge and the compass.There are three con- struction problems that have challenged mathematicians 14-1 Constructing Parallel Lines through the centuries and have been proved impossible: 14-2 The Meaning of Locus the duplication of the cube 14-3 Five Fundamental Loci the trisection of an angle 14-4 Points at a Fixed Distance in the squaring of the circle Coordinate Geometry The duplication of the cube requires that a cube be 14-5 Equidistant Lines in constructed that is equal in volume to twice that of a Coordinate Geometry given cube. The origin of this problem has many ver- 14-6 Points Equidistant from a sions. For example, it is said to stem from an attempt Point and a Line at Delos to appease the god Apollo by doubling the Chapter Summary size of the altar dedicated to Apollo. Vocabulary The trisection of an angle, separating the angle into Review Exercises three congruent parts using only a straightedge and Cumulative Review compass, has intrigued mathematicians through the ages. The squaring of the circle means constructing a square equal in area to the area of a circle. This is equivalent to constructing a line segment whose length is equal to p times the radius of the circle. ! Although solutions to these problems have been presented using other instruments, solutions using only straightedge and compass have been proven to be impossible. -
Equidistant Sets and Their Connectivity Properties
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 47, Number 2, February 1975 EQUIDISTANT SETS AND THEIR CONNECTIVITY PROPERTIES J. B. WILKER ABSTRACT. If A and B are nonvoid subsets of a metric space (X, d), the set of points x e X for which d(x, A) = d(x, B) is called the equidistant set determined by A and B. Among other results, it is shown that if A and B are connected and X is Euclidean 22-space, then the equidistant set determined by A and B is connected. 1. Introduction. In the Euclidean plane the set of points equidistant from two distinct points is a line, and the set of points equidistant from a line and a point not on it is a parabola. It is less well known that ellipses and single branches of hyperbolae admit analogous definitions. The set of points equidistant from two nested circles is an ellipse with foci at their centres. The set of points equidistant from two dis joint disks of different sizes is that branch of an hyperbola with foci at their centres which opens around the smaller disk. These classical examples prompt us to inquire further about the properties of sets which can be realised as equidistant sets. The most general context in which this study is meaningful is that of a metric space (X, d). If A is a nonvoid subset of A', and x is a point of X, then the distance from x to A is defined to be dix, A) = inf\dix, a): a £ A \. If A and B are both nonvoid subsets of X then the equidistant set determined by A and ß is defined to be U = r5| = {x: dix, A) = dix, B)\. -
The Postulates of Neutral Geometry Axiom 1 (The Set Postulate). Every
1 The Postulates of Neutral Geometry Axiom 1 (The Set Postulate). Every line is a set of points, and the collection of all points forms a set P called the plane. Axiom 2 (The Existence Postulate). There exist at least two distinct points. Axiom 3 (The Incidence Postulate). For every pair of distinct points P and Q, there exists exactly one line ` such that both P and Q lie on `. Axiom 4 (The Distance Postulate). For every pair of points P and Q, the distance from P to Q, denoted by P Q, is a nonnegative real number determined uniquely by P and Q. Axiom 5 (The Ruler Postulate). For every line `, there is a bijective function f : ` R with the property that for any two points P, Q `, we have → ∈ P Q = f(Q) f(P ) . | − | Any function with these properties is called a coordinate function for `. Axiom 6 (The Plane Separation Postulate). If ` is a line, the sides of ` are two disjoint, nonempty sets of points whose union is the set of all points not on `. If P and Q are distinct points not on `, then both of the following equivalent conditions are satisfied: (i) P and Q are on the same side of ` if and only if P Q ` = ∅. ∩ (ii) P and Q are on opposite sides of ` if and only if P Q ` = ∅. ∩ 6 Axiom 7 (The Angle Measure Postulate). For every angle ∠ABC, the measure of ∠ABC, denoted by µ∠ABC, isa real number strictly between 0 and 180, determined uniquely by ∠ABC. Axiom 8 (The Protractor Postulate). -
CAIU Geometry - Relationships with Triangles
CK-12 FOUNDATION CAIU Geometry - Relationships with Triangles Cifarelli Jordan Shatto CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform™. Copyright © 2011 CK-12 Foundation, www.ck12.org Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Un- ported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Specific details can be found at http://www.ck12.org/terms. Printed: May 26, 2011 Authors Victor Cifarelli, Lori Jordan, Brandie Shatto Contributor Brandie Shatto i www.ck12.org Contents 1 Relationships with Triangles 1 1.1 Perpendicular Bisectors in Triangles ............................... 1 1.2 Angle Bisectors in Triangles .................................... 10 1.3 Medians and Altitudes in Triangles ................................ 18 1.4 Inequalities in Triangles ...................................... 26 1.5 Extension: Indirect Proof ..................................... 36 1.6 Chapter 5 Review ......................................... 38 2 Perpendicular Bisectors in Triangles 40 2.1 Perpendicular Bisectors in Triangles ............................... 40 3 Angle Bisectors in Triangles 49 3.1 Angle Bisectors in Triangles ................................... -
Geometry Honors
Pinellas County Schools 2020-2021 GEOMETRY HONORS 1206320 or 1209820 (Pre-AICE) or 1206810 (IB MYP) Instructional Resource: Pearson: enVision Geometry, ©2020 Course Pacing Unit of Instruction # of Days Dates of Instruction Topic 1: Foundations of Geometry 18 8.27-9.22 Topic 2: Parallel and Perpendicular Lines 10 9.23-10.6 Topic 3: Transformations 12 10.7-10.22 Cycle 1 Assessment (Units 1 -3) 1 10.23 (10.7 – 10.23) Topic 4: Triangle Congruence 14 10.27-11.13 Topic 5: Relationships in Triangles 12 11.16-12.8 Thanksgiving Break is 11.21-11.29 Midterm Exam (Units 1-5) 1 12.14 – 12.18 Topic 6: Quadrilaterals and Other Polygons 15 1.4-1.27 Semester 1 Ends on 1.15.21 Topic 7: Similarity 12 1.28-2.12 Topic 8: Right Triangles and Trigonometry 13 2.16-3.4 Topic 9: Coordinate Geometry 14 3.5-3.31 Spring Break is 3.13-3.21 Topic 10: Circles 12 4.5-4.20 Topic 11: Two- and Three-Dimensional Models 10 4.21-5.4 Topic 12: Density 3 5.5-5.7 Geometry EOC 2 5.3 – 5.28 Pinellas County Schools GEOMETRY HONORS 2020-2021 August 2020 Building Community in the Math Classroom Re-Building Community in the Math Classroom January 2021 10 11 12 13 14 Topic 1: Foundations of Geometry Topic 6: Quadrilaterals and Other Polygons 18 19 20 21 22 17 18 19 20 21 MAFS.912.G-CO.1.1 MAFS.912.G-CO.3.11 Continued from Semester 1 25 26 27 28 29 24 25 26 27 28 MAFS.912.G-CO.3.9 MAFS.912.G-CO.4.12 MAFS.912.G-C.1.3 MAFS.912.G-SRT.2.5 February 2021 31 MAFS.912.G-CO.3.10 MAFS.912.G-GPE.2.6 MAFS.912.G-CO.3.11 1 2 3 4 5 September 2020 Topic 2: Parallel and Perpendicular Lines Topic 7: Similarity