Applied Ocean Science and Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Applied Ocean Science and Engineering MIT/WHOI Massachusetts Institute of Technology Woods Hole Oceanographic Institution Joint Program in Oceanography/ Applied Ocean Science and Engineering DOCTORAL DISSERTATION U-Th Dating of Lacustrine Carbonates by Christine Y. Chen February 2020 U-Th Dating of Lacustrine Carbonates by Christine Y. Chen A.B., Princeton University, 2013 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION February 2020 ©2020 Christine Y. Chen. All rights reserved. The author hereby grants to MIT and WHOI permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Author.......................................................................... Joint Program in Oceanography/Applied Ocean Science and Engineering Massachusetts Institute of Technology and Woods Hole Oceanographic Institution January 10, 2020 Certified by . David McGee Thesis Supervisor Massachusetts Institute of Technology Accepted by..................................................................... Oliver Jagoutz Chair, Joint Committee for Marine Geology and Geophysics Massachusetts Institute of Technology/ Woods Hole Oceanographic Institution 2 U-Th Dating of Lacustrine Carbonates by Christine Y. Chen Submitted to the Joint Program in Oceanography/Applied Ocean Science and Engineering Massachusetts Institute of Technology and Woods Hole Oceanographic Institution on January 10, 2020, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Carbonates are prevalent in many modern and ancient lacustrine settings, but reconstruc- tions of past lake levels or environments from such materials have been hindered by poor chronology. Uranium-thorium (U-Th) dating has the potential to fill a gap in current geochronological tools for such archives, but past attempts have been confounded by poor understanding of the complex makeup of lacustrine carbonates, leading to misguided con- clusions on both the utility of certain geochronological tools as well as the age of these deposits. This thesis showcases strategies for the successful application of U-Th geochronol- ogy to two types of lacustrine carbonates: lake bottom sediments and tufa deposits. Chap- ter 2 presents a systematic approach to U-Th dating carbonate-rich lake sediments using the ICDP sediment core from Lake Junín, Peru. Chapters 3–5 seek to demonstrate the descriptive power of combining precise U-Th dates on tufas and other carbonates with geologic observations of their depositional context at all scales—from the outcrop to the microscale. Here, the tufas originate from a transect of closed-basin lakes in the central Andes of northern Chile. With improved sample selection and leveraging of the incontro- vertible constraints of stratigraphy and coevality, we are able to test the validity of U-Th data. Combining quality-controlled geochronological constraints with careful characteri- zation of different carbonate facies can yield new insight on the character of lakelevel changes. These case studies offer frameworks for interpreting scattered geochronologic data of any size or system. By embracing the noise in our data, we now have a richer understanding of the controls on uranium in these deposits. Of all the lessons learned, we hold the following as most important: for the determination of the age of lacustrine carbonates, geologic context—in the form of sedimentological observations, additional geo- chemical data, and paleoecological descriptions—is of equal importance to the numerical accuracy and precision of geochronological measurements. 3 Thesis Supervisor: David McGee Title: Associate Professor 4 Biography Christine Yifeng Chen (陈一枫) is the only child of Dr. Xinghao Chen (陈星浩) and Lanying Tian (田兰英). Her parents immigrated to the United States to continue their education after rules restricting the age of university students prevented them from doing so in their home country. Her father first arrived in the United States at the age of 27 bywayof New York City on January 20, 1985; he remembers the date well because it was the day of President Ronald Reagan’s second inauguration. Using most of the money he had on him, he bought a bus ticket to Newark, New Jersey, to make his way towards Rutgers University, where he had been accepted for the doctoral program in Electrical Engineering and Computer Science. Her mother joined him two years later after getting accepted to the same program. After completing a masters degree in 1990, her mother gave birth to Christine on March 12, 1991. With the help of grandparents from both sides of the family, her parents raised Christine while her father completed his dissertation in 1993. Wanting to give Christine the best childhood possible, both of her parents made the decision to remain in America, despite being far away from family in China. In 1994, the family moved to the Greater Binghamton Area as both parents started jobs at IBM in Endicott, NY. There, they lived in a home with a backyard where Christine spent the majority of her childhood, exploring the nearby woods and creeks with her best friends down the street. Together, they wrote stories and made drawings about their adventures together. Second to spending time outside, going to school was her next favorite activity. She was always stymied by the question, “What is your favorite subject?” because all of them were fun and interesting to her in different ways. Christine attended grade school until graduating from Union Endicott High School in the spring of 2009. That fall, she enrolled at Princeton University on a full-tuition financial aid scholarship. She stepped onto campus with the intention to major in Geosciences, not only because of her interest in soil and agriculture, but also because the course catalog indicated that it was the only major to offer free field trips. Her first geology trip in October 2009 to southern California markeda major turning point in her life: scrambling down steep slopes of volcanic craters, crawling through narrow spaces of water-carved canyons, and ascending the majestic star dunes in Death Valley, she was the happiest she had ever been. The most lasting impression of the trip was made by Mono Lake and its oddly sculptured spires and knobs of tufa, exposed due to the lowering of lake levels from human demands on water. The fact that she devoted her dissertation in part to the study of tufas, many years later, may be more than a happy coincidence. 5 Acknowledgments Like all scientists, I stand on the shoulders of giants. This work would not have been feasible without the efforts of countless others before me. I have added my piece tothe edifice of human knowledge, and I hope others will find it sound, sound enough tobuild, modify, or improve on. Likewise, the fact that I am graduating with a PhD from MIT and Woods Hole was an improbability only made possible by the collective effort of all those who have invested in me at different points in my life. Where do I begin? I suppose from the start. My mother and father both came to America on student visas in the 1980s to continue their education after some delays in doing so in their home country. I am grateful to the United States of America for providing them and other immigrants the opportunity to pursue their dreams of self-betterment and a better life. As they completed their degrees at Rutgers University, they were also able to experience a slice of the American way, and they noticed that kids here seemed to have a lot of fun: they played sports, like soccer or basketball; some had hobbies playing musical instruments or making art; and kids hung out with other kids, often terrorizing the neighborhood. In short, kids seemed happy. And so, despite being in a foreign place thousands of miles away from all other family, they decided to stay in America to raise me, so that I might have a happy childhood. And I did. I am grateful to my parents for making that sacrifice. Growing up, I was lucky to live on a street with two other girls of essentially the same age as me: Debbie Miller and Laura Jurewicz. I cannot think of any two more perfect people to have grown up with. Somehow, we found each other. These are my strongest memories: crash courses on red wagons and black sleds; expeditions up the creek that felt like our secret; climbing Zarathustra and getting pine needles and sap in our hair; scavenger hunts and board games created from our imagination; riding our bikes recklessly up and down and around the steep curve of our street; and lighting things on fire that we probably shouldn’t. There are other memories, less clear, but all warm. When I think about the kind of person I want to be, it is the person who we would have dreamt of being back then. I am grateful to them for making me feel like I could be myself and still belong. I had several teachers in grade school who supported my diverse interests and long after- school stays. Sadly, some of their names now escape me. But I can remember Mrs. Simon, Mr. and Mrs. Stanko, Mr. Materese, Mrs. Golden, Ms. Henry, Mr. Friend, Ms. Trupp, Mr. Johnson, Mr. Hubert, Mr. Rinde, and my 6th grade teacher whose birthday is on June 4 and whose favorite music artist is Pink. I am grateful to them for making me feel at home. In college, I spent the majority of my time ensconced in the incomparable Guyot Hall, a timeless building with gargoyles of fossils and even a geologic feature named after it (yes, not the other way around). There, in Guyot 16, a dusty and old wood-trimmed room with models of mineral lattices cluttering the ceiling, is where I first met Adam Maloof, to whom I owe everything.
Recommended publications
  • Vegetation and Fire at the Last Glacial Maximum in Tropical South America
    Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher
    [Show full text]
  • Varve-Related Publications in Alphabetical Order (Version 15 March 2015) Please Report Additional References, Updates, Errors Etc
    Varve-Related Publications in Alphabetical Order (version 15 March 2015) Please report additional references, updates, errors etc. to Arndt Schimmelmann ([email protected]) Abril JM, Brunskill GJ (2014) Evidence that excess 210Pb flux varies with sediment accumulation rate and implications for dating recent sediments. Journal of Paleolimnology 52, 121-137. http://dx.doi.org/10.1007/s10933-014-9782-6; statistical analysis of radiometric dating of 10 annually laminated sediment cores from aquatic systems, constant rate of supply (CRS) model. Abu-Jaber NS, Al-Bataina BA, Jawad Ali A (1997) Radiochemistry of sediments from the southern Dead Sea, Jordan. Environmental Geology 32 (4), 281-284. http://dx.doi.org/10.1007/s002540050218; Dimona, Jordan, gamma spectroscopy, lead-210, no anthropogenic contamination, calculated sedimentation rate agrees with varve record. Addison JA, Finney BP, Jaeger JM, Stoner JS, Norris RN, Hangsterfer A (2012) Examining Gulf of Alaska marine paleoclimate at seasonal to decadal timescales. In: (Besonen MR, ed.) Second Workshop of the PAGES Varves Working Group, Program and Abstracts, 17-19 March 2011, Corpus Christi, Texas, USA, 15-21. http://www.pages.unibe.ch/download/docs/working_groups/vwg/2011_2nd_VWG_workshop_programs_and_abstracts.pdf; ca. 60 cm marine sediment core from Deep Inlet in southeast Alaska, CT scan, XRF scanning, suspected varves, 1972 earthquake and tsunami caused turbidite with scouring and erosion. Addison JA, Finney BP, Jaeger JM, Stoner JS, Norris RD, Hangsterfer A (2013) Integrating satellite observations and modern climate measurements with the recent sedimentary record: An example from Southeast Alaska. Journal of Geophysical Research: Oceans 118 (7), 3444-3461. http://dx.doi.org/10.1002/jgrc.20243; Gulf of Alaska, paleoproductivity, scanning XRF, Pacific Decadal Oscillation PDO, fjord, 137Cs, 210Pb, geochronometry, three-dimensional computed tomography, discontinuous event-based marine varve chronology spans AD ∼1940–1981, Br/Cl ratios reflect changes in marine organic matter accumulation.
    [Show full text]
  • Geoscience and a Lunar Base
    " t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history.
    [Show full text]
  • Geo-Heat Center Quarterly Bulletin Vol. 16, No. 4
    Vol. 16, No. 4 OCTOBER 1995 GEO-HEAT CENTER QUARTERLY BULLETIN ISSN 0276-1084 A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources CONTENTS Page PUBLISHED BY 20TH ANNIVERSARY OF THE GEO- 1 GEO-HEAT CENTER HEAT CENTER Oregon Institute of Technology P. J. Lienau and J. Lund 3201 Campus Drive Geo-Heat Center Klamath Falls, OR 97601 Phone: 541-885-1750 HISTORICAL IMPACTS OF 7 Email: [email protected] GEOTHERMAL RESOURCES ON THE PEOPLE OF All articles for the Bulletin are solicited. If you NORTH AMERICA wish to contribute a paper, please contact the J. Lund editor at the above address. Geo-Heat Center EDITOR COLLOCATED RESOURCES 15 T. Boyd Geo-Heat Center Paul J. Lienau and John W. Lund Typesetting and Layout – Donna Gibson KLAMATH FALLS SNOW 23 MELT SYSTEM B. Brown Consultant FUNDING PRAWN PARK – 27 The Bulletin is provided compliments of the Geo- TAUPO, NEW ZEALAND Heat Center. This material was prepared with the J. Lund and R. Klein support of the U.S. Department of Energy (DOE Geo-Heat Center Grant No. DE-FG07-90ID13040). However, any opinions, findings, conclusions, or GEOTHERMAL PIPELINE 30 recommendations expressed herein are those of Progress and Development Update the authors(s) and do not necessarily reflect the From the Geothermal Progress view of USDOE. Monitor SUBSCRIPTIONS Cover: (1) 1974 International Conference on The Bulletin is mailed free of charge. Please send Geothermal energy for Industrial, Agricultural and your name and address to the Geo-Heat Center for commercial-Residential Uses, held at OIT; (2) OIT experimental greenhouse; (3) aerial view of OIT addition to the mailing list.
    [Show full text]
  • Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism
    [Show full text]
  • 61 Pleistocene Lake Mojave Stratigraphy And
    HISTORY, PROCBSS, AND TRADITION: it SYMPOSIUM FOR MAKOTO KOnA 61 PLEISTOCENE LAKE MOJAVE STRATIGRAPHY AND ASSOCIATED CULTURAL MATERIAL CLAUDE N. WARREN AND JOAN S. SCHNEIDER The problems of geoarchaeology addressed in this paper were probably most clearly stated very early in the research, almost 40 years ago (Warren and DeCosta 1964). To adequately date the artifact assemblages from the 24 "surface sites" on the high beach lines of Pluvial Lake Mojave, two tasks must be successfully completed: (1) construct the geomorphic history of Lake Mojave from the strafigraphy, topographic re/afionships, radiocarbon dates, and any other useful data, and (2) demonstrate the stratigraphic relationship between prehistoric artifacts and lacustrine deposits of Lake Mojave. These two tasks are addressed in this paper, demonstrating the sequence of beach-ridge INTRODUCTION formation at Lake Mojave (Antevs 1937; Ore and Warren 1971; Wells et al. 1989). Additional data The Mojave River periodically flowed into from other locations within the range of elevations Death Valley during the late Pleistocene and early of the high beach ridges are integrated with Holocene. On its way to Death Valley, it filled observations made at the EI Capitan Beach the basins of today's Silver and Soda playas to Complex. overflow levels, forming Pleistocene (and early Holocene) Lake Mojave (Map 1). The final Within the uppermost portion of the Lake overflow stage of Pleistocene Lake Mojave was Mojave Basin are three high beach ridges referred probably about 9,000 years ago. With the to as BRI, BRII, and BRIll. These are the most increasing aridity of the early Holocene, the flow extensive shoreline features formed by the early of the Mojave River decreased, and by 7,500 years high stands of Lake Mojave.
    [Show full text]
  • Paleoenvironmental Reconstructions in the Baltic Sea and Iberian Margin
    Paleoenvironmental reconstructions in the Baltic Sea and Iberian Margin Assessment of GDGTs and long-chain alkenones in Holocene sedimentary records Lisa Alexandra Warden Photography: Cover photos: Dietmar Rüß Inside photos: Dietmar Rüß, René Heistermann and Claudia Zell Printed by: Ridderprint, Ridderkerk Paleoenvironmental reconstructions in the Baltic Sea and Iberian Margin Assessment of GDGTs and long-chain alkenones in Holocene sedimentary records Het gebruik van GDGTs en alkenonen in Holocene sedimentaire archieven van de Baltische Zee en kustzeeën van het Iberisch schiereiland voor paleomilieureconstructie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 31 maart 2017 des middags te 12.45 uur door Lisa Alexandra Warden geboren op 24 januari 1982 te Philadelphia, Verenigde Staten van Amerika Promotor: Prof. dr. ir. J.S. Sinninghe Damsté This work has been financially supported by the European Research Council (ERC) and the NIOZ Royal Netherlands Institute for Sea Research. “We are the first generation to feel the impact of climate change and the last generation that can do something about it.” -President Obama For Lauchlan, who was with me the whole time as I wrote this thesis. Photo by Dietmar Rüß Contents Chapter 1 – Introduction 9 Chapter 2 - Climate forced human demographic and cultural change in
    [Show full text]
  • What Literature Knows: Forays Into Literary Knowledge Production
    Contributions to English 2 Contributions to English and American Literary Studies 2 and American Literary Studies 2 Antje Kley / Kai Merten (eds.) Antje Kley / Kai Merten (eds.) Kai Merten (eds.) Merten Kai / What Literature Knows This volume sheds light on the nexus between knowledge and literature. Arranged What Literature Knows historically, contributions address both popular and canonical English and Antje Kley US-American writing from the early modern period to the present. They focus on how historically specific texts engage with epistemological questions in relation to Forays into Literary Knowledge Production material and social forms as well as representation. The authors discuss literature as a culturally embedded form of knowledge production in its own right, which deploys narrative and poetic means of exploration to establish an independent and sometimes dissident archive. The worlds that imaginary texts project are shown to open up alternative perspectives to be reckoned with in the academic articulation and public discussion of issues in economics and the sciences, identity formation and wellbeing, legal rationale and political decision-making. What Literature Knows The Editors Antje Kley is professor of American Literary Studies at FAU Erlangen-Nürnberg, Germany. Her research interests focus on aesthetic forms and cultural functions of narrative, both autobiographical and fictional, in changing media environments between the eighteenth century and the present. Kai Merten is professor of British Literature at the University of Erfurt, Germany. His research focuses on contemporary poetry in English, Romantic culture in Britain as well as on questions of mediality in British literature and Postcolonial Studies. He is also the founder of the Erfurt Network on New Materialism.
    [Show full text]
  • October 2003 SOCIETY
    ISSN 0739-4934 NEWSLETTER HISTORY OF SCIENCE VOLUME 32 NUMBER 4 October 2003 SOCIETY those with no interest in botany, the simple beauty of the glass is enough. Natural History Delights in Cambridge From modern-life in glass to long-ago life, it’s only a short walk. The museum houses ant to discuss dinosaurs, explore microfossils of some of the Earth’s earliest life Wancient civilizations, learn wild- forms, as well as fossil fish and dinosaurs – flower gardening, or study endangered such as the second ever described Triceratops, species? If variety is the spice of life, then and the world’s only mounted Kronosaurus, a the twenty-one million specimens at the 42-foot-long prehistoric marine reptile. Harvard Museum of Natural History show a Among its 90,000 zoological specimens the museum bursting with life, much of it unnat- museum also has the pheasants once owned urally natural. by George Washington. And many of the The museum will be the site of the opening mammal collections were put together in the reception for the 2003 HSS annual meeting. 19th century by “lions” in the history of sci- The reception begins at 7 p.m. Thursday, 20 ence, like Louis Agassiz. November, and tickets will be available at the Much of the museum’s collection of rocks and meeting registration desk. Buses will run from ores is the result of field work, but the museum the host hotel to the museum. houses not only that which has been dug up, but The Harvard MNH is an ideal spot for his- also that which has fallen out of the sky.
    [Show full text]
  • Yucca Mountain Project Area Exists for Quality Data Development in the Vadose Zone Below About 400 Feet
    < I Mifflin & Associates 2700 East Sunset Road, SufteInc. C2 Las Vegas, Nevada 89120 PRELIMINARY 7021798-0402 & 3026 FAX: 702/798-6074 ~ADd/tDaeii -00/( YUCCA MOUNTAIN PRO1. A Summary of Technical Support Activities January 1987 to June 1988 By: Mifflin & Associates, Inc. LaS Vegas, Nevada K) Submitted to: .State of Nevada Agency for Nuclear Projects Nuclear Waste Project Office Carson City, Nevada H E C El V E ii MAY 15 1989 NUCLEAR WASTE PROJECt OFFICE May 1989 Volume I 3-4:0 89110o3028905a, WASTE PLDR wM-11PDC 1/1 1 1 TABLE OF CONTENTS I. INTRO DUCTION ............................................................................................................................ page3 AREAS OF EFFORT A. Vadose Zone Drilling Program ............................................................................................. 4 Introduction .............................................................................................................................. 5 Issues ....................................................................................................................................... 7 Appendix A ............................................................................................................................... 9 B. Clim ate Change Program ....................................................................................................... 15 Introduction .............................................................................................................................. 16 Issues ......................................................................................................................................
    [Show full text]
  • Isobases of the Algonquin and Iroquois Beaches, and Their Significance1
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 21, PP. 227-248, PL. 5 JUNE 10, 1910 ISOBASES OF THE ALGONQUIN AND IROQUOIS BEACHES, AND THEIR SIGNIFICANCE1 BY JAMES WALTER GOl.DTHWAIT (Read before the Society December 28, 1909) CONTENTS Page Introduction ............................................................................................................... 227 The Algonquin w ater-p lan e.................................................................................... 229 Stage recorded by the Algonquin beach.......................................................229 Isobases of the upwarped portion of the Algonquin plane...................... 233 The horizontal portion of the Algonquin plane.......................................... 236 The “hinge line” or “isobase of zero” ............................................................ 239 The Algonquin plane as a datum plane........................................................ 240 The Iroquois w ater-plane........................................................................................ 241 Relative ages of the Iroquois beach and the Algonquin beach..............241 Isobases of the Iroquois plane........................................................................ 242 Comparison of the two water-planes.................................................................... 243 The isobases and the pre-Cambrian boundary.................................................... 245 Summary ....................................................................................................................
    [Show full text]
  • Spatially-Explicit Modeling of Modern and Pleistocene Runoff and Lake Extent in the Great Basin Region, Western United States
    Spatially-explicit modeling of modern and Pleistocene runoff and lake extent in the Great Basin region, western United States Yo Matsubara1 Alan D. Howard1 1Department of Environmental Sciences University of Virginia P.O. Box 400123 Charlottesville, VA 22904-4123 Abstract A spatially-explicit hydrological model balancing yearly precipitation and evaporation is applied to the Great Basin Region of the southwestern United States to predict runoff magnitude and lake distribution during present and Pleistocene climatic conditions. The model iteratively routes runoff through, and evaporation from, depressions to find a steady state solution. The model is calibrated with spatially-explicit annual precipitation estimates and compiled data on pan evaporation, mean annual temperature, and total yearly runoff from stations. The predicted lake distribution provides a close match to present-day lakes. For the last glacial maximum the sizes of lakes Bonneville and Lahontan were well predicted by linear combinations of decrease in mean annual temperature from 0 to 6 °C and increases in precipitation from 0.8 to 1.9 times modern values. Estimated runoff depths were about 1.2 to 4.0 times the present values and yearly evaporation about 0.3 to 1 times modern values. 2 1. Introduction The Great Basin of the southwestern United States in the Basin and Range physiographic province contains enclosed basins featuring perennial and ephemeral lakes, playas and salt pans (Fig. 1). The Great Basin consists of the entire state of Nevada, western Utah, and portions of California, Idaho, Oregon, and Wyoming. At present it supports an extremely dry, desert environment; however, about 40 lakes (some reaching the size of present day Great Lakes) episodically occupied the Great Basin, most recently during the last glacial maximum (LGM) [Snyder and Langbein, 1962; Hostetler et al., 1994; Madsen et al., 2001].
    [Show full text]