Modular Synthesis of Chiral Beta-Aminophosphine P, N-Ligands

Total Page:16

File Type:pdf, Size:1020Kb

Modular Synthesis of Chiral Beta-Aminophosphine P, N-Ligands Modular Synthesis of Chiral -Aminophosphine P,N- Ligands and Their Applications in Asymmetric Catalysis by Yixiong Song A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Chemistry University of Toronto © Copyright by Yixiong Song 2015 Modular Synthesis of Chiral -Aminophosphine P,N-Ligands and Their Applications in Asymmetric Catalysis Yixiong Song Master of Science Graduate Department of Chemistry University of Toronto 2015 Abstract A series of chiral -aminophosphine ligands bearing different carbon backbones and electronically differentiated diarylphosphino groups were prepared using a modular approach. These P,N-ligands were found to induce a modest level of enantioselectivities in the Pd- catalyzed asymmetric decarboxylative allylation reaction. Thiourea-phosphine bifunctional catalysts derived from the chiral -aminophosphine building blocks were prepared and applied to the asymmetric Morita-Baylis-Hillman (MBH) reaction of methyl acrylate and 4- nitrobenzaldehyde. The electronically unmodified diarylphosphino-thiourea was found to be optimal for achieving high activity and enantioselectivity in this particular MBH reaction. We also reported the synthesis of a P-chiral C2-symmetric bisphosphine ligand. However, the utility of this Trost-type ligand remains to be explored in the future. ii Acknowledgments iii Table of Contents Chapter 1. Modular Synthesis of -Aminophosphine P,N-Ligands and Their Applications in the Pd-Catalyzed Asymmetric Decarboxylative Allylation Reaction ..................................... 1 1 Introduction ..................................................................................................................... 1 1.1 Overview of P,N-ligands in Asymmetric Catalysis .............................................. 1 1.2 Decarboxylative Allylation Reaction .................................................................10 2 Objectives .......................................................................................................................18 3 Results and Discussion ....................................................................................................19 3.1 Synthesis of -Substituted -Aminophosphines and Their appplications in the Pd-Catalyzed Asymmetric Decarboxylative Allylation Reaction ........................19 3.2 Attempted Synthesis of -Disubstituted -Aminophosphines ...........................26 3.3 Attempted C–H Activation of (R)-2-Phenylglycinol ............................................31 4 Experimental ...................................................................................................................36 4.1 Procedures and Compounds................................................................................36 4.1 1H NMR, 13C NMR and 31P NMR Spectra ..........................................................53 Chapter 2. Synthesis of Bifunctional Thiourea-Phosphine Organocatalysts and Their Applications in the Asymmetric Morita-Baylis-Hillman (MBH) Reaction ............................83 1 Introduction ....................................................................................................................83 1.1 Mechanism of the MBH Reaction ......................................................................83 1.2 The Asymmetric MBH Reaction........................................................................87 1.3 The Asymmetric aza-MBH Reaction ..................................................................91 1.4 Asymmetric Transformations Related to the MBH Reaction ................................95 2 Objectives .......................................................................................................................98 3 Results and Discussion ....................................................................................................98 4 Conclusion and Future Work ......................................................................................... 105 iv 5 Experimental ................................................................................................................. 106 5.1 Procedures and Compounds.............................................................................. 106 1 13 31 5.2 H NMR, C NMR and P NMR Spectra ........................................................ 116 5.3 X-Ray Crystallography Data ............................................................................ 139 v List of Abbreviations (m) Medium (s) Strong (w) Weak °C Degrees Celsius Ac Acetate acac Acetylacetone Ar Aryl Boc tert-Butyloxycarbonyl Bn Benzyl Bz Benzoyl cod 1,5-Cyclooctadiene DART Direct Analysis in Real Time dba Dibenzylideneacetone DCC Dicyclohexylcarbodiimide DMAP 4-Dimethylaminopyridine DMF Diastereomeric ratio ee Enantiomeric excess er Enantiomeric ratio eq. Equivalent ESI Electro-spray ionisation Et Ethyl EWG Electron withdrawing group g Grams HRMS High resolution mass spectrometry i-Pr iso-Propyl IR Infra red L Ligand Leu Leucine M Molar m- meta m/z Mass/charge ratio Me Methyl MeCN Acetonitrile mg Milligrams MHz Mega hertz min. Minutes mL Milliliters n-Bu normal-Butyl nbd Norbornadiene NMR Nuclear magnetic resonance Nu Nucleophile o- ortho p- para PMP para-methoxyphenyl vi TBAB Tetrabutylammonium bromide TBAB Tetrabutylammonium chloride TBS tert-Butyldimethylsilyl t-Bu tert-Butyl Tf Triflate THF Tetrahydrofuran Ts Tosyl v/v Volume per volume vii List of Tables Table 1. Scope for secondary phosphine oxides .......................................................................24 Table 2. Scope for -substituted--aminophosphine oxides .....................................................24 Table 3. Scope for -substituted--aminophosphines...............................................................25 Table 4. Screening of P,N-ligands for decarboxylative allylic alkylation ..................................26 Table 5. Decomposition products isolated in the reduction of aminophosphine oxide ...............30 Table 6. Scope for thiourea-phosphine catalysts ......................................................................98 Table 7. Screening of bifunctional catalysts in the MBH reaction ............................................98 Table 8. Screening of P-chiral bifunctional catalysts in the MBH reaction ............................. 102 Table 9. Screening of P-chiral C2-symmetrical bisphosphine ligand in Pd-catalyzed AAA reaction ................................................................................................................................ 103 viii List of Figures Figure 1. X-ray crystal data Pd -allyl complex ....................................................................... 2 Figure 2. The exo-endo equilibrium of the Pd-allyl complex ..................................................... 3 Figure 3. 31P NMR spectra of ring-opening reaction using KOtBu and NaOtBu .......................23 Figure 4. X-ray crystal structure of thiourea-phosphine-borane 2.28a .................................... 100 ix List of Schemes Scheme 1. Asymmetric allylic substitution reactions of 1,3-dialkylallyl acetates using PHOX ligand ...................................................................................................................................... 2 Scheme 2. Asymmetric allylic substitution of 1,3-dimethylallyl acetate with dimethyl malonate 4 Scheme 3. Asymmetric allylic substitution of cyclic substrates with dimethyl malonate............. 4 Scheme 4. Intermolecular asymmetric Heck reaction using PHOX and BINAP ligands ............. 5 Scheme 5. Ir-catalyzed asymmetric hydrogenation of non-functionalized olefins ....................... 5 Scheme 6. Asymmetric hydroboration-oxidation of arylalkenes using Rh-QUINAP .................. 5 Scheme 7. Asymmetric diboration-oxidation of olefins using Rh-QUINAP ............................... 6 Scheme 8. Asymmetric three component condensation employing QUINAP and its analog ....... 6 Scheme 9. Asymmetric Kumada coupling reaction using -aminophosphine ............................. 7 Scheme 10. Cu-catalyzed conjugated addition of diethylzinc to enones using iminophosphine ... 8 Scheme 11. Ru-catalyzed asymmetric tandem Michael addition/hydrogenation of cyclic enone . 8 Scheme 12. Fe-catalyzed hydrogenation of esters and N-heterocycles ....................................... 9 Scheme 13. Fe-catalyzed asymmetric hydrogenation of ketones and activated imines ................ 9 Scheme 14. The Tsuji reaction ................................................................................................10 Scheme 15. Proposed catalytic cycle of the decarboxylative allylic alkylation of allyl enol carbonates and allyl β-keto esters ............................................................................................11 Scheme 16. The initial report of enantioselective Tsuji reaction using Trost P,P-ligand and PHOX P,N-ligand ...................................................................................................................11 Scheme 17. Asymmetric decarboxylative allylic alkylation using Trost ligands ........................12 Scheme 18. Asymmetric decarboxylative allylic alkylation using PHOX 1.4 and 1.16 ..............13 x Scheme 19. Synthesis of chiral -fluoroketones through decarboxylative allylic alkylation ......14 Scheme 20. Enantioselective decarboxylative enolate alkylation cascade .................................14 Scheme 21. Ir-catalyzed allylic alkylation of -substituted β-ketoesters ...................................15
Recommended publications
  • NMR Studies of Phosphorus Ligand Complexes of Silver and Cobalt Steven Mark Socol Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 NMR studies of phosphorus ligand complexes of silver and cobalt Steven Mark Socol Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Socol, Steven Mark, "NMR studies of phosphorus ligand complexes of silver and cobalt " (1983). Retrospective Theses and Dissertations. 8962. https://lib.dr.iastate.edu/rtd/8962 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Or As Substitute for Catalysts in Organophosphorus Chemistry
    molecules Review Microwaves as “Co-Catalysts” or as Substitute for Catalysts in Organophosphorus Chemistry György Keglevich Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] Abstract: The purpose of this review is to summarize the importance of microwave (MW) irradiation as a kind of catalyst in organophosphorus chemistry. Slow or reluctant reactions, such as the Diels-Alder cycloaddition or an inverse-Wittig type reaction, may be performed efficiently under MW irradiation. The direct esterification of phosphinic and phosphonic acids, which is practically impossible on conventional heating, may be realized under MW conditions. Ionic liquid additives may promote further esterifications. The opposite reaction, the hydrolysis of P-esters, has also relevance among the MW-assisted transformations. A typical case is when the catalysts are substituted by MWs, which is exemplified by the reduction of phosphine oxides, and by the Kabachnik–Fields condensation affording α-aminophosphonic derivatives. Finally, the Hirao P–C coupling reaction may serve as an example, when the catalyst may be simplified under MW conditions. All of the examples discussed fulfill the expectations of green chemistry. Keywords: microwave; organophosphorus chemistry; catalyst; catalyst- and solvent-free; green chemistry The spread of the microwave (MW) technique opened a new chapter in organic Citation: Keglevich, G. Microwaves chemistry in whole [1–3], and also in its specialized fields, such as heterocyclic [3–5] and as “Co-Catalysts” or as Substitute for organophosphorus chemistry [2,6]. MW irradiation makes possible more efficient syntheses Catalysts in Organophosphorus in terms of reaction time, selectivity, and purity [1,2].
    [Show full text]
  • 7 NACA X Rp- I - 3 I ( RESEARCH MEMORANDUM I
    2 --- p: -r 4 2 7 NACA X rp- I - 3 i ( RESEARCH MEMORANDUM I ORGANOPHOSPHORUS COMPOUNDS IN ROCKET-ENGINE APPLICATIONS By Dezso J. Ladanyi and Glen Hennings Lewis Flight Propulsion Laboratory Cleveland, Ohio .-I, .,:. ..#: - . ,., .,. .I..- !/I u ,8~~er~.m8~.yli~~pn ., ,: .j,z.-K;; ,,.. r, 8.. ," , , ';8i,.27,:i~jk;,h4h,r.Jt> :,,,, , - ;> I I : $-',;: Declasslf ied bv euthority of NASA Cla3~ifi~~'Li~ilrl:~.i.;;t Notices IYO~LA, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON April 2, 1954 TABU OF CONTENTS uf Page SUMMARY ................................ 1 INTRODUCTION ............................ PROCEDURE PROPElxmITS .............................3 Fuels ............................... 3 Oxidants ............................. 5 RESULTS AND DISCUSSION ........................ 5 Mixed Alkyl Thiophosphites and Red Fuming Nitric Acid ....... 5 Triethyl Trithiophosphite and Red Fuming Nitric Acid ....... 6 Propylene N. N.Dimethylamidophosphite and Red Fuming Nitric Acid ........................... 6 Mixed Ale1 Thiophosphites. Triethyl Trithiophoephite. and Propylene N. N.Dimethylamidophosphite with White Fuming Nitric Acid ........................... 7 Discussion of Results at Subatmospheric Pressures ......... 8 CONCLUDING REMARKS .........................10 APPENDIX-LITERATURESURIXY ....................13 Introduction ........................... 13 Historical review ........................ 13 Nomenclature ........................:. 13 Classification ......................... 14 Phosphines ............................ 14 General review
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Rh(I) Complexes in Catalysis: a Five-Year Trend
    molecules Review Rh(I) Complexes in Catalysis: A Five-Year Trend Serenella Medici * , Massimiliano Peana * , Alessio Pelucelli and Maria Antonietta Zoroddu Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100 Sassari, Italy; [email protected] (A.P.); [email protected] (M.A.Z.) * Correspondence: [email protected] (S.M.); [email protected] (M.P.) Abstract: Rhodium is one of the most used metals in catalysis both in laboratory reactions and industrial processes. Despite the extensive exploration on “classical” ligands carried out during the past decades in the field of rhodium-catalyzed reactions, such as phosphines, and other com- mon types of ligands including N-heterocyclic carbenes, ferrocenes, cyclopentadienyl anion and pentamethylcyclopentadienyl derivatives, etc., there is still lively research activity on this topic, with considerable efforts being made toward the synthesis of new preformed rhodium catalysts that can be both efficient and selective. Although the “golden age” of homogeneous catalysis might seem over, there is still plenty of room for improvement, especially from the point of view of a more sustainable chemistry. In this review, temporally restricted to the analysis of literature during the past five years (2015–2020), the latest findings and trends in the synthesis and applications of Rh(I) complexes to catalysis will be presented. From the analysis of the most recent literature, it seems clear that rhodium-catalyzed processes still represent a stimulating challenge for the metalloorganic chemist that is far from being over. Keywords: rhodium; catalysis; Rh(I) complexes Citation: Medici, S.; Peana, M.; Pelucelli, A.; Zoroddu, M.A. Rh(I) Complexes in Catalysis: A Five-Year 1.
    [Show full text]
  • Thesis Submitted for the Degree of Doctor of Philosophy University of Bath, Department of Pharmacy and Pharmacology November 2004
    University of Bath PHD Chemical tools to study NAADP: A novel calcium mobilising intracellular messenger Brown, Richard Stephen Award date: 2004 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 03. Oct. 2021 Copyright notice Chemical tools to study NAADP, a novel calcium mobilising intracellular messenger. Richard Stephen Brown A thesis submitted for the degree of Doctor of Philosophy University of Bath, Department of Pharmacy and Pharmacology November 2004 COPYRIGHT Attention is drawn to the fact that the copyright of the thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from this thesis and no information derived from it may be published without prior written consent of the author.
    [Show full text]
  • Design of P-Chirogenic Aminophosphine-Phosphinite
    Design of P-Chirogenic Aminophosphine-Phosphinite (AMPP*) Ligands at both Phosphorus Centers: Origin of Enantioselectivities in Pd-Catalyzed Allylic Reactions Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, Yoann Rousselin, Pierre D Harvey, Sylvain Jugé To cite this version: Antonin Jaillet, Christophe Darcel, Jérôme Bayardon, Adrien Schlachter, Christine Salomon, et al.. Design of P-Chirogenic Aminophosphine-Phosphinite (AMPP*) Ligands at both Phosphorus Cen- ters: Origin of Enantioselectivities in Pd-Catalyzed Allylic Reactions. Journal of Organic Chemistry, American Chemical Society, 2020, 85 (22), pp.14391-14410. 10.1021/acs.joc.0c00536. hal-02635117 HAL Id: hal-02635117 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02635117 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 95 The Journal of Organic Chemistry 1 Design of P-Chirogenic Aminophosphine-Phosphinite 2 3 4 5 (AMPP*) Ligands at both Phosphorus Centers: Origin of 6 7 8 9 10 Enantioselectivities in Pd-Catalyzed
    [Show full text]
  • Monodentate, Supramolecular and Dynamic Phosphoramidite Ligands Based on Amino Acids in Asymmetric Hydrogenation Reactions
    UvA-DARE (Digital Academic Repository) Monodentate, Supramolecular and Dynamic Phosphoramidite Ligands Based on Amino Acids in Asymmetric Hydrogenation Reactions Breuil, P.A.R. Publication date 2009 Document Version Final published version Link to publication Citation for published version (APA): Breuil, P. A. R. (2009). Monodentate, Supramolecular and Dynamic Phosphoramidite Ligands Based on Amino Acids in Asymmetric Hydrogenation Reactions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Monodentate, Supramolecular and Dynamic Phosphoramidite Ligands Based on Amino Acids in Asymmetric Hydrogenation Reactions ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D. C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op vrijdag 4 december 2009, te 11:00 uur door Pierre-Alain R.
    [Show full text]
  • Synthesis of Aminophosphine Derivatives by Chloramination And
    Synthesis of Aminophosphine Derivatives by Chloramination and Chlorophosphination Reactions By HARBHAJAN SINGH AHUJA A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA February, 1962 ACKNOWLEDGMENTS The author takes this opportunity to express his sincere appre- ciation and deep gratitude to his research director and teacher. Dr. Harry H. Sisler, for his aid and guidance in carrying out this research work and in the writing of this dissertation. Dr. Sisler has been a constant source of encouragement throughout the course of this work. His encouraging words on numerous occasions helped in lifting the sinking morale of the author. Appreciation is extended to other members of the author’s Graduate Supervisory Committee for making suggestions in the writing of this dissertation. The author wishes to express his sincere gratitude to Dr. W. S. Brey, Jr., of the Chemistry Department of the University of Florida under whose direction the nuclear magnetic resonance spectra were determined and interpreted. Special thanks should go to Mr. N. L. Smith for giving so gen- erously of his time and the benefit of his many years of experience during the earlier phases of this research. The author is grateful to his laboratory partners, fellow graduate students, faculty, and the staff of the Chemistry Department for the help furnished by them, directly or indirectly, during the course of this work. Thanks also is due to Mrs. Penny Ansell who, with a great deal of patience and against so many odds, typed this dissertation.
    [Show full text]
  • Dendrimers and Other Phosphorus-Containing Dendrimers Anne-Marie Caminade
    Poly(phosphorhydrazone) Dendrimers and Other Phosphorus-containing Dendrimers Anne-Marie Caminade To cite this version: Anne-Marie Caminade. Poly(phosphorhydrazone) Dendrimers and Other Phosphorus-containing Den- drimers. Michael Malkoch; Sandra Garcia Gallego. Dendrimer Chemistry: Synthetic Approaches Towards Complex Architectures, Royal Society of Chemistry, pp.146-182, 2020, 978-1-78801-132-7. 10.1039/9781788012904-00146. hal-02880003 HAL Id: hal-02880003 https://hal.archives-ouvertes.fr/hal-02880003 Submitted on 4 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CHAPTER 7 Poly(phosphorhydrazone) dendrimers and other phosphorus-containing dendrimers Anne-Marie Caminadea* a Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France *Corresponding contributor. E-mail: [email protected] 1 Abstract This chapter will focus on the methods of synthesis of phosphorus-containing dendritic architectures, mainly of phosphorhydrazone type, coming from our group, but also on other types of phosphorus dendrimers coming from other laboratories. The different types of cores, branches, and surface functionalities of phosphorhydrazone dendrimers will be displayed. An overview of the field will be given, concerning not only regular dendrimers, but also dendrimers with layered architectures, dendrons, and various types of less symmetrical dendritic architectures, all based on phosphorus derivatives.
    [Show full text]
  • US5602244.Pdf
    ||||||||| US005602244A United States Patent (19) 11) Patent Number: 5,602,244 Caruthers et al. (45) Date of Patent: Feb. 11, 1997 54 POLYNUCLEOTIDE 3,687,808 8/1972 Merrigan et al....................... 435/91.3 PHOSPHORODITHOATE COMPOUNDS 3,846,402 11/1972 Eckstein et al. ..................... 526/26.23 3,853,844 12/1975 Shuman ............................... 536/26.12. 75 Inventors: Marvin H. Caruthers, Boulder, Colo.; 4,373,071 2/1983 Itakura et al. ...... ... 536/2.5.3 Wolfgang K.-D. Brill, Schopfheim, 4,415,732 11/1983 Caruthers et al. .. 536/26.5 Germany: Eric Yau, M Island 4,458,066 7/1984 Caruthers et al. ... 536,25.34 y; Eric Yau, Mercer Island, 4500,707 2/1985 Caruthers et a 536/25.34 Wash.; Michael Ma, New York, N.Y.: - ww. to . 9. y - v a • 4,668,777 5/1987 Caruthers et al. .. ... 536/26.5 John Nielsen, Horsholm, Denmark 4,728,730 3/1988 Frey et al. .......... 536/26.12 4,806,463 2/1989 Goodchild etal ... 536/23.2 (73) Assignee: Competitive Technologies, Inc., 4,808,708 2/1989 Yoshida et al...... 536,25.34 Westport, Conn. 5,218,103 6/1993 Caruthers et al. .. 536/25.33 5,278.302 1/1994 Caruthers et al. .. ... 536/24.5 21) Appl. No.: 436,714 5,453,496 9/1995 Caruther et al. ....................... 536/24.5 (22 Filed: May 8, 1995 OTHER PUBLICATIONS Related U.S. Application Data Matsukura et al., Proc. Natl. Acad. Sci. 84:7706 (1987). Stel et al., J. Am. Chem. Soc. 106:6077 (1984). 60 continuation-in-partDivision of Ser.
    [Show full text]
  • Functionalization of Cyclopalladated Ligands Using Secondary Phosphines and Meta- Chloroperoxybenzoic Acid Jonathan Kukowski
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2017 Functionalization Of Cyclopalladated Ligands Using Secondary Phosphines And Meta- Chloroperoxybenzoic Acid Jonathan Kukowski Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Kukowski, Jonathan, "Functionalization Of Cyclopalladated Ligands Using Secondary Phosphines And Meta-Chloroperoxybenzoic Acid" (2017). Theses and Dissertations. 2258. https://commons.und.edu/theses/2258 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. FUNCTIONALIZATION OF CYCLOPALLADATED LIGANDS USING SECONDARY PHOSPHINES AND META-CHLOROPEROXYBENZOIC ACID By Jonathan E. Kukowski Bachelor of Arts, University of North Dakota, 2010 Bachelor of Science, University of North Dakota, 2012 A Dissertation Submitted to the Graduate School of the University of North Dakota In partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota December, 2017 PERMISSION Title Functionalization of Cyclopalladated Ligands Using Secondary Phosphines and meta-Chloroperoxybenzoic Acid Department Chemistry Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in her absence, by the chairperson of the department or the dean of the Graduate School.
    [Show full text]