Review Article Recent Advances on Radical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Process for Producing Fused-Ring Aromatic Compound, and Conjugated Polymer
(19) TZZ ¥__T (11) EP 2 774 931 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 10.09.2014 Bulletin 2014/37 C07F 19/00 (2006.01) C07F 7/08 (2006.01) C07F 7/22 (2006.01) C07F 7/30 (2006.01) (2006.01) (2014.01) (21) Application number: 12844675.4 C08G 61/12 H01L 31/04 (22) Date of filing: 02.11.2012 (86) International application number: PCT/JP2012/078517 (87) International publication number: WO 2013/065836 (10.05.2013 Gazette 2013/19) (84) Designated Contracting States: • KAWAI, Jyunya AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Yokohama-shi GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Kanagawa 227-8502 (JP) PL PT RO RS SE SI SK SM TR •SATO,Wataru Yokohama-shi (30) Priority: 02.11.2011 JP 2011241498 Kanagawa 227-8502 (JP) 29.11.2011 JP 2011260973 • SATAKE, Kenichi Yokohama-shi (71) Applicant: Mitsubishi Chemical Corporation Kanagawa 227-8502 (JP) Chiyoda-ku • FURUYA, Mitsunori Tokyo 100-8251 (JP) Yokohama-shi Kanagawa 227-8502 (JP) (72) Inventors: • FUJITA, Rieko (74) Representative: HOFFMANN EITLE Yokohama-shi Patent- und Rechtsanwälte Kanagawa 227-8502 (JP) Arabellastrasse 4 81925 München (DE) (54) PROCESS FOR PRODUCING FUSED-RING AROMATIC COMPOUND, AND CONJUGATED POLYMER (57) The invention addresses a problem of purifying having n active groups (wherein n is an integer of 1 or a monomer to be a precursor according to a simpler and more and 4 or less), which comprises bringing a compo- milder method so as to obtain a polymer having a higher sition containing the condensed polycyclic aromatic com- molecular weight. -
Approach to Site-Selective Protein Modification JUSTIN M
A “Tag-and-Modify” Approach to Site-Selective Protein Modification JUSTIN M. CHALKER, GONC-ALO J. L. BERNARDES, AND BENJAMIN G. DAVIS* Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom RECEIVED ON FEBRUARY 27, 2011 CONSPECTUS ovalent modification can expand a protein's functional capacity. Fluorescent or radioactive labeling, for instance, allows C imaging of a protein in real time. Labeling with an affinity probe enables isolation of target proteins and other interacting molecules. At the other end of this functional spectrum, protein structures can be naturally altered by enzymatic action. ProteinÀprotein interactions, genetic regulation, and a range of cellular processes are under the purview of these post- translational modifications. The ability of protein chemists to install these covalent additions selectively has been critical for elucidating their roles in biology. Frequently the transformations must be applied in a site-specific manner, which demands the most selective chemistry. In this Account, we discuss the development and application of such chemistry in our laboratory. A centerpiece of our strategy is a “tag-and-modify” approach, which entails sequential installation of a uniquely reactive chemical group into the protein (the “tag”) and the selective or specific modification of this group. The chemical tag can be a natural or unnatural amino acid residue. Of the natural residues, cysteine is the most widely used as a tag. Early work in our program focused on selective disulfide formation in the synthesis of glycoproteins. For certain applications, the susceptibility of disulfides to reduction was a limitation and prompted the development of several methods for the synthesis of more stable thioether modifications. -
Environmentsensitive Fluorescent Probe: a Benzophosphole Oxide with an Electrondonating Substituent
Angewandte Chemie International Edition:DOI:10.1002/anie.201500229 Phosphorus Heterocycles German Edition:DOI:10.1002/ange.201500229 Environment-SensitiveFluorescent Probe:ABenzophosphole Oxide with an Electron-Donating Substituent** Eriko Yamaguchi, Chenguang Wang,Aiko Fukazawa,* Masayasu Taki, Yoshikatsu Sato, Taeko Sasaki, Minako Ueda, Narie Sasaki, Tetsuya Higashiyama,* and Shigehiro Yamaguchi* Abstract: Electron-donating aryl groups were attached to phosphine oxide and sulfide derivatives exhibit desirably high electron-accepting benzophosphole skeletons.Among several thermal and chemical stability.Taking advantage of these derivatives thus prepared, one benzophosphole oxide was features,phosphole-based materials have been widely applied particularly interesting,asitretained high fluorescence quan- in organic electronics,[1g,h] including organic light-emitting tum yields even in polar and protic solvents.This phosphole- diodes[3,4] and photovoltaics.[5] However,biological applica- based compound exhibited adrastic color change of its tions have not yet been explored exhaustively.Inthis context, fluorescence spectrum as afunction of the solvent polarity, we would like to disclose here the successful development of while the absorption spectra remained virtually unchanged. highly fluorescent phosphole derivatives,and demonstrate Capitalizing on these features,this phosphole-based compound their potential as fluorescent bioimaging probes. was used to stain adipocytes,inwhich the polarity of Thecombination of an electron-accepting p-skeleton -
Ncomms12703.Pdf
ARTICLE Received 17 Feb 2016 | Accepted 26 Jul 2016 | Published 2 Sep 2016 DOI: 10.1038/ncomms12703 OPEN Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides Jordi Bertran-Vicente1, Martin Penkert1,2, Olaia Nieto-Garcia1,2, Jean-Marc Jeckelmann3, Peter Schmieder1, Eberhard Krause1 & Christian P. R. Hackenberger1,2 In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. 1 Leibniz-Institut fu¨r Molekulare Pharmakologie (FMP), Robert-Ro¨ssle-Str. 10, D-13125 Berlin, Germany. 2 Humboldt-Universita¨t zu Berlin, Institut fu¨r Chemie, Brook-Taylor-Str. 2, D-12489 Berlin, Germany. 3 Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland. Correspondence and requests for materials should be addressed to C.P.R.H. -
Organophosphate Insecticides
CHAPTER 4 HIGHLIGHTS Organophosphate Insecticides Acts through phosphorylation of the acetylcholinesterase enzyme Since the removal of organochlorine insecticides from use, organophosphate at nerve endings insecticides have become the most widely used insecticides available today. More Absorbed by inhalation, than forty of them are currently registered for use and all run the risk of acute ingestion, and skin and subacute toxicity. Organophosphates are used in agriculture, in the home, penetration in gardens, and in veterinary practice. All apparently share a common mecha- Muscarinic, nicotinic & CNS nism of cholinesterase inhibition and can cause similar symptoms. Because they effects share this mechanism, exposure to the same organophosphate by multiple routes or to multiple organophosphates by multiple routes can lead to serious additive Signs and Symptoms: toxicity. It is important to understand, however, that there is a wide range of Headache, hypersecretion, toxicity in these agents and wide variation in cutaneous absorption, making muscle twitching, nausea, specific identification and management quite important. diarrhea Respiratory depression, seizures, loss of consciousness Toxicology Miosis is often a helpful Organophosphates poison insects and mammals primarily by phosphory- diagnostic sign lation of the acetylcholinesterase enzyme (AChE) at nerve endings. The result is a loss of available AChE so that the effector organ becomes overstimulated by Treatment: the excess acetylcholine (ACh, the impulse-transmitting substance) in the nerve Clear airway, improve tissue ending. The enzyme is critical to normal control of nerve impulse transmission oxygenation from nerve fibers to smooth and skeletal muscle cells, glandular cells, and Administer atropine sulfate autonomic ganglia, as well as within the central nervous system (CNS). -
Asymmetric Synthesis of Organophosphates and Their
ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemistry By Batool J. Murtadha Dayton, Ohio May 2020 ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. APPROVED BY: __________________________________ Jeremy Erb, Ph.D. Research Advisor Assistant Professor Department of Chemistry University of Dayton ___________________________________ Vladimir Benin, Ph.D. Professor of Chemistry Department of Chemistry University of Dayton ___________________________________ Justin C. Biffinger, Ph.D. Committee Member Assistant Professor Department of Chemistry University of Dayton ii © Copyright by Batool J. Murtadha All rights reserved 2020 iii ABSTRACT ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. University of Dayton Advisor: Dr. Jeremy Erb Organophosphorus compounds (OPs) are widely used in the agricultural industry especially in the pesticide market. Phosphates play a huge role as biological compounds in the form of energy carrier compounds like ATP, and medicine as antivirals. OPs have become increasingly important as evidenced by the publication of new methods devoted to their uses and synthesis. These well-established studies lay the basis for industrial organic derivatives of phosphorus preparations. The current work explored methods of synthesizing chiral organophosphate triesters. We experimented with different processes roughly divided into either an electrophilic or nucleophilic strategy using chiral Lewis acids, organocatalysts (HyperBTM), activating agents, and chiral auxiliaries with the goal of control stereoselectivity. These methods were explored through the use of different starting materials like POCl3, triethyl phosphate, methyl phosphordichloradate, and PSCl3. -
Environmental Health Criteria 63 ORGANOPHOSPHORUS
Environmental Health Criteria 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION Please note that the layout and pagination of this web version are not identical with the printed version. Organophophorus insecticides: a general introduction (EHC 63, 1986) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1986 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination -
Synthesis and Applications in Fluorescence Imaging
Phosphole P Oxide Containing π Electron Materials: Synthesis and ─ Applications─ in Fluorescence─ Imaging Shigehiro Yamaguchi, 1,2* Aiko Fukazawa, 2 and Masayasu Taki 1 1* Institute of Transformative Bio ─ Molecules (WPI ─ ITbM), Nagoya University 2* Furo, Chikusa, Nagoya 464 ─ 8602, Japan Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya 464 ─ 8602, Japan (Received September 8, 2017; E ─ mail: [email protected]) Abstract: Phosphole P ─ oxide is a useful building block for π ─ conjugated materials due to its nonaromatic and electron ─ accepting character. We have synthesized a series of ring ─ fused derivatives of phosphole P ─ oxide based on the intramolecular nucleophilic cyclization of appropriate alkyne precursors or radical phosphany- lations. Some of the thus obtained compounds exhibited intriguing uorescence properties and were applied to uorescence imaging. A donor ─ acceptor ─ type benzo[b]phosphole P ─ oxide with a (diphenylamino)phenyl group exhibited large solvatochromism in its uorescence spectra, and could hence be used as a staining agent for lipid droplets. C ─ Naphox and PB430, which consist of fully ring ─ fused π ─ conjugated ladder ─ type scaf- folds, exhibited outstanding photostability and their absorption and emission properties were suitable for super ─ resolution STED imaging. Moreover, using PB430 ─ conjugated antibodies, we carried out a 3 ─ D recon- struction of the STED images and developed -
NMR Studies of Phosphorus Ligand Complexes of Silver and Cobalt Steven Mark Socol Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 NMR studies of phosphorus ligand complexes of silver and cobalt Steven Mark Socol Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Socol, Steven Mark, "NMR studies of phosphorus ligand complexes of silver and cobalt " (1983). Retrospective Theses and Dissertations. 8962. https://lib.dr.iastate.edu/rtd/8962 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. -
Or As Substitute for Catalysts in Organophosphorus Chemistry
molecules Review Microwaves as “Co-Catalysts” or as Substitute for Catalysts in Organophosphorus Chemistry György Keglevich Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] Abstract: The purpose of this review is to summarize the importance of microwave (MW) irradiation as a kind of catalyst in organophosphorus chemistry. Slow or reluctant reactions, such as the Diels-Alder cycloaddition or an inverse-Wittig type reaction, may be performed efficiently under MW irradiation. The direct esterification of phosphinic and phosphonic acids, which is practically impossible on conventional heating, may be realized under MW conditions. Ionic liquid additives may promote further esterifications. The opposite reaction, the hydrolysis of P-esters, has also relevance among the MW-assisted transformations. A typical case is when the catalysts are substituted by MWs, which is exemplified by the reduction of phosphine oxides, and by the Kabachnik–Fields condensation affording α-aminophosphonic derivatives. Finally, the Hirao P–C coupling reaction may serve as an example, when the catalyst may be simplified under MW conditions. All of the examples discussed fulfill the expectations of green chemistry. Keywords: microwave; organophosphorus chemistry; catalyst; catalyst- and solvent-free; green chemistry The spread of the microwave (MW) technique opened a new chapter in organic Citation: Keglevich, G. Microwaves chemistry in whole [1–3], and also in its specialized fields, such as heterocyclic [3–5] and as “Co-Catalysts” or as Substitute for organophosphorus chemistry [2,6]. MW irradiation makes possible more efficient syntheses Catalysts in Organophosphorus in terms of reaction time, selectivity, and purity [1,2]. -
Program 1..154
The 97th Annual Meeting of CSJ Program Chair: INOUE, Haruo(15:30~15:55) Room S1 1S1- 15 Medium and Long-Term Program Lecture Artificial Photosynthesis of Ammonia(RIES, Hokkaido Univ.)○MISAWA, Hiroaki (15:30~15:55) Fourth Building, Section B J11 Chair: INOUE, Haruo(15:55~16:20) 1S1- 16 Medium and Long-Term Program Lecture Mechanism of water-splitting by photosystem II using the energy of visible light(Grad. Sustainable and Functional Redox Chemistry Sch. Nat. Sci. Technol., Okayama Univ.)○SHEN, Jian-ren(15:55~ ) Thursday, March 16, AM 16:20 (9:30 ~9:35 ) Chair: TAMIAKI, Hitoshi(16:20~16:45) 1S1- 01 Special Program Lecture Opening Remarks(Sch. Mater. & 1S1- 17 Medium and Long-Term Program Lecture Excited State Chem. Tech., Tokyo Tech.)○INAGI, Shinsuke(09:30~09:35) Molecular Dynamics of Natural and Artificial Photosynthesis(Sch. Sci. Tech., Kwansei Gakuin Univ.)○HASHIMOTO, Hideki(16:20~16:45) Chair: ATOBE, Mahito(9:35 ~10:50) 1S1- 02 Special Program Lecture Polymer Redox Chemistry toward Chair: ISHITANI, Osamu(16:45~17:10) Functional Materials(Sch. Mater. & Chem. Tech., Tokyo Tech.)○INAGI, 1S1- 18 Medium and Long-Term Program Lecture Recent pro- Shinsuke(09:35~09:50) gress on artificial photosynthesis system based on semiconductor photocata- 1S1- 03 Special Program Lecture Organic Redox Chemistry Enables lysts(Grad. Sch. Eng., Kyoto Univ.)○ABE, Ryu(16:45~17:10) Automated Solution-Phase Synthesis of Oligosaccharides(Grad. Sch. Eng., Tottori Univ.)○NOKAMI, Toshiki(09:50~10:10) (17:10~17:20) 1S1- 04 Special Program Lecture Redox Regulation of Functional 1S1- 19 Medium and Long-Term Program Lecture Closing re- Dyes and Their Applications to Optoelectronic Devices(Fac. -
7 NACA X Rp- I - 3 I ( RESEARCH MEMORANDUM I
2 --- p: -r 4 2 7 NACA X rp- I - 3 i ( RESEARCH MEMORANDUM I ORGANOPHOSPHORUS COMPOUNDS IN ROCKET-ENGINE APPLICATIONS By Dezso J. Ladanyi and Glen Hennings Lewis Flight Propulsion Laboratory Cleveland, Ohio .-I, .,:. ..#: - . ,., .,. .I..- !/I u ,8~~er~.m8~.yli~~pn ., ,: .j,z.-K;; ,,.. r, 8.. ," , , ';8i,.27,:i~jk;,h4h,r.Jt> :,,,, , - ;> I I : $-',;: Declasslf ied bv euthority of NASA Cla3~ifi~~'Li~ilrl:~.i.;;t Notices IYO~LA, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON April 2, 1954 TABU OF CONTENTS uf Page SUMMARY ................................ 1 INTRODUCTION ............................ PROCEDURE PROPElxmITS .............................3 Fuels ............................... 3 Oxidants ............................. 5 RESULTS AND DISCUSSION ........................ 5 Mixed Alkyl Thiophosphites and Red Fuming Nitric Acid ....... 5 Triethyl Trithiophosphite and Red Fuming Nitric Acid ....... 6 Propylene N. N.Dimethylamidophosphite and Red Fuming Nitric Acid ........................... 6 Mixed Ale1 Thiophosphites. Triethyl Trithiophoephite. and Propylene N. N.Dimethylamidophosphite with White Fuming Nitric Acid ........................... 7 Discussion of Results at Subatmospheric Pressures ......... 8 CONCLUDING REMARKS .........................10 APPENDIX-LITERATURESURIXY ....................13 Introduction ........................... 13 Historical review ........................ 13 Nomenclature ........................:. 13 Classification ......................... 14 Phosphines ............................ 14 General review