This Article Appeared in a Journal Published by Elsevier. the Attached
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded for Five Nuclear Genes 243 (KIAA1239, MYH6, RIPK4, RAG1, SH3PX3), and Four Mitochondrial Genes (12S, 16S, 244 COX1 and CYTB)
bioRxiv preprint doi: https://doi.org/10.1101/247304; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 How the Central American Seaway and 3 an ancient northern passage affected 4 flatfish diversification 5 6 Lisa Byrne1, François Chapleau1, and Stéphane Aris-Brosou*,1,2 7 8 1Department of Biology, University of Ottawa, Ottawa, ON, CANADA 9 2Department of Mathematics & Statistics, University of Ottawa, Ottawa, ON, CANADA 10 11 *Corresponding author: E-mail: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/247304; this version posted March 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 13 Abstract 14 While the natural history of flatfish has been debated for decades, the mode of 15 diversification of this biologically and economically important group has never been 16 elucidated. To address this question, we assembled the largest molecular data set to date, 17 covering > 300 species (out of ca. 800 extant), from 13 of the 14 known families over 18 nine genes, and employed relaxed molecular clocks to uncover their patterns of 19 diversification. As the fossil record of flatfish is contentious, we used sister species 20 distributed on both sides of the American continent to calibrate clock models based on 21 the closure of the Central American Seaway (CAS), and on their current species range. -
5. the Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and Other Vertebrates
Rendiconti della Società Paleontologica Italiana, 4, 2014, pp. 37-63 Excursion guidebook CBEP 2014-EPPC 2014-EAVP 2014-Taphos 2014 Conferences The Bolca Fossil-Lagerstätten: A window into the Eocene World (editors C.A. Papazzoni, L. Giusberti, G. Carnevale, G. Roghi, D. Bassi & R. Zorzin) 5. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates [ CARNEVALE, } F. BANNIKOV, [ MARRAMÀ, ^ C. TYLER & ? ZORZIN G. Carnevale, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; [email protected] A.F. Bannikov, Borisyak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, Moscow 117997, Russia; [email protected] G. Marramà, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35 I-10125 Torino, Italy; [email protected] J.C. Tyler, National Museum of Natural History, Smithsonian Institution (MRC-159), Washington, D.C. 20560 USA; [email protected] R. Zorzin, Sezione di Geologia e Paleontologia, Museo Civico di Storia Naturale di Verona, Lungadige Porta Vittoria 9, I-37129 Verona, Italy; [email protected] INTRODUCTION ][` ~[~ `[ =5} =!+~ [=5~5 Ceratoichthys pinnatiformis5 #] ~}==5[ ~== }}=OP[~` [ "O**""P "}[~* "+5$!+? 5`=5` ~]!5`5 =5=[~5_ O"!P#! [=~=55~5 `#~! ![[[~= O"]!#P5`` `5} 37 G. Carnevale, A.F. Bannikov, G. Marramà, J.C. Tyler & R. Zorzin FIG. 1_Ceratoichthys pinnatiformis~=5"!Q5=` 5. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates `== `]5"`5`" O*!P[~ `= =5<=[ ~#_5` [#5!="[ [~OQ5=5""="P5 ` [~`}= =5^^+55 ]"5++"5"5* *5 [=5` _5 [==5 *5]5[=[[5* [5=~[` +~++5~5=!5 ["5#+?5?5[=~[+" `[+=\`` 5`55`_= [~===5[=[5 ```_`5 [~5+~++5 [}5` `=5} 5= [~5O# "~++[=[+ P5`5 ~[O#P #"5[+~` [=Q5 5" QRQ5$5 ][5**~= [`OQ= RP`=5[` `+5=+5`=` +5 _O# P5+5 O? ]P _ #`[5[=~ [+#+?5` !5+`}==~ `5``= "!=Q5 "`O? ]P+5 _5`~[ =`5= G. -
Ambush Predator’ Guild – Are There Developmental Rules Underlying Body Shape Evolution in Ray-Finned Fishes? Erin E Maxwell1* and Laura AB Wilson2
Maxwell and Wilson BMC Evolutionary Biology 2013, 13:265 http://www.biomedcentral.com/1471-2148/13/265 RESEARCH ARTICLE Open Access Regionalization of the axial skeleton in the ‘ambush predator’ guild – are there developmental rules underlying body shape evolution in ray-finned fishes? Erin E Maxwell1* and Laura AB Wilson2 Abstract Background: A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts. Results: We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae. -
MATT FRIEDMAN [email protected]
MATT FRIEDMAN [email protected] Lecturer in Palaeobiology, Deparment of Earth Sciences Tutor in Earth Sciences, St. Hugh’s College University of Oxford and Research Associate Department of Vertebrate Paleontology American Museum of Natural History EDUCATION 2003-2009 Committee on Evolutionary Ph.D., Evolutionary Biology Biology University of Chicago Chicago, Illinois 2003-2005 Committee on Evolutionary S.M., Evolutionary Biology Biology University of Chicago Chicago, Illinois 2002-2003 Department of Zoology and M.Phil., Zoology University Museum of Zoology University of Cambridge Thesis Title: “New elements of the Late Cambridge, UK Devonian lungfish Soederberghia groenlandica (Sarcopterygii: Dipnoi) 1998-2002 Department of Earth and B.S., Geological Sciences (Bio-geology) Environmental Sciences University of Rochester Rochester, NY EMPLOYMENT/INSTITUTIONAL AFFILIATIONS 2010-present Department of Paleontology Research Associate American Museum of Natural History New York, NY 2009-present Department of Earth Sciences Lecturer in Palaeobiology University of Oxford Oxford, UK 2009-present St. Hugh’s College Tutor in Earth Sciences Oxford, UK M. Friedman: curriculum vitae EMPLOYMENT/TEACHING EXPERIENCE 2012-present Department of Earth Sciences Course developer and instructor: Vertebrate University of Oxford Palaeobiology Oxford, UK 2011-present Department of Earth Sciences Course developer and instructor: Evolution University of Oxford Oxford, UK Course co-developer and instructor: Fossil Records 2010 Department of Ecology and Guest lecturer: -
Conference Book
8th International Symposium on Fish Endocrinology Gothenburg, Sweden 8ISFE June 28th to July 2nd 2016 CONFERENCE BOOK 8th International Symposium on Fish Endocrinology Gothenburg, Sweden June 28th – July 2nd 2016 We thank our generous sponsors International Society for Fish Endocrinology (ISFE) The mission of the newly formed ISFE is to promote the study of hormones and hormone actions in fishes (includ- ing hagfish, lampreys, cartilaginous fishes, lobed-finned fishes and ray-finned fishes). This includes topics in areas such as growth, adaptation, reproduction, stress, immun- ity, behaviour and endocrine disruption. ISFE will foster all studies aiming at elucidating basic mechanisms of hor- mone action in any fish model. The ISFE will promote re- search in conventional models and favor the emergence of new model species for both basic and applied research. The ISFE website isfendo.com will provide a platform for communication between members of the community. Through ISFE meetings and participation in meetings of sister societies, it will facilitate exchange of ideas and collaborations among scientists worldwide. The 8ISFE meeting in Gothenburg is the first major meeting organized by the society. In particular, the Society wants to encourage and foster career development of junior members, and for the current 8ISFE meeting, the Society has provited travel grants to many junior participants. As such support is derived from member fees, all fish endocrinologists are encouraged to join ISFE. Welcome to Gothenburg On behalf of the International Society for Fish Endocrinology (ISFE), we are pleased to welcome you to Gothenburg for the 8th International Symposium on Fish Endocrinology (8ISFE). The 8ISFE gathers around 230 scientists from 27 countries for a meeting with 5 selected plenary lectures, 14 oral sessions with a total of 84 oral presentations, as well as 2 poster sessions with over 110 posters. -
The Bolca Lagerstätten: Shallow Marine Life in the Eocene
Downloaded from http://jgs.lyellcollection.org/ by guest on September 27, 2021 Review focus Journal of the Geological Society Published online May 8, 2018 https://doi.org/10.1144/jgs2017-164 | Vol. 175 | 2018 | pp. 569–579 The Bolca Lagerstätten: shallow marine life in the Eocene Matt Friedman1* & Giorgio Carnevale2 1 Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA 2 Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy M.F., 0000-0002-0114-7384 * Correspondence: [email protected] Abstract: The Eocene limestones around the Italian village of Bolca occur in a series of distinct localities providing a unique snapshot of marine life in the early Cenozoic. Famous for its fishes, the localities of Bolca also yield diverse invertebrate faunas and a rich, but relatively understudied flora. Most fossils from Bolca derive from the Pesciara and Monte Postale sites, which bear similar fossils but are characterized by slightly different taphonomic and environmental profiles. Although not precisely contemporaneous, the age of these principal localities is well constrained to a narrow interval within the Ypresian Stage, c. 50– 49 Ma. This places Bolca at a critical time in the evolutionary assembly of modern marine fish diversity and of reef communities more generally. Received 22 December 2017; revised 7 March 2018; accepted 8 March 2018 The rich fossil sites near Bolca, Italy provide a picture of life in a contains remains of crocodiles, turtles, snakes and plants. The warm, shallow marine setting during the early Eocene, roughly lignites of Vegroni yield a variety of plants. -
The Bolca Lagerstätten: Shallow Marine Life in the Eocene
Downloaded from http://jgs.lyellcollection.org/ by guest on September 29, 2021 Review focus Journal of the Geological Society Published online May 8, 2018 https://doi.org/10.1144/jgs2017-164 | Vol. 175 | 2018 | pp. 569–579 The Bolca Lagerstätten: shallow marine life in the Eocene Matt Friedman1* & Giorgio Carnevale2 1 Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA 2 Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy M.F., 0000-0002-0114-7384 * Correspondence: [email protected] Abstract: The Eocene limestones around the Italian village of Bolca occur in a series of distinct localities providing a unique snapshot of marine life in the early Cenozoic. Famous for its fishes, the localities of Bolca also yield diverse invertebrate faunas and a rich, but relatively understudied flora. Most fossils from Bolca derive from the Pesciara and Monte Postale sites, which bear similar fossils but are characterized by slightly different taphonomic and environmental profiles. Although not precisely contemporaneous, the age of these principal localities is well constrained to a narrow interval within the Ypresian Stage, c. 50– 49 Ma. This places Bolca at a critical time in the evolutionary assembly of modern marine fish diversity and of reef communities more generally. Received 22 December 2017; revised 7 March 2018; accepted 8 March 2018 The rich fossil sites near Bolca, Italy provide a picture of life in a contains remains of crocodiles, turtles, snakes and plants. The warm, shallow marine setting during the early Eocene, roughly lignites of Vegroni yield a variety of plants. -
Anatomy and Evolution of the Pectoral Filaments of Threadfins (Polynemidae)
www.nature.com/scientificreports OPEN Anatomy and evolution of the pectoral flaments of threadfns (Polynemidae) Paulo Presti1*, G. David Johnson2 & Aléssio Datovo1 The most remarkable anatomical specialization of threadfns (Percomorphacea: Polynemidae) is the division of their pectoral fn into an upper, unmodifed fn and a lower portion with rays highly modifed into specialized flaments. Such flaments are usually elongate, free from interradial membrane, and move independently from the unmodifed fn to explore the environment. The evolution of the pectoral flaments involved several morphological modifcations herein detailed for the frst time. The posterior articular facet of the coracoid greatly expands anteroventrally during development. Similar expansions occur in pectoral radials 3 and 4, with the former usually acquiring indentations with the surrounding bones and losing association with both rays and flaments. Whereas most percomorphs typically have four or fve muscles serving the pectoral fn, adult polynemids have up to 11 independent divisions in the intrinsic pectoral musculature. The main adductor and abductor muscles masses of the pectoral system are completely divided into two muscle segments, each independently serving the pectoral-fn rays (dorsally) and the pectoral flaments (ventrally). Based on the innervation pattern and the discovery of terminal buds in the external surface of the flaments, we demonstrate for the frst time that the pectoral flaments of threadfns have both tactile and gustatory functions. Polynemids are easily identifable as a natural group based on their external morphology, particularly their dis- tinct pectoral fn divided into a dorsal part, with 12–19 sof rays united by an interradial membrane, and a ventral portion with around 3–16 isolated rays that are usually elongated, forming flaments with tactile functions1,2. -
The Tree of Life and a New Classification of Bony Fishes
The Tree of Life and a New Classification of Bony Fishes April 18, 2013 · Tree of Life Ricardo Betancur-R.1, Richard E. Broughton2, Edward O. Wiley3, Kent Carpenter4, J. Andrés López5, Chenhong Li 6, Nancy I. Holcroft7, Dahiana Arcila1, Millicent Sanciangco4, James C Cureton II2, Feifei Zhang2, Thaddaeus Buser, Matthew A. Campbell5, Jesus A Ballesteros1, Adela Roa-Varon8, Stuart Willis9, W. Calvin Borden10, Thaine Rowley11, Paulette C. Reneau12, Daniel J. Hough2, Guoqing Lu13, Terry Grande10, Gloria Arratia3, Guillermo Ortí1 1 The George Washington University, 2 University of Oklahoma, 3 University of Kansas, 4 Old Dominion University, 5 University of Alaska Fairbanks, 6 Shanghai Ocean University, 7 Johnson County Community College, 8 George Washington University, 9 University of Nebraska-Lincoln, 10 Loyola University Chicago, 11 University of Nebraska- Omaha, 12 Florida A&M University, 13 University of Nebraska at Omaha Betancur-R. R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton II JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G. The Tree of Life and a New Classification of Bony Fishes. PLOS Currents Tree of Life. 2013 Apr 18 [last modified: 2013 Apr 23]. Edition 1. doi: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288. Abstract The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. -
POLYNEMIDAE Threadfins by R.M
click for previous page 3090 Bony Fishes POLYNEMIDAE Threadfins by R.M. Feltes iagnostic characters: Perciform fishes with oblong, somewhat compressed body (size from 17 to D200 cm). Eye covered by adipose tissue, highly variable in size. Snout conical, protruding anterior past mouth. Mouth large, subterminal, extending posterior to eye. Supramaxillae absent. Cardiform teeth on premaxillae, palatines, and ectopterygoids. Presence of teeth on vomer, basibranchials and gill arches variable. Branchiostegal rays 7. Two widely separated dorsal fins; second or third spines of first dorsal fin longest; margins of second dorsal fin and anal fin variously concave, anterior rays longest; first dorsal fin with VII or VIII spines, if VIII, then first spine very small; second dorsal fin with I spine and 11 to 18 soft rays; anal-fin insertion ventral to a point 1/4 to 1/3 caudad on second dorsal-fin base, anal fin with II or III spines (if III, then first spine very small) and 9 to 30 soft rays; caudal fin deeply forked with pointed lobes, principal caudal-fin rays 17; 3 to 16 separate articulated pectoral filaments inferior to 12 to 19 rays of pectoral fins; pelvic fins abdominal, inserted just behind pectoral-fin bases, with I spine and 5 branched rays. Body, most of head, and much of fins covered with finely ctenoid scales; lateral line continuous, and extending to caudal-fin margin; lateral-line scales 42 to 109; scale rows above lateral line 4 to 9; scale rows below lateral line 7 to 15. Nasal bones anterior with lateral aspects surrounding anterior of nasal capsules. -
Characteristics of Fish Communities in Coastal Waters of North-Western Australia, Including the Biology of the Threadfin Species
Characteristics of fish communities in coastal waters of north-western Australia, including the biology of the threadfin species Eleutheronema tetradactylum and Polydactylus macrochir This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2006 Submitted by Matthew Barrett Pember B.Sc. (Hons) Murdoch University, Western Australia I declare that this thesis is my own account of my research and contains as its main content, work which has not previously been submitted for a degree at any University ................................................................ Matthew Barrett Pember 2006 Joe Hunter and family with a feed of Blue Salmon – Broome, 1979 R. Garwood Abstract This study was aimed at determining the characteristics of the fish assemblages in nearshore coastal waters of the remote Canning region of tropical Western Australia and to obtain sound quantitative data on crucial aspects of the biology of the two threadfin species, which are commercially and recreationally important in those waters. The community studies focused on comparing the species compositions of the fish faunas found over bare sand and in mangroves and rock pools and on elucidating the factors that influence those compositions. The population studies concentrated on exploring the hermaphroditic characteristics, size and age structures, growth and stock status of the two species of Polynemidae. The arid Canning coast of north-western Australia, which lies between Cape Leveuque (16°21 ′ S, 123°02 ′ E) and Cape Keraudren (19°57 ′ S, 119°46 ′ E), does not contain rivers and thus also estuaries, which traditionally provide alternative fish nursery areas to those found in nearshore waters. It is also subjected to some of the largest tides in the world. -
20-Bearez 754N.Indd
First record of Polydactylus mullani (Polynemidae) from the Sultanate of Oman by Philippe BÉAREZ* (1), Sophie KERNEUR (2) & Hiroyuki MOTOMURA (3) RÉSUMÉ. - Premier signalement de Polydactylus mullani (Polyne- midae) à Oman. Le barbure à tâche noire d’Arabie, Polydactylus mullani, est une espèce endémique de la mer d’Arabie, vivant le long des côtes indiennes et pakistanaises. Sa présence est ici signalée pour la pre- mière fois à l’extrémité sud-ouest du golfe d’Oman. Il se pourrait que P. mullani ait été confondue jusqu’à présent avec Polydacty- lus sextarius, dans la mesure où, jusqu’en 2001, la première espè- ce n’était considérée que comme une sous-espèce de la seconde. Cependant, P. mullani n’est cité dans aucun des travaux traitant des poissons d’Oman postérieurs à 2001. Le nombre d’espèces de Polynemidae connues en Oman s’élève donc aujourd’hui à trois : Eleutheronema tetradactylum, P. mullani et P. plebeius. Key words. - Polynemidae - Polydactylus mullani - Arabian Sea - Gulf of Oman - New record. The ichthyofauna of the Sultanate of Oman has been subject to several important studies for these last twenty years (Al-Abdessal- aam, 1995; Randall, 1995; Manilo and Bogorodsky, 2003; Al-Jufai- Figure 1. - Map of the study area showing the location of Sur, Oman (cre- li et al., 2010). Nevertheless, much work still remains to be done on ated with www.aquarius.geomar.de). fish taxonomy and ecology in this area, especially in the Persian Gulf and Gulf of Oman, as demonstrated by recent new descrip- stani coasts. The present report documents a small extension of the tions (e.g., Carvalho and Randall, 2003; Baldwin, 2005; Iwatsuki range of this species into the southwest part of the Gulf of Oman and Carpenter, 2009) or new records (e.g., Béarez et al., 2008; (Fig.