Early Permian Vertebrates from the Cutler Formation of the Placerville Area Colorado

Total Page:16

File Type:pdf, Size:1020Kb

Early Permian Vertebrates from the Cutler Formation of the Placerville Area Colorado Early Permian Vertebrates from the Cutler Formation of the Placerville Area Colorado GEOLOGICAL SURVEY PROFESSIONAL PAPER 503-C Early Permian Vertebrates from the Cutler Formation of the Placerville Area Colorado By GEORGE EDWARD LEWIS and PETER PAUL VAUGHN With a section on Footprints from the Cutler Formation By DONALD BAIRD CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 503-C The typical Cutler Formation of Colorado correlates with classic European and with other North American Lower Permian continental formations UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 50 cents (paper cover) CONTENTS Page Page Abstract __________________________________________ _ C1 Vertebrate fauna-Continued Introduction ______________________________________ _ 1 Systematic d escriptions-Contin ued Early work on the Cutler Formation _____________ _ 1 Ophiacodon sp ___________ - ___ - __ - - _ -- - _ --- -- C26 Present study _________________________________ _ 1 Cutleria wilmarthi Lewis and Vaughn, n. gen., Acknowledgments ______________________________ _ 2 27 Geography ________________________________________ _ n. SP------------------------------------ 2 Mycterosaurus smithae Lewis and Vaughn, n. sp_ 34 Location and extent of area _____________________ _ 2 Age and correlation of the fauna----------------- 7 ---­ 39 Surface features and areas of outcrop _____________ _ 2 Comparison with Early Permian faunas of North Geology __________________________________________ _ America ____________________________________ _ 2 39 Stratigraphy and structure of the Placerville area __ _ 2 Comparison with European Early Permian faunas __ 42 Cutler Formation of Colorado ___________________ _ 3 Paleogeographic considerations ______________________ _ 43 Cutler Formation of nearby States _______________ _ 5 Selected references ____ ---- _________ ---_------------- 44 Vertebrate fauna ___________________________________ _ 5 Footprints from the Cutler Formation, by Donald Baird_ 47 Systematic descriptions _________________________ _ 7 Abstract ______________________________________ _ 47 Eryops cf. E. grand is (Marsh, 1878) __________ _ 7 Systematic descriptions _______________ ----------- 47 Platyhystrix rugosus (Case, 1910) ____________ _ 8 Limnopus cutlerensis Baird, n. sp _____________ _ 47 New (but unnamed) genus and species _______ _ 12 Diadectes sanmiguelensis Lewis and Vaughn, n. Genus indet., cf. Brachydactylopus Toepelman and Rodeck, 1936 ________________________ _ SP-------------------------------------- 13 47 Limnoscelops longijemur Lewis and Vaughn, n. Prospectus and problems _________ - __ ------------ 49 gen., n. sp ______________________________ _ 21 References cited _________________ - ___ -_--------- 49 ILLUSTRATIONS Page FIGURE 1. Index map of Colorado __________________________________________________________________________ -_ C3 2. Diagrammatic section showing geologic formations of the Placerville area ___________________ ------------- 4 3. Profile and section, Cutler Formation, Placerville area_________________________________________________ 6 4. Fossil vertebrate locality map, Placerville area________________________________________________________ 9 5-6. Photographs: 5. Platyhistrix rugosus, natural mould__________________________________________________________ 10 6. Platyhistrix rugosus, latex cast______________________________________________________________ 11 7-13. Drawings: 7. Diadectes sanmiguelensis, n. sp., type skull____________________________________________________ 15 8. Diadectes sanmiguelensis, n. sp., type lower jaw and lower left front leg ______________ -_-_--------- 16 9. Limnoscelopslongifemur, n. gen., n. sp., elements of type and referred specimen____________________ 22 10. Ophiacodon sp., vertebrae___________________________________________________________________ 27 11. Cutleria wilmarthi, n. gen., n. sp., type_______________________________________________________ 28 12. Cutleria wilmarthi, n. gen., n. sp., type skull and referred snout_ ______________________________ --_ 29 13. Mycterosaurus smithae n. sp., type___________________________________________________________ 35 14. Sketches of footprints of Limnopus vagus, Limnopus cutlerensis, and korynichniid cf. Brachydactylopus ____ -- _ 48 TABLE Page TABLE 1. Fossil localities ________________________________________________________ ------------------------------- C7 In CONTRIBUTIONS TO PALEONTOLOGY EARLY PERMIAN VERTEBRATES FROM THE CUTLER FORMATION OF THE PLACERVILLE AREA, COLORADO By GEORGE EDWARD LEWIS and PETER PAUL VAUGHN 1 ABSTRACT southwestern Colorado; he called them the "Jura­ Fossil vertebrates in the Cutler Formation of Colorado were Trias * * * Red Beds." This name was in vogue for first found in the Placerville area in the upper 885 feet of the some four more decades: for examples, Scott (1907, p. 1,100 feet of outcrops. Total thickness of the Cutler in this 647) wrote of "The Permian and Triassic members of area is estimated at 4,000 feet. Two genera of labyrinthodont the Red Beds", and Tomlinson (1916, p. 245), of "Red amphibians, four genera of cotylosaurian reptiles, and three genera of pelycosaurian reptiles-in all, nine distinct genera­ Beds ti1ne" in his work on "The origin of the 'Red were found. Beds'." In this assemblage only one animal, Platyhystrim rugosus, can Although correlative rocks in nearby States have be confidently assigned to an already known species.· The species yielded fossil vertebrates for many years, the Cutler of Eryops is probably close to, if not identical to, E. grandis. Formation of Colorado had been thought to be un­ The species of Ophiacodon may be either 0. navajovicus or 0. mirus. A seymouriid represents an unknown genus and species. fossiliferous before the present study. A captorhinomorph is indeterminate below suborder. Two new genera, a limnoscelid and a sphenacodontid, and two new species, PRESENT STUDY one of Diadectes and one of Myctf:rrosaurus, are described and V. R. Wilmarth and R. C. Vickers of the U.S. Geolog­ named. The age of this fauna is Early Permian, comparable to that of ical Survey (Wilmarth and Hawley, unpub. data) were part of the Dunkard- Group and part of the Wichita Group the first, to our knowledge, to discover fossils in the (Moran, Putnam, and Admiral Formations) of the United States, Cutler Formation of Colorado. They collected a few and to that of the Autunian and lower Rotliegende of Europe. weathered-out fragments from two localities. After These American and European faunas lived in remarkably study showed that the fragments had bony structure, G. similar environments. Early Permian continental sedimenta­ tion in North America and Europe was only rarely and partially E. Lewis went to the localities with Wilmarth and col­ interrupted by marine transgressions that were of short duration. lected two partial skeletons in 1952. Further search at that time yielded more specimens of fossil vertebrates INTRODUCTION and plants. Still more fossil vertebrates were found EARLY WORK ON THE CUTLER FORMATION in 1953, when A. S. Romer, S. J. Olsen, and A. D. Lewis Most of the Permian and Triassic rocks of the Four of the Museum of Compartive Zoology at Harvard Col­ Corners and nearby areas are red sandstone, siltstone, lege joined G. E. Lewis of the U.S. Geological Survey and shale that were laid down in continental or shallow­ for several weeks of collecting. Preparation of the col­ marine environments. These rocks were known gen­ lections was begun at Harvard, where G. E. Lewis and erally as the Red Beds for about 60 years after their A. S. Romer made preliminary determinations of the first geologic description. Jules Marcou (1856, p. 140~ vertebrate fauna insofar as was possible at that stage of 153, map) worked in the areas of outcrop of the later preparation. Their preliminary report, cited in Bush named Abo, Chinle, and Wingat~ Formations in 1853; and others (1959, p. 313), was necessarily inconclusive. he correlated them with the New Red Sandstone of A. S. Romer turned over his share of this joint study Europe, and included them in his Gypsum Formation of to P. P. Vaughn in 1958, when the latter completed Triassic to Jurassic age. W. H. Holmes ( 1877 a, p. 266, preparation of the specimens and joined G. E. Lewis in 267; 1877b; 1878, p. 194) was the outstanding pioneer the preparation of the present report. Although no explorer who rna pped and studied the areas of outcrop other work has been done on the paleontology of the of the later named Cutler and Dolores Formations of Cutler Formation of Colorado, Bush and others (1959; 1 University of California, Los Angeles. Cl - C2 CONTRIBUTIONS TO PALEONTOLOGY 1960) have published the first two of five planned re­ Miguel and San Juan Mountains jut high above the ports on the areal geology of the Placerville and four plateau's surface; streams that have their sources in adjoining 71h-minute quadrangles which they have these mountains have cut canyons a thousand or more mapped geologically; the published scale of these quad­ feet deep into the plateau. Less than 20 miles from rangles is 1 : 24,000. the Placerville area, where the channel of the San Miguel River has cut down to about 7,000 feet above ACKNOWLEDGMENTS mean sea level, there are 4 peaks whose altitudes exceed We gratefully acknowledge
Recommended publications
  • Geology and Mineral Resources of Sierra Nacimiento and Vicinity, New
    iv Contents ABSTRACT 7 TERTIARY-QUATERNARY 47 INTRODUCTION 7 QUATERNARY 48 LOCATION 7 Bandelier Tuff 48 PHYSIOGRAPHY 9 Surficial deposits 48 PREVIOUS WORK 9 PALEOTECTONIC SETTING 48 ROCKS AND FORMATIONS 9 REGIONAL TECTONIC SETTING 49 PRECAMBRIAN 9 STRUCTURE 49 Northern Nacimiento area 9 NACIMIENTO UPLIFT 49 Southern Nacimiento area 15 Nacimiento fault 51 CAMBRIAN-ORDOVICIAN (?) 20 Pajarito fault 52 MISSISSIPPIAN 20 Synthetic reverse faults 52 Arroyo Peñasco Formation 20 Eastward-trending faults 53 Log Springs Formation 21 Trail Creek fault 53 PENNSYLVANIAN 21 Antithetic reverse faults 53 Osha Canyon Formation 23 Normal faults 53 Sandia Formation 23 Folds 54 Madera Formation 23 SAN JUAN BASIN 55 Paleotectonic interpretation 25 En echelon folds 55 PERMIAN 25 Northeast-trending faults 55 Abo Formation 25 Synclinal bend 56 Yeso Formation 27 Northerly trending normal faults 56 Glorieta Sandstone 30 Antithetic reverse faults 56 Bernal Formation 30 GALLINA-ARCHULETA ARCH 56 TRIASSIC 30 CHAMA BASIN 57 Chinle Formation 30 RIΟ GRANDE RIFT 57 JURASSIC 34 JEMEZ VOLCANIC FIELD 59 Entrada Sandstone 34 TECTONIC EVOLUTION 60 Todilto Formation 34 MINERAL AND ENERGY RESOURCES 63 Morrison Formation 34 COPPER 63 Depositional environments 37 Mineralization 63 CRETACEOUS 37 Origin 67 Dakota Formation 37 AGGREGATE 69 Mancos Shale 39 TRAVERTINE 70 Mesaverde Group 40 GYPSUM 70 Lewis Shale 41 COAL 70 Pictured Cliffs Sandstone 41 ΗUMΑTE 70 Fruitland Formation and Kirtland Shale URANIUM 70 undivided 42 GEOTHERMAL ENERGY 72 TERTIARY 42 OIL AND GAS 72 Ojo Alamo Sandstone
    [Show full text]
  • 1 Running Head: SEQUENCE STRATIGRAPHY of TEXAS
    Running Head: SEQUENCE STRATIGRAPHY OF TEXAS MIDDLE PERMIAN PLATFORM CARBONATES OUTCROP-BASED CHARACTERiZATION OF LEONARDIAN PLATFORM CARBONATE IN WEST TEXAS: IMPLICATIONS FOR SEQUENCE STRATIGRAPHIC STYLES IN TRANSITIONAL ICEHOUSE-GREENHOUSE SETTINGS Stephen C. Ruppel, W. Bruce Ward1, and Eduardo E. Ariza Bureau of Economic Geology The University of Texas at Austin 1 Current address: Earthworks LLC, P.O. Box 178, Newtown, CT 06470-0178 1 ABSTRACT The Sierra Diablo Mountains of West Texas contain world class exposures of lower and middle Permian platform carbonates. As such these outcrops offer key insights into the products of carbonate deposition in the transitional icehouse/greenhouse setting of the early-mid Permian that are available in few other places in the world. They also afford an excellent basis for examing how styles of facies and sequence development vary between platform tops and platform margins. Using outcrop data and observations from over 2 mi (3 km) of continuous exposure, we collected detailed data on the facies composition and architecture of high frequency (cycle-scale) and intermediate frequency (high frequency sequence scale) successions within the Leonardian. We used these data to define facies stacking patterns along depositional dip across the platform in both low and high accommodation settings and to document how these patterns vary systematically between and within sequences . These data not only provide a basis for interpreting similar Leonardian platform successions from less well constrained outcrop and subsurface data sets but also point out some important caveats that should be considered serve as an important model for understanding depositional processes during the is part of the Permian worldwide.
    [Show full text]
  • BOA2.1 Caecilian Biology and Natural History.Key
    The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia
    [Show full text]
  • Theuniversityoftexasbul
    THEUNIVERSITYOFTEXASBULLETIN No. 3027: July 15, 1930 THE GEOLOGY OF STONEWALL COUNTY, TEXAS By L. T. PATTON Bureau of Economic Geology J. A. Udden, Director £. H. Sellards, Associate Director PUBLISHED BY TOE UNIVERSITY OF TEXAS AUSTIN Publications of The University of Texas Publications Committees GENERAL: Frederic Duncalf Mrs.F. A. Perry J. F.Dobie C. H. Slover J. L.Henderson G. W. Stumberg H. J.Muller A.P. Winston official E. J. Mathews Killis Campbell C. F. Arrowood C.D.Simmons E. C.H.Bantel Bryant Smith The University publishes bulletins four times a month, so numbered that the first two digits of the number show the year of issue and the last two the position in the yearly series. (For example, No. 3001is the first bulletin of the year 1930.) These bulletins comprise the official publica- tions of the University, publications on humanistic and scientific subjects, and bulletins issued from time to time by various divisions of the University. The following bureaus and divisions distribute bulletins issued by them; communications concerning bulletins in these fields should be addressed to TheUniversity of Texas,Austin,Texas,care of the bureau or division issuing the bulletin: Bureau of Business Research, Bureau of Economic Geology, Bureau of Engineering Research, Interscholastic League Bureau, andDivision of Extension. Communications concerning all other publications of the University should be addressed to University Publications,TheUniversity of Texas,Austin. Additionalcopies of this publicationmaybeprocuredfrom the Bureau of Economic Geology, The University of Texas, Austin, Texas THE UNIVERSITY OFTEXAS PREM, AUSTUI THEUNIVERSITYOF TEXASBULLETIN No. 3027: July 15, 1930 THE GEOLOGY OF STONEWALL COUNTY, TEXAS By L.
    [Show full text]
  • The Lower Permian Abo Formation in the Fra Cristobal and Caballo Mountains, Sierra County, New Mexico Spencer G
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/63 The Lower Permian Abo Formation in the Fra Cristobal and Caballo Mountains, Sierra County, New Mexico Spencer G. Lucas, Karl Krainer, Dan S. Chaney, William A. DiMichele, Sebastian Voigt, David S. Berman, and Amy C. Henrici, 2012, pp. 345-376 in: Geology of the Warm Springs Region, Lucas, Spencer G.; McLemore, Virginia T.; Lueth, Virgil W.; Spielmann, Justin A.; Krainer, Karl, New Mexico Geological Society 63rd Annual Fall Field Conference Guidebook, 580 p. This is one of many related papers that were included in the 2012 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448028; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1IMAG, Univ Montpellier, CNRS, Montpellier, France 2CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France June 11, 2021 Abstract Given a phylogenetic tree of extinct and extant taxa with fossils where the only temporal infor- mation stands in the fossil ages, we devise a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account the possibility that the taxa or the clade considered may diversify before going extinct, whilst previous methods just rely on the fossil recovery rate to estimate confidence intervals. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian, or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that a biological crisis occurred in the late Kungurian/early Roadian.
    [Show full text]
  • The Ear in Mammal-Like Reptiles and Early Mammals
    Acta Palaeontologica Polonica Vol. 28, No. 1-2 pp, 147-158 Warszawa, 1983 Second Symposium on Mesozoic T erre stial Ecosystems, Jadwisin 1981 KENNETH A. KERMACK and FRANCES MUSSETT THE EAR IN MAMMAL-LIKE REPTILES AND EARLY MAMMALS KERMACK, K . A. a nd MUSS ETT, F.: The ear in mammal-like r eptiles an d early mammals. Acta Palaeont. P olonica , 28, 1-2, 147-158, 1983. Th e early m embers of the Theropsida lacked a tympanic membrane. In the later theropslds, the Therapsid a, a tym p an ic membrane develop ed from thc skin on the lateral side of th e lower jaw. The tympanum is not homologous In the Therapsida and ' t he Sauropslda. The ther apsid ea r w as a poor receiver of airborne sound, both In hi gh frequency r esp onse and In the r ange of frequencies encompassed. With the radiation of the Sauropsida in the Triassic the large therapsids became extinct, the small therap si ds evolv ed In to the mammal s and became nocturnal. High frequency hearin g w as essen tial for the nocturn al mode of life; quadrate and arttcutar became diss ociated from the jaw hinge to become the m ammali an au di tory ossi cles . I n the Theria the cochlea became coil ed. The spiral cochlea could n ot have existed until there w as a middle ear w ith the n ec essary h ig h f re q uency r esp onse. This m ay n ot have been until the Cretace ous.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Morphology and Evolutionary Significance of the Atlas−Axis Complex in Varanopid Synapsids
    Morphology and evolutionary significance of the atlas−axis complex in varanopid synapsids NICOLÁS E. CAMPIONE and ROBERT R. REISZ Campione, N.E. and Reisz, R.R. 2011. Morphology and evolutionary significance of the atlas−axis complex in varanopid synapsids. Acta Palaeontologica Polonica 56 (4): 739–748. The atlas−axis complex has been described in few Palaeozoic taxa, with little effort being placed on examining variation of this structure within a small clade. Most varanopids, members of a clade of gracile synapsid predators, have well pre− served atlas−axes permitting detailed descriptions and examination of morphological variation. This study indicates that the size of the transverse processes on the axis and the shape of the axial neural spine vary among members of this clade. In particular, the small mycterosaurine varanopids possess small transverse processes that point posteroventrally, and the axial spine is dorsoventrally short, with a flattened dorsal margin in lateral view. The larger varanodontine varanopids have large transverse processes with a broad base, and a much taller axial spine with a rounded dorsal margin in lateral view. Based on outgroup comparisons, the morphology exhibited by the transverse processes is interpreted as derived in varanodontines, whereas the morphology of the axial spine is derived in mycterosaurines. The axial spine anatomy of Middle Permian South African varanopids is reviewed and our interpretation is consistent with the hypothesis that at least two varanopid taxa are present in South Africa, a region overwhelmingly dominated by therapsid synapsids and parareptiles. Key words: Synapsida, Varanopidae, Mycterosaurinae, Varanodontinae, atlas−axis complex, axial skeleton, Middle Permian, South Africa.
    [Show full text]
  • The Intramandibular Joint in Girella: a Mechanism for Increased Force Production?
    JOURNAL OF MORPHOLOGY 271:271–279 (2010) The Intramandibular Joint in Girella: A Mechanism for Increased Force Production? Lara A. Ferry-Graham1,3* and Nicolai Konow2 1California State University, Moss Landing Marine Labs, Moss Landing, California 95039 2Brown University, Ecology and Evolutionary Biology, Providence, Box G-B204, Rhode Island 02912 3CEAZA, Centro de Estudios Avanzados de Zonas Aridas (Center for Advanced Studies in Arid Zones), Universidad Cato´lica del Norte. Box 599, Benavente 980, La Serena, Chile ABSTRACT Intramandibular joints (IMJ) are novel Bellwood, 2002). This is likely due to the forces articulations between bony elements of the lower jaw required for obtaining food items many of which are that have evolved independently in multiple fish line- either tough or firmly attached to the substrate ages and are typically associated with biting herbivory. (Alfaro et al., 2001). In several reef fish lineages, This novel joint is hypothesized to function by augment- aspects of the feeding apparatus have been radically ing oral jaw expansion during mouth opening, which would increase contact between the tooth-bearing area altered for force production, either via hypertro- of the jaws and algal substratum during feeding, result- phied or via structurally altered musculature (Friel ing in more effective food removal from the substrate. and Wainwright, 1997), modified muscle attach- Currently, it is not understood if increased flexibility in ments (Vial and Ojeda, 1990; Konow and Bellwood, a double-jointed mandible also results in increased force 2005), or increased suturing and/or reinforcement generation during herbivorous biting and/or scraping. of bony elements and dentition (Tedman, 1980; Therefore, we selected the herbivore Girella laevifrons Streelman et al., 2002; Bellwood et al., 2003).
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]