Title The crystal chemistry of elsmoreite from the Hemerdon (Drakelands) mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R Authors Mills, SJ; Christy, AG; Rumsey, MS; Spratt, J Date Submitted 2017-06-12 1 The crystal chemistry of elsmoreite from the Hemerdon (Drakelands) mine, UK: 2 hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R. 3 4 Stuart J. Mills1*, Andrew G. Christy2, Mike S. Rumsey3 & John Spratt4 5 6 1Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 7 2Department of Applied Mathematics, Research School of Physics and Engineering, Australian 8 National University, Canberra, ACT 2601, Australia 9 3Earth and Planetary Mineralogy Division, Department of Earth Sciences, Natural History 10 Museum, Cromwell Road, London, SW7 5BD, UK 11 4Core Research Laboratories, Facilities Department, Natural History Museum, Cromwell Road, 12 London, SW7 5BD, UK 13 *
[email protected] 14 15 16 17 18 19 20 21 22 23 This is a 'preproof' accepted article for Mineralogical Magazine. This version may be subject to change during the production process. 10.1180/minmag.2016.080.058 24 Abstract 25 A crystallographic and chemical study of two ‘elsmoreite’ samples (previously described as 26 ‘ferritungstite’) from the Hemerdon mine (now known as the Drakelands mine), Devon, United 27 Kingdom has shown them to be two different polytypes of hydrokenoelsmoreite. 28 Hydrokenoelsmoreite-3C (HKE-3C) crystallizes in space group Fd-3m, with the unit cell 29 parameter a = 10.3065(3) Å. Hydrokenoelsmoreite-6R (HKE-6R) crystallises in space group R-3, 30 with the unit cell parameters a = 7.2882(2) Å and c = 35.7056(14) Å.