THE CRYSTAL STRUCTURE of a MICROLITE-GROUP MINERAL with a FORMULA NEAR Nacata2o6f from the MORRO REDONDO MINE, CORONEL MURTA, MINAS GERAIS, BRAZIL

Total Page:16

File Type:pdf, Size:1020Kb

THE CRYSTAL STRUCTURE of a MICROLITE-GROUP MINERAL with a FORMULA NEAR Nacata2o6f from the MORRO REDONDO MINE, CORONEL MURTA, MINAS GERAIS, BRAZIL 615 The Canadian Mineralogist Vol. 49, pp. 615-621 (2011) DOI : 10.3749/canmin.49.2.615 THE CRYSTAL STRUCTURE OF A MICROLITE-GROUP MINERAL WITH A FORMULA NEAR NaCaTa2O6F FROM THE MORRO REDONDO MINE, CORONEL MURTA, MINAS GERAIS, BRAZIL MARCELO B. ANDRADE§ Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trab. São-carlense 400, 13560-970 São Carlos, SP, Brazil DANIEL ATENCIO Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 São Paulo, SP, Brazil LUIZ A.D. MENEZES FILHO Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil JAVIER ELLENA Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trab. São-carlense 400, 13560-970 São Carlos, SP, Brazil ABSTRACT We present electron-microprobe and single-crystal X-ray-diffraction data for a microlite-group mineral with a formula near NaCaTa2O6F from the Morro Redondo mine, Coronel Murta, Minas Gerais, Brazil. On the basis of these data, the formula A B X Y is (Na0.88Ca0.88Pb0.020.22)S2.00 (Ta1.70Nb0.14Si0.12As0.04)S2.00 [(O5.75(OH)0.25]S6.00 (F0.730.27)S1.00. According to the new nomenclature for the pyrochlore-supergroup minerals, it is intermediate between fluornatromicrolite and “fluorcalciomicrolite”. The crystal structure, Fd3m, a = 10.4396(12) Å, has been refined to an R1 value of 0.0258 (wR2 = 0.0715) for 107 reflections (MoKa radiation). There is a scarcity of crystal-chemical data for pyrochlore-supergroup minerals in the literature. A compilation of these data is presented here. Keywords: microlite group, “fluorcalciomicrolite”, fluornatromicrolite, crystal-structure refinement, solid solution. SOMMAIRE Nous présentons ici des données acquises avec une microsonde électronique et par diffraction X sur monocristal pour caractériser un minéral du groupe du microlite ayant une formule voisine de NaCaTa2O6F, provenant de la mine Morro A Redondo, Coronel Murta, Minas Gerais, Brésil. Compte tenu de ces données, la formule en serait (Na0.88Ca0.88Pb0.020.22)S2.00 B X Y (Ta1.70Nb0.14Si0.12As0.04)S2.00 [(O5.75(OH)0.25]S6.00 (F0.730.27)S1.00. Selon la nouvelle nomenclature des minéraux du super- groupe du pyrochlore, il s’agit d’une composition intermédiaire entre fluornatromicrolite et “fluorcalciomicrolite”. La structure du cristal, Fd3m, a = 10.4396(12) Å, a été affinée jusqu’à un résidu R1 égal à 0.0258 (wR2 = 0.0715) en utilisant 107 réflexions (rayonnement MoKa). Il y a une pénurie de données cristallochimiques pour les minéraux du supergroupe du pyrochlore dans la littérature. Nous présentons ici une compilation des données disponibles. (Traduit par la Rédaction) Mots-clés: groupe du microlite, “fluorcalciomicrolite”, fluornatromicrolite, affinement de la structure, solution solide. § E-mail address: [email protected] Downloaded from https://pubs.geoscienceworld.org/canmin/article-pdf/49/2/615/3457778/615_vol_49-2_art_14.pdf by USP Universidade de Sao Paulo user on 27 September 2018 616 thE CANADIAN MINERALOGIst INTRODUCTION granitic pegmatites (Lumpkin & Ewing 1992, Ercit et al. 1994, Zurevinski & Mitchell 2004). The pyrochlore Pyrochlore-supergroup minerals have been studied supergroup includes minerals of the pyrochlore, micro- in detail because of their interesting magnetic properties lite, roméite, betafite and elsmoreite groups. and advanced technological applications. The “geomet- There is a scarcity of crystal-chemical data in the rical frustration” concept is related to the incapacity of literature. There are crystal-structure determinations magnetic systems to satisfy simultaneously all the inter- published for only nine pyrochlore-supergroup minerals actions (ferromagnetic and antiferromagnetic) between (Table 1). In this paper, we present results of electron- spins in order to minimize the total energy. The study microprobe and single-crystal diffraction studies of a of frustration among spins in the corner-sharing tetra- microlite-group mineral from the Morro Redondo mine. hedra of pyrochlore-like structures of synthetic origin has contributed to a better understanding of new exotic OCCURRENCE low-temperature states, magnetic ordering (Wang et al. 2006, Normand 2009), and superconductivity, such as in The Morro Redondo pegmatite is located in the RbOs2O6 (Brühwiler et al. 2004). Titanate (CaZrTi2O7) northern part of the Oriental Pegmatite Province of and zirconate (Gd2Zr2O7, Er2Zr2O7) pyrochlores play Minas Gerais (that extends 320 km east to west and 720 an important role in the development of long-term km north to south, reaching the southern part of Bahia geological depositories of high-level radioactive waste and the northwestern part of Espírito Santo state. It such as plutonium (Laverov et al. 2010). Minerals of the was formed during the Brasiliano orogeny (also known pyrochlore supergroup have a formula A2–mB2X6–wY1–n as Araçuaí orogeny), dated from 600 to 450 million (m = 0 to 2, w = 0 to 0.7, n = 0 to 1), in which the A site years ago. The pegmatite is located inside the Coronel is normally occupied by Na, Ca, Ag, Mn, Sr, Ba, Fe2+, Murta pegmatite field, which comprises tens of gem- Pb2+, Sn2+, Sb3+, Bi3+, Y, Ce (and other REE), Sc, U, bearing granitic pegmatites that have been extensively Th, , or H2O. The B site typically accommodates Ta, mined for the production of gem-grade elbaite (green, Nb, Ti, Sb5+, W, and also V5+, Sn4+, Zr, Hf, Fe3+, Mg, blue, red and multi-colored), gem-grade beryl (mostly Al, Si. The X site typically is occupied by O, but can “morganite”), ornamental quartz and perthitic K-feld- include subordinate OH and F. The Y site is occupied spar (raw material for ceramic and glass industries). by OH, F, O, , H2O, K, Cs, Rb. These minerals are Morro Redondo is the largest pegmatite found commonly found in carbonatites, alkaline rocks and in this field: it has a length of 400 meters and an TABLE 1. REFINED CRYSTAL-STRUCTURE DATA: CELL PARAMETER a AND OCCUPANCY OF THE SITES A, B, X AND Y _______________________________________________________________________________________________________________ a (Å) ABX Y Ref. _______________________________________________________________________________________________________________ fluorcalciomicrolite* – 10.4396(12) Na0.88Ca0.88Pb0.02G0.22 Ta1.70Nb0.14Si0.12 O5.75 F0.73G0.27 (1) fluornatromicrolite As0.04 (OH)0.25 intermediate member 3+ hydroxykenomicrolite 10.515(2) G1.09Sb 0.57Bi0.01Na0.31 Ta1.88Nb0.12 O5.69 (OH,F)0.69 (2) (from Vasin–Myl’k Mtn.) Pb0.02 (OH,F)0.31 Cs0.31 3+ hydroxykenomicrolite 10.496(1) G0.93Na0.45Sb 0.39Bi0.02 Ta1.95Nb0.05 O5.78 (OH,F)0.55 (2) (from Tanco, Manitoba) Pb0.14Ca0.06 (OH,F)0.22 Cs0.22K0.01 kenoplumbomicrolite* 10.571(1) Pb1.30Ca0.29G0.30Na0.08 Ta0.82Nb0.62Si0.23 O6 G0.52(OH)0.25 (3) 4+ 3+ U 0.03 Sn0.15Ti0.07Fe 0.10Al0.01 O0.23 fluorcalciopyrochlore* 10.4200(7) Ca0.73Sr0.07Mn0.04Pb0.01 Nb1.72Ta0.02Ti0.16 O5.03 F0.62(OH)0.38 (4) 3+ G0.69Na0.37K0.02Ce0.03 Si0.07Fe 0.03 (OH)0.97 4+ La0.01Nd0.01U 0.02 hydroxycalciopyrochlore* 10.3738(7) Ca0.72Sr0.08Mn0.04Pb0.01 Nb1.48Ta0.04Ti0.16 O4.63 (OH)0.54F0.46 (4) 3+ G0.84Na0.18K0.05Ce0.04 Si0.24Fe 0.08 (OH)1.37 4+ La0.01Nd0.01U 0.02 hydropyrochlore 10.604(1) (H2O)0.99G0.95Sr0.05Ca0.01 Nb1.80Ti0.20 O4.06(OH)0.94 (H2O)0.86K0.14 (5) 5+ fluornatroroméite* 10.265(2) Na1.00Ca0.80Mn0.01G0.19 Sb 2 O5.69(OH)0.31 F0.89(OH)0.05G0.06 (6) 3+ 5+ 3+ hydroxycalcioroméite 10.277(1) Ca1.04Mn0.07Sb 0.65 Sb 0.99Ti0.76Fe 0.19 O6 (OH)0.91G0.09 (7) G0.23Na0.01 Al0.06 3+ 5+ hydroxycalcioroméite 10.311(7) Ca0.91Mn0.06G0.37Sb 0.27 Sb 1.28Ti0.72 O6 OH (8) 3+ Fe 0.19Al0.10Na0.10 4+ oxycalciobetafite* 10.2637(13) Ca1.29U 0.50Na0.18REE0.03 Ti1.09Nb0.79Ta0.01 O6 O0.98F0.02 (9) 3+ Zr0.14Fe 0.04 3+ hydrokenoelsmoreite 10.352(1) G1.33(H2O)0.59Ca0.06Na0.02 W1.46Fe 0.54 O4.70(OH)1.30 (H2O)0.80K0.20 (10) _______________________________________________________________________________________________________________ * Need to be completely described in order to be approved as valid species. References: (1) this work, (2) Ercit et al. (1993), (3) Bindi et al. (2006), (4) Bonazzi et al. (2006), (5) Ercit et al. (1994), (6) Matsubara et al. (1996), (7) Rouse et al. (1998), (8) Zubkova et al. (2000), (9) Cámara et al. (2004), (10) Ercit & Robinson (1994). Downloaded from https://pubs.geoscienceworld.org/canmin/article-pdf/49/2/615/3457778/615_vol_49-2_art_14.pdf by USP Universidade de Sao Paulo user on 27 September 2018 thE stRUCTURE OF A MICROLITE-GROUP MINERAL, MINAS GERAIS 617 average thickness of 30 meters, has a N–S strike and Since then, all attempts at finding more mineralized dips 70°W. It shows a well-developed zoning, with cavities in the deeper parts of the pegmatite were unsuc- a wall zone about 3 m thick, constituted of perthitic cessful. Two subsequent prospecting rotary-drilling feldspar and quartz showing a graphic texture, with campaigns failed to find more mineralized areas, and smaller amounts of dark muscovite plates, schorl and confirmed that the pegmatite has an atypical cross- almandine. The intermediate zone is thick (about 10 section of a parallelogram measuring 30 3 40 meters. m) and is constituted mostly of centimetric microcline After the mining operations were discontinued in and quartz grains, lighter brown centimetric muscovite 1997, intermittent and risky digging has been conducted plates, schorl, albite, montebrasite and beryl crystals. by individual miners, who take the risk of digging The inner zone consists of a discontinuous quartz core, into the safety pillars. One of these miners found the that in some areas can be up to 10 m thick, surrounded microlite crystal that is the object of this study in the by albite-dominant replacement bodies with decimetric vicinity of the cavity of the mined-out tourmaline zone, crystals of schorl.
Recommended publications
  • Thirteenth List of New Mineral Names. 1 by L. J. SPENCER, M.A., Sc.D., F.R.S
    624 Thirteenth list of new mineral names. 1 By L. J. SPENCER, M.A., Sc.D., F.R.S. Keeper of Minerals in the British Museum of Natural History. [Communicated June 7, 1934.] Alkanasul. J. Westman, 1931. Bol. Minero Soc. Nac. Mineria, Santiago de Chile, vol. 43 (a5o 47), p. 433; Zeits. Prakt. Geol., 1932, vol. 40, p. 110. Hydrous basic sulphate of aluminium, potassium, and sodium, K2SO4.Na~SO4.2AI2(SO4)a.6AI(OH)3.6H~O , yellowish-white to bluish-grey, massive, occurring in large amount near Salamanca, Chile. Named from the chemical composition. [Evidently identical with natroalunite.] [M.A. 5-200.] Alleghanyite. C. S. Ross and P. F. Kerr, 1932. Amer. Min., vol. 17, p. 7. Manganese silicate, 5MnO.2Si02, as pink orthorhombic grains, considered to be distinct from tephroite [2MnO.Si02]. Named from the locality, Alleghany County, North Carolina. [M.A. 5-50.] Alumo-chalcosiderite. A. Jahn and E. Gruner, 1933. Mitt. Vogtliind. Gesell. Naturfor., vol. 1, no. 8, p. 19 (Alumo-Chalkosi- derit). A variety of chalcosiderite containing some alumina (Al~O a 10.45 %) replacing ferric oxide. [M.A. 5-391.] Amarillite. H. Ungemach, 1933. Compt. Rend. Acad. Sci. Paris, vol. 197, p. 1133; Bull. Soc. Fran~. Min., [1934], vol. 56 (for 1933), p. 303. Hydrated sulphate of sodium and ferric iron NaFe(SO4)2.6HzO, as yellow monoclinic crystals from Tierra Amarilla, Chile. Named from the locality. [M.A. 5-390.] 1 Previous lists of this series have been given every three years at the ends of vols. 11-22 (1897-1931) of this Magazine.
    [Show full text]
  • Geology of the Saint-Marcel Valley Metaophiolites (Northwestern Alps, Italy)
    Journal of Maps ISSN: (Print) 1744-5647 (Online) Journal homepage: http://www.tandfonline.com/loi/tjom20 Geology of the Saint-Marcel valley metaophiolites (Northwestern Alps, Italy) Paola Tartarotti, Silvana Martin, Bruno Monopoli, Luca Benciolini, Alessio Schiavo, Riccardo Campana & Irene Vigni To cite this article: Paola Tartarotti, Silvana Martin, Bruno Monopoli, Luca Benciolini, Alessio Schiavo, Riccardo Campana & Irene Vigni (2017) Geology of the Saint-Marcel valley metaophiolites (Northwestern Alps, Italy), Journal of Maps, 13:2, 707-717, DOI: 10.1080/17445647.2017.1355853 To link to this article: http://dx.doi.org/10.1080/17445647.2017.1355853 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps View supplementary material Published online: 31 Jul 2017. Submit your article to this journal Article views: 24 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjom20 Download by: [Università degli Studi di Milano] Date: 08 August 2017, At: 01:46 JOURNAL OF MAPS, 2017 VOL. 13, NO. 2, 707–717 https://doi.org/10.1080/17445647.2017.1355853 SCIENCE Geology of the Saint-Marcel valley metaophiolites (Northwestern Alps, Italy) Paola Tartarottia, Silvana Martinb, Bruno Monopolic, Luca Benciolinid, Alessio Schiavoc, Riccardo Campanae and Irene Vignic aDipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Milan, Italy; bDipartimento di
    [Show full text]
  • Maine the Way Life Should Be. Mineral Collecting
    MAINE The Way Life Should Be. Mineral Collecting The Maine Publicity Bureau, Inc. Quarries You May Visit # 1 Topsham: The Fisher Quarry is located off Route 24 in Topsham. This locale is best known for crystals of topaz, green microlite, and dark blue tourmaline. It has also produced other minerals such as beryl, uraninite and cassiterite. #2 Machiasport: At an area known as Jasper Beach there is an abundance of vari-colored jasper and/or rhyolite specimens. Located on Route 92. #3 Buckfield: The Bennett Quarry, located between Buckfield and Paris Hill, has produced fine specimens of blue and pink beryl including some gem material. It is also known for crystals of quartz, green tourmaline and rare minerals. #4 Casco: The Chute Prospect is best known for vesuvianite. It is located east of Route 302-35. Crystals of “cinnamon” garnet, quartz and pyrite are also found here. #5 Georgetown: The Consolidated Feldspar Quarry has produced excel­ lent specimens of gem citrine quartz, tourmaline and spodumene. Rose Quartz, cookeite and garnet are also found. #6 Paris: Mount Mica is world famous for tourmaline and this gem material was discovered here in 1821. This is one of the most likely places for a collector to find tourmaline. Mount Mica has produced a host of other minerals including beryl, cookeite, black tourmaline, colum- bite, lepidolite and garnet. (Currently being mined) #7 Greenwood: The Tamminen Quarry and the Harvard Quarry, both located near Route 219, have produced an interesting variety of miner­ als. The Tamminen Quarry is best known for pseudo-cubic quartz crystals, montmorillonite, spodumene and garnet.
    [Show full text]
  • Microlites and Associated Oxide Minerals from Naipa Pegmatites – Alto Ligonha – Zam- Bezia - Mozambique
    MICROLITES AND ASSOCIATED OXIDE MINERALS FROM NAIPA PEGMATITES – ALTO LIGONHA – ZAM- BEZIA - MOZAMBIQUE C. Leal Gomes, C.1 Dias, P.A.1 Guimarães, F.2 Castro, P.2 1 Universidade do Minho – CIG-R – Escola de Ciências – Gualtar - 4710-057 Braga, Portugal 2 LNEG – Rua da Amieira – 4465 S. Mamede de Infesta , Portugal Keywords: Alto Ligonha pegmatite district, LCT- pegmatite, U-Pb-Ba-Bi-Sb-microlite Naipa granitic pegmatites of LCT or a nuclear quartz+cleavelandite unit type, located in Alto Ligonha Pegmatite with miarolitic pockets. Pegmatites seem District, Monapo-Mocuba belt, Zambezia to be genetically related to Pan-African Pegmatite Province (Mozambique), biotite-amphibolic granites (zircon hosted are mined for tantalum and gemstones in lepidolite was dated 482±10 MA - U/ (topaz, OH-herderite; tourmaline and Pb). In the Northern Sector of Naipa mine, beryl). They are structurally complex, the internal zones are better defi ned, while concentrically zoned, intruding chlorite in the Southern domain, at least four and amphibole phyllites and gneisses. stages of hydrothermal alteration mask Internal units include wall zone (Mn- the primary structures in the outer and almandine line-rock), several intermediate inner intermediate zones. Two dilatation zones (K feldspar, albite, muscovite, episodes produced pegmatite veinlets, well spodumene) and a quartz±lepidolite core expressed in the Southern Sector (Fig.1). Estudos Geológicos v. 19 (2), 2009 167 MICROLITES AND ASSOCIATED OXIDE MINERALS FROM NAIPA PEGMATITES – ALTO LIGONHA – ZAMBEZIA - MOZAMBIQUE
    [Show full text]
  • About Tungsten Mining Emerging Australian Tungsten Developer, Tungsten Mining NL Is an Australian Based Resources Company Listed on the Australian Securities Exchange
    Quarterly Report – September 2016 Highlights RC and Diamond drilling confirms shallow potential – During the quarter, the Company drilled 35 RC drillholes for 1,483m and a further 6 diamond drillholes for 234m, targeting shallow mineralisation at Mt Mulgine. Better results included 17 metres at 0.46% WO3 and 0.02% Mo from 2 metres at Mulgine Hill and 72 metres at 0.16% WO3 and 0.02% Mo from surface at Trench. Samples were collected from this program for mineralogical and metallurgical studies, aimed at determining the optimal processing route. Core sampling program delivers encouraging results - Encouraging results achieved from the initial phase of a historical core sampling program at the Mulgine Hill deposit at the Mt Mulgine Project. The reported results, including 8.6m at 0.24% WO3 and 4.9m at 0.18% WO3, highlight the potential to add to existing intersections plus to identify new zones of mineralisation from the historical Minefields and ANZECO drilling. The results of the core sampling program and Q3 drilling program described above will be utilised in development planning and a further update of the geological model and Mineral Resource estimate for Mulgine Hill. Historical diamond hole highlights Trench potential – A review of the Black Dog gold prospect within the Trench deposit has identified significant downhole and strike potential. BDD006 intersected 248m at 0.08% WO3, approximately 100-150m down-dip of the Bobby McGee pit. Mt Mulgine Strategic Development Plan - Tungsten Mining has developed a Strategic Development Plan for the Mt Mulgine Project directed towards the production of tungsten concentrate within 2 years.
    [Show full text]
  • EGU2016-11594, 2016 EGU General Assembly 2016 © Author(S) 2016
    Geophysical Research Abstracts Vol. 18, EGU2016-11594, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License. Isotope age of the rare metal pegmatite formation in the Kolmozero-Voron’ya greenstone belt (Kola region of the Fennoscandian shield): U-Pb (TIMS) microlite and tourmaline dating Nikolay Kudryashov, Ludmila Lyalina, Artem Mokrushin, Dmitry Zozulya, Nikolay Groshev, Ekaterina Steshenko, and Evgeniy Kunakkuzin Geological Institute of the KSC RAS, Apatity, Russian Federation ([email protected]) The Kolmozero-Voron’yagreenstone belt is located in the central suture zone, which separates the Murmansk block from the Central-Kola and the Keivy blocks. The belt is represented by volcano-sedimentary rocks of Archaean age of 2.9-2.5 Ga. Rare metal pegmatites (Li, Cs with accessory Nb, Ta, and Be) occur among amphibolite and gabbroid intrusions in the northwestern and southeastern parts of the belt. According to the Rb-Sr data, the age of pegmatites was considered to be 2.7 Ga. Until recently there was no generally accepted point of view on the origin of pegmatites. Now we have isotopic data for a range of rock complexes that could pretend to be parental granites for the rare metal pegmatites. These are granodiorites with the zircon age of 2733±Ma, and microcline and tourmaline granites, which Pb-Pb isochronal age on tourmaline from the tourmaline granite located near the deposit is estimated to be 2520±70 Ma. The pegmatite field of the Vasin Myl’k deposit with the lepidolite–albite– microcline–spodumene–pollucite association is located among amphibolites in the northwestern part of the belt.
    [Show full text]
  • Geochemical Alteration of Pyrochlore Group Minerals: Microlite Subgroup Gnrconv R. Luurpxrn Roonev C. Ewruc Ansrru.Cr
    AmericanMineralogist, Volume 77, pages l,79-188,1992 Geochemical alteration of pyrochlore group minerals: Microlite subgroup Gnrconv R. LuurpxrN Advanced Materials Program, Australian Nuclear Science and Technology Organisation, Private Mail Bag I, Menai, New South Wales 2234, Ans1nalla RooNev C. Ewruc Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. Ansrru.cr A qualitative picture of microlite stability is derived from known mineral assemblages and reactions in the simplified system Na-Ca-Mn-Ta-O-H. Results suggestthat microlite is stable under conditions of moderate to high 4*"* and aq^z*and low to moderate 4rnz*. Microlite is often replaced during the latter stagesof granitic pegmatite evolution by man- ganotantalite and fersmite or rynersonite, indicating increasingdq^z* ?fid 4Mn2*relative to a*.-. Primary (hydrothermal) alteration involves replacementof Na, F, and vacanciesby Ca and O, representedby the coupled substitutions ANaYF- ACaYOand AtrY! - ACaYO. Exchangereactions between microlite and fluid suggestconditions of relatively high pH, high aa,^z*,lowto moderate a.r, and low a".. during alteration by evolved pegmatite fluids at 350-550'C and 2-4 kbar. Secondary(weathering) alteration involves leaching ofNa, Ca, F, and O, representedby the coupled substitutions ANaYF - AEY!, ACaYO- AEYII and ACaxO - Alxfl. Up to 800/oof the A sites may be vacant, usually accompaniedby a comparablenumber of anion (X + Y) vacanciesand HrO molecules.Secondary alteration results from interaction with relatively acidic meteoric HrO at temperatures below 100 "C. In both types of alteration, the U content remains remarkably constant.Loss of radio- genic Pb due to long-term difftrsion overprints changesin Pb content associatedwith primary alteration in most samples.
    [Show full text]
  • The Metallurgy of Antimony
    Chemie der Erde 72 (2012) S4, 3–8 Contents lists available at SciVerse ScienceDirect Chemie der Erde journal homepage: www.elsevier.de/chemer The metallurgy of antimony Corby G. Anderson ∗ Kroll Institute for Extractive Metallurgy, George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, United States article info abstract Article history: Globally, the primary production of antimony is now isolated to a few countries and is dominated by Received 4 October 2011 China. As such it is currently deemed a critical and strategic material for modern society. The metallurgical Accepted 10 April 2012 principles utilized in antimony production are wide ranging. This paper will outline the mineral pro- cessing, pyrometallurgical, hydrometallurgical and electrometallurgical concepts used in the industrial Keywords: primary production of antimony. As well an overview of the occurrence, reserves, end uses, production, Antimony and quality will be provided. Stibnite © 2012 Elsevier GmbH. All rights reserved. Tetrahedrite Pyrometallurgy Hydrometallurgy Electrometallurgy Mineral processing Extractive metallurgy Production 1. Background bullets and armory. The start of mass production of automobiles gave a further boost to antimony, as it is a major constituent of Antimony is a silvery, white, brittle, crystalline solid that lead-acid batteries. The major use for antimony is now as a trioxide exhibits poor conductivity of electricity and heat. It has an atomic for flame-retardants. number of 51, an atomic weight of 122 and a density of 6.697 kg/m3 ◦ ◦ at 26 C. Antimony metal, also known as ‘regulus’, melts at 630 C 2. Occurrence and mineralogy and boils at 1380 ◦C.
    [Show full text]
  • Crystallization Processes and Solubility of Columbite-(Mn), Tantalite-(Mn), Microlite, Pyrochlore, Wodginite and Titanowodginite in Highly Fluxed Haplogranitic Melts
    Western University Scholarship@Western Scholarship@Western Electronic Thesis and Dissertation Repository 3-12-2018 10:30 AM Crystallization processes and solubility of columbite-(Mn), tantalite-(Mn), microlite, pyrochlore, wodginite and titanowodginite in highly fluxed haplogranitic melts Alysha G. McNeil The University of Western Ontario Supervisor Linnen, Robert L. The University of Western Ontario Co-Supervisor Flemming, Roberta L. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Alysha G. McNeil 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Earth Sciences Commons Recommended Citation McNeil, Alysha G., "Crystallization processes and solubility of columbite-(Mn), tantalite-(Mn), microlite, pyrochlore, wodginite and titanowodginite in highly fluxed haplogranitic melts" (2018). Electronic Thesis and Dissertation Repository. 5261. https://ir.lib.uwo.ca/etd/5261 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Niobium and tantalum are critical metals that are necessary for many modern technologies such as smartphones, computers, cars, etc. Ore minerals of niobium and tantalum are typically associated with pegmatites and include columbite, tantalite, wodginite, titanowodginite, microlite and pyrochlore. Solubility and crystallization mechanisms of columbite-(Mn) and tantalite-(Mn) have been extensively studied in haplogranitic melts, with little research into other ore minerals. A new method of synthesis has been developed enabling synthesis of columbite-(Mn), tantalite-(Mn), hafnon, zircon, and titanowodginite for use in experiments at temperatures ≤ 850 °C and 200 MPa, conditions attainable by cold seal pressure vessels.
    [Show full text]
  • November 2004 3/22/17, 111 PM
    November 2004 3/22/17, 111 PM Bulletin of the Mineralogical Society of Southern California Volume 74 Number 11 November 2004 The 801st Meeting of The Mineralogical Society of Southern California "Romancing the Stone: Adventures in Brazil" by Dr. Anthony Kampf Friday, November 12 at 7:30 p.m. Geology Department, E-Building, Room 220 Pasadena City College 1570 E. Colorado Blvd. Pasadena Inside this bulletin November 12th meeting Show Report: Thank you! Kid Rock Report Minutes of the October Meeting Report from the Nominating Committee Successful October Field Trip to Arizona Mineral Notes from Italy: The Praborna Mine Calendar of Events November 12th Meeting..... http://www.mineralsocal.org/bulletin/2004/2004_nov.htm Page 1 of 11 November 2004 3/22/17, 111 PM November 12th Meeting Dr. Tony Kampf will present "Romancing the Stone: Adventures in Brazil" at our November 12, 2004 meeting. If you think you've heard this talk, think again. Tony has led 11 tours to the gem and mineral deposits of Minas Gerais, Brazil, and always has something new up his sleve. We will be treated to the latest news out of the Brazilian gem mines by a foremost expert on gem-bearing pegmatite deposits. For those who want to see lots of Brazil, Tony will also show a video of his 1987 tour to Brazil after his talk. Dr. Kampf recieved a Ph.D. in mineralogy from the University of Chicago in 1976 http://www.mineralsocal.org/bulletin/2004/2004_nov.htm Page 2 of 11 November 2004 3/22/17, 111 PM and joined the staff of the Natural History Museum of Los Angeles Co.
    [Show full text]
  • Unusual Mineral Diversity in a Hydrothermal Vein-Type Deposit: the Clara Mine, Sw Germany, As a Type Example
    427 The Canadian Mineralogist Vol. 57, pp. 427-456 (2019) DOI: 10.3749/canmin.1900003 UNUSUAL MINERAL DIVERSITY IN A HYDROTHERMAL VEIN-TYPE DEPOSIT: THE CLARA MINE, SW GERMANY, AS A TYPE EXAMPLE § GREGOR MARKL Universitat¨ Tubingen,¨ Fachbereich Geowissenschaften, Wilhelmstraße 56, D-72074 Tubingen,¨ Germany MAXIMILIAN F. KEIM Technische Universitat¨ Munchen,¨ Munich School of Engineering, Lichtenbergstraße 4a, 85748 Garching, Germany RICHARD BAYERL Ludwigstrasse 8, 70176 Stuttgart, Germany ABSTRACT The Clara baryte-fluorite-(Ag-Cu) mine exploits a polyphase, mainly Jurassic to Cretaceous, hydrothermal unconformity vein-type deposit in the Schwarzwald, SW Germany. It is the type locality for 13 minerals, and more than 400 different mineral species have been described from this occurrence, making it one of the top five localities for mineral diversity on Earth. The unusual mineral diversity is mainly related to the large number and diversity of secondary, supergene, and low- temperature hydrothermal phases formed from nine different primary ore-gangue associations observed over the last 40 years; these are: chert/quartz-hematite-pyrite-ferberite-scheelite with secondary W-bearing phases; fluorite-arsenide-selenide-uraninite- pyrite with secondary selenides and U-bearing phases (arsenates, oxides, vanadates, sulfates, and others); fluorite-sellaite with secondary Sr- and Mg-bearing phases; baryte-tennantite/tetrahedrite ss-chalcopyrite with secondary Cu arsenates, carbonates, and sulfates; baryte-tennantite/tetrahedrite ss-polybasite/pearceite-chalcopyrite, occasionally accompanied by Ag6Bi6Pb-bearing sulfides with secondary Sb oxides, Cu arsenates, carbonates, and sulfates; baryte-chalcopyrite with secondary Fe- and Cu- phosphates; baryte-pyrite-marcasite-chalcopyrite with secondary Fe- and Cu-sulfates; quartz-galena-gersdorffite-matildite with secondary Pb-, Bi-, Co-, and Ni-bearing phases; and siderite-dolomite-calcite-gypsum/anhydrite-quartz associations.
    [Show full text]
  • Mineralogy and Geochemical Evolution of the Little Three
    American Mineralogist, Volume 71, pages 406427, 1986 Mineralogy and geochemicalevolution of the Little Three pegmatite-aplite layered intrusive, Ramona,California L. A. SrnnN,t G. E. BnowN, Jn., D. K. Brno, R. H. J*rNs2 Department of Geology, Stanford University, Stanford, California 94305 E. E. Foono Branch of Central Mineral Resources,U.S. Geological Survey, Denver, Colorado 80225 J. E. Snrcr,nv ResearchDepartment, Gemological Institute of America, 1660 Stewart Street,Santa Monica, California 90404 L. B. Sp.c,uLDrNG" JR. P.O. Box 807, Ramona,California 92065 AssrRAcr Severallayered pegmatite-aplite intrusives exposedat the Little Three mine, Ramona, California, U.S.A., display closelyassociated fine-grained to giant-texturedmineral assem- blageswhich are believed to have co-evolved from a hydrous aluminosilicate residual melt with an exsolved supercriticalvapor phase.The asymmetrically zoned intrusive known as the Little Three main dike consists of a basal sodic aplite with overlying quartz-albite- perthite pegmatite and quartz-perthite graphic pegmatite. Muscovite, spessartine,and schorl are subordinate but stable phasesdistributed through both the aplitic footwall and peg- matitic hanging wall. Although the bulk composition of the intrusive lies near the haplo- granite minimum, centrally located pockets concentratethe rarer alkalis (Li, Rb, Cs) and metals (Mn, Nb, Ta, Bi, Ti) of the system, and commonly host a giant-textured suite of minerals including quartz, alkali feldspars, muscovite or F-rich lepidolite, moderately F-rich topaz, and Mn-rich elbaite. Less commonly, pockets contain apatite, microlite- uranmicrolite, and stibio-bismuto-columbite-tantalite.Several ofthe largerand more richly mineralized pockets of the intrusive, which yield particularly high concentrationsof F, B, and Li within the pocket-mineral assemblages,display a marked internal mineral segre- gation and major alkali partitioning which is curiously inconsistent with the overall alkali partitioning of the system.
    [Show full text]