Towards the Management of Sydow, a Smut Pathogen of Napier Grass
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes
Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes For B.Sc. Botany 1st By Dr. Meenu Gupta Assistant Professor Botany J.D.W.C. Patna 1. Habit and Habitat of Ustilago: Ustilago, the largest genus of the family Ustilaginaceae is represented by more than 400 cosmopolitan species. Butler and Bisby (1958) reported 108 species from India. All species are parasitic and infect the floral parts of wheat, barley, oat, maize, sugarcane, Bajra, rye and wild grasses. The name Ustilago has been derived from a Latin word ustus meaning ‘burnt’ because the members of the genus produce black, sooty powdery mass of spores on the host plant parts imparting them a ‘burnt’ appearance. This black dusty mass of spores resembles soot or smut, therefore, commonly it is also known as smut fungus. The fungus is of much economic importance, because it causes heavy loss to various economically important plants. This genus is very common in U.P., Bihar, Punjab and Madhya Pradesh. 2. Symptoms of Ustilago: The symptoms appear only on the floral parts. The floral spikes turn black and remain filled with the smut spores. Ustilago produces two main types of symptoms: 1. The blackish powder of spores is easily blown away by the wind, leaving a bare stalk of inflorescence (Fig. 1 B). Species showing such symptoms are called loose smuts e.g., (a) Loose smut of oat caused by U. avenae (b) Loose smut of barley caused by U. nuda (c) Loose smut of wheat caused by U. nuda var. tritici. (Fig. 13A, B). (d) Loose smut of doob grass caused by U. -
Biotechnology Volume 13 Number 51, 17 December, 2014 ISSN 1684-5315
African Journal of Biotechnology Volume 13 Number 51, 17 December, 2014 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N. -
Axpcoords & Parallel Axparafit: Statistical Co-Phylogenetic Analyses
BMC Bioinformatics BioMed Central Software Open Access AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa Alexandros Stamatakis*1,2, Alexander F Auch3, Jan Meier-Kolthoff3 and Markus Göker4 Address: 1École Polytechnique Fédérale de Lausanne, School of Computer & Communication Sciences, Laboratory for Computational Biology and Bioinformatics STATION 14, CH-1015 Lausanne, Switzerland, 2Swiss Institute of Bioinformatics, 3Center for Bioinformatics (ZBIT), Sand 14, Tübingen, University of Tübingen, Germany and 4Organismic Botany/Mycology, Auf der Morgenstelle 1, Tübingen, University of Tübingen, Germany Email: Alexandros Stamatakis* - [email protected]; Alexander F Auch - [email protected]; Jan Meier- Kolthoff - [email protected]; Markus Göker - [email protected] * Corresponding author Published: 22 October 2007 Received: 26 June 2007 Accepted: 22 October 2007 BMC Bioinformatics 2007, 8:405 doi:10.1186/1471-2105-8-405 This article is available from: http://www.biomedcentral.com/1471-2105/8/405 © 2007 Stamatakis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Current tools for Co-phylogenetic analyses are not able to cope with the continuous accumulation of phylogenetic data. The sophisticated statistical test for host-parasite co-phylogenetic analyses implemented in Parafit does not allow it to handle large datasets in reasonable times. The Parafit and DistPCoA programs are the by far most compute-intensive components of the Parafit analysis pipeline. -
Biology and Histopathology of Ustilago Filiformis (= U. Longissima), a Causal Agent of Leaf Stripe Smut of Glyceria Multiflora
JOURNAL OF PLANT PROTECTION RESEARCH Vol. 55, No. 4 (2015) DOI: 10.1515/jppr-2015-0059 Biology and histopathology of Ustilago filiformis (=U. longissima), a causal agent of leaf stripe smut of Glyceria multiflora Analía Perelló1*, Marta Mónica Astiz Gasso2, Marcelo Lovisolo3 1 Technologist Institute Santa Catalina (IFSC), 1836 Llavallol, Faculty of Agricultural and Forestry Sciences, National University of La Plata, Street 60 and 119, Buenos Aires, Argentina 2 Faculty of Agricultural and Forestry Sciences, National University of La Plata, Street 60 and 119, Buenos Aires, Argentina 3 Chair of Botany, Faculty of Agricultural Sciences, National University of Lomas de Zamora, 1832 Lomas de Zamora, Buenos Aires, Argentina Received: March 16, 2015 Accepted: November 12, 2015 Abstract: The aims of this study were to clarify the reproductive biology of the Ustilago filiformis Schrank, as causal agent of the stripe smut of Glyceria multiflora, determine the infection process of the pathogen and analyze the histological changes associated host- Glyceria any fungus attack. Moreover, the life cycle of the fungus was elucidated for the first time. Both teliospores and basidiospores were found to be equally efficient in producing the infection in Glyceria plants after the plants had been inoculated. These results constitute an important contribution for the understanding of the epidemiology of the disease. Key words: basidiospores, infection cycle, stripe smut, teliospores Introduction dia, the USSR (Siberia); Europe – Austria, Bulgaria, Czech, Smut fungi are Basidiomycota fungi belonging to the Denmark, Finland, France, Germany, Hungary, Italy, Po- order Ustilaginales. They received this name due to the land, Romania, Spain, Sweden, Switzerland, the United very conspicuous symptoms of black teliospore masses Kingdom, the former Yugoslavia; and North and South resembling smut, which they often produce on the host America. -
Taxonomy and Distribution of Microbotryum Pinguiculae, a Species of Smut Fungi New for the Carpathians
Polish Botanical Journal 50(2): 153–158, 2005 TAXONOMY AND DISTRIBUTION OF MICROBOTRYUM PINGUICULAE, A SPECIES OF SMUT FUNGI NEW FOR THE CARPATHIANS MARCIN PIĄTEK, WIESŁAW MUŁENKO, JOLANTA PIĄTEK & KAMILA BACIGÁLOVÁ Abstract. Microbotryum pinguiculae (Rostr.) Vánky on Pinguicula alpina L., a rarely collected smut fungus belonging to the genus Microbotryales in the class Urediniomycetes, is reported for the fi rst time from the Carpathians as well as from Poland and Slovakia. The species is described and illustrated by a drawing of infected plants and SEM micrographs of spores. Microbotryum pinguiculae is a very rare fungus parasitizing various species of Pinguicula (Lentibulariaceae). It is known from Europe, Asia and North America, where it shows a true arctic-alpine type of distribution. Taxonomically its generic position is not completely stabilized and needs further studies employing modern techniques (e.g., molecular, ultrastructural). Key words: Microbotryum, Pinguicula alpina, smut fungi, Microbotryales, Urediniomycetes, Carpathians, Poland, Slovakia Marcin Piątek, Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland; e-mail: [email protected] Wiesław Mułenko, Department of General Botany, Maria Curie-Skłodowska University, Akademicka 19, PL-20-033 Lublin, Poland; e-mail: [email protected] Jolanta Piątek, Department of Phycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland; e-mail: [email protected] Kamila Bacigálová, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845-23 Bratislava, Slovak Republic; e-mail: [email protected] INTRODUCTION In the current circumscription, the smut genus species occurs in other populations of Pinguicula Microbotryum Lév. -
Corn Smuts, RPD No
report on RPD No. 203 PLANT February 1990 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CORN SMUTS Corn smuts occur throughout the world. Common corn smut, caused by the fungus Ustilago zeae (synonym U. maydis), and head smut, caused by the fungus Sporisorium holci-sorghi (synonyms Sphacelotheca reiliana, Sorosporium reilianum and Sporisorium reilianum), are spectacular in appearance and easily distinguished. Common smut occurs worldwide wherever corn (maize) is grown, by presence of large conspicuous galls or replacement of grain kernels with smut sori. The quality of the remaining yield is often reduced by the presence of black smut spores on the surface of healthy kernels. COMMON SMUT Common smut is well known to all Illinois growers. The fungus attacks only corn–field corn (dent and flint), Indian or ornamental corn, popcorn, and sweet corn–and the closely related teosinte (Zea mays subsp. mexicana) but is most destructive to sweet corn. The smut is most prevalent on young, actively growing plants that have Figure 1. Infection of common corn smut been injured by detasseling in seed fields, hail, blowing soil or and on the ear. Smut galls are covered by the particles, insects, “buggy-whipping”, and by cultivation or spraying silvery white membrane. equipment. Corn smut differs from other cereal smuts in that any part of the plant above ground may be attacked, from the seedling stage to maturity. Losses from common smut are highly variable and rather difficult to measure, ranging from a trace up to 10 percent or more in localized areas. In rare cases, the loss in a particular field of sweet corn may approach 100 percent. -
CONTROL of SMUT in WHEAT and OTHER SMALL GRAINS by H
Bulletin No. 116 June, 1931 Montana State College, Extension Service, J. C. Taylor, Director, Cooperative Extension Work in Agriculture and Home Economics. Montana State College and Uni~ed States Department of Agriculture, co-operating. Distributed in furtherance of the Acts of Congress ~ay 8 and June 30, 1.914. ~ CONTROL OF SMUT IN WHEAT AND OTHER SMALL GRAINS By H. E. Morris, Extension Plant Pathologist Waldo Kidder, Extension Agronomist Smuts cost the farmers of Montana many thousands of dollars each year. In 1930, stinking smut of wheat alone caused a loss of approximately $750;000, due to decreased yields and to a lower price per bushel. This loss and also that due to the smuts {..:Fig. 1. Smutted and normal heads of wheat. The head at the left ,is a typi:cal head affected with covered or stinking smut, The next, head IS a he'althy head. The two heads on the right show two stages of the loose smut in wheat. (-Courtesy,D. S. Dept. of Agr.) . ,( 2 MONTANA EXTENSION SERVICE of oats, barley and rye may be largely prevented by adopting the methods of seed treatment described in this bulletin. What Is Smut Smut is produced by a small parasitic plant, mould-like in appearance, belonging to a group called fungi (Fig. 2). Smut lives most of its life within and at the expense of the wheat plant. The smut powder, so familiar to all, is composed of myriads of spores which correspond to seeds in the higher plants. In the process of harvesting and threshing, these spores are dis· I Fig'. -
ANNOTATED CHECKLIST and KEY for SMUT FUNGI in COLOMBIA* Lista Anotada Y Clave Para Los Ustilaginales De Colombia
Caldasia 24(1) 2002: 103-119 ANNOTATED CHECKLIST AND KEY FOR SMUT FUNGI IN COLOMBIA* Lista anotada y clave para los ustilaginales de Colombia M. PIEPENBRING Botanisches Institut, J. W. Goethe-Universität, 60054 Frankfurt, Germany. FAX: 0049 69 79824822. [email protected] ABSTRACT 71 species of smut fungi known for Colombia are cited in a checklist together with their host plants, collection data, and some comments. 20 species of smut fungi are reported for the first time for Colombia. The list includes the new species Aurantiosporium colombianum and the new combination Sporisorium concelatum. Ustilago garcesi is recognized as a synonym of Sporisorium panici-leucophaei. Four species of host plants were not yet known to be infected by the respective smut species. The smuts known for Colombia are presented in a key which contains distinctive characteristics of sori and spores. Key words. Aurantiosporium colombianum, Sporisorium concelatum, Sporisorium paspali-notati, Ustilaginales, Ustilago garcesi. RESUMEN 71 especies de carbón conocidas para Colombia se citan en una lista junto con sus plantas hospederas, datos de colección y algunos comentarios. Veinte especies de carbón se reportan por primera vez para Colombia. La lista incluye la especie nueva Aurantiosporium colombianum y la combinación nueva Sporisorium concelatum. Ustilago garcesi es un sinónimo de Sporisorium panici-leucophaei. Cuatro especies de plantas hospederas se citan por primera vez como hospedero de su respectivo carbón. Los carbones conocidos para Colombia se presentan en una clave que incluye las características distinctivas de los soros y de las esporas. Palabras clave. Aurantiosporium colombianum, Sporisorium concelatum, Ustilaginales, Ustilago garcesi. INTRODUCTION they develop usually dark, powdery masses After the rust fungi (Uredinales), the smut of teliospores (“spores”) in sori. -
(US) 38E.85. a 38E SEE", A
USOO957398OB2 (12) United States Patent (10) Patent No.: US 9,573,980 B2 Thompson et al. (45) Date of Patent: Feb. 21, 2017 (54) FUSION PROTEINS AND METHODS FOR 7.919,678 B2 4/2011 Mironov STIMULATING PLANT GROWTH, 88: R: g: Ei. al. 1 PROTECTING PLANTS FROM PATHOGENS, 3:42: ... g3 is et al. A61K 39.00 AND MMOBILIZING BACILLUS SPORES 2003/0228679 A1 12.2003 Smith et al." ON PLANT ROOTS 2004/OO77090 A1 4/2004 Short 2010/0205690 A1 8/2010 Blä sing et al. (71) Applicant: Spogen Biotech Inc., Columbia, MO 2010/0233.124 Al 9, 2010 Stewart et al. (US) 38E.85. A 38E SEE",teWart et aal. (72) Inventors: Brian Thompson, Columbia, MO (US); 5,3542011/0321197 AllA. '55.12/2011 SE",Schön et al.i. Katie Thompson, Columbia, MO (US) 2012fO259101 A1 10, 2012 Tan et al. 2012fO266327 A1 10, 2012 Sanz Molinero et al. (73) Assignee: Spogen Biotech Inc., Columbia, MO 2014/0259225 A1 9, 2014 Frank et al. US (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CA 2146822 A1 10, 1995 patent is extended or adjusted under 35 EP O 792 363 B1 12/2003 U.S.C. 154(b) by 0 days. EP 1590466 B1 9, 2010 EP 2069504 B1 6, 2015 (21) Appl. No.: 14/213,525 WO O2/OO232 A2 1/2002 WO O306684.6 A1 8, 2003 1-1. WO 2005/028654 A1 3/2005 (22) Filed: Mar. 14, 2014 WO 2006/O12366 A2 2/2006 O O WO 2007/078127 A1 7/2007 (65) Prior Publication Data WO 2007/086898 A2 8, 2007 WO 2009037329 A2 3, 2009 US 2014/0274707 A1 Sep. -
Molecular Phylogeny of Ustilago and Sporisorium Species (Basidiomycota, Ustilaginales) Based on Internal Transcribed Spacer (ITS) Sequences1
Color profile: Disabled Composite Default screen 976 Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences1 Matthias Stoll, Meike Piepenbring, Dominik Begerow, Franz Oberwinkler Abstract: DNA sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA genes were used to determine a phylogenetic relationship between the graminicolous smut genera Ustilago and Sporisorium (Ustilaginales). Fifty-three members of both genera were analysed together with three related outgroup genera. Neighbor-joining and Bayesian inferences of phylogeny indicate the monophyly of a bipartite genus Sporisorium and the monophyly of a core Ustilago clade. Both methods confirm the recently published nomenclatural change of the cane smut Ustilago scitaminea to Sporisorium scitamineum and indicate a putative connection between Ustilago maydis and Sporisorium. Overall, the three clades resolved in our analyses are only weakly supported by morphological char- acters. Still, their preferences to parasitize certain subfamilies of Poaceae could be used to corroborate our results: all members of both Sporisorium groups occur exclusively on the grass subfamily Panicoideae. The core Ustilago group mainly infects the subfamilies Pooideae or Chloridoideae. Key words: basidiomycete systematics, ITS, molecular phylogeny, Bayesian analysis, Ustilaginomycetes, smut fungi. Résumé : Afin de déterminer la relation phylogénétique des genres Ustilago et Sporisorium (Ustilaginales), responsa- bles du charbon chez les graminées, les auteurs ont utilisé les données de séquence de la région espaceur transcrit interne (ITS) des gènes nucléiques ADNr. Ils ont analysé 53 membres de ces genres, ainsi que trois genres apparentés. Les liens avec les voisins et l’inférence bayésienne de la phylogénie indiquent la monophylie d’un genre Sporisorium bipartite et la monophylie d’un clade Ustilago central. -
Recerca I Territori V12 B (002)(1).Pdf
Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87 -
Comparison of Pheromone Trap Design and Lures for Spodoptera Frugiperda in Togo and Genetic Characterization of Moths Caught
DOI: 10.1111/eea.12795 Comparison of pheromone trap design and lures for Spodoptera frugiperda in Togo and genetic characterization of moths caught Robert L. Meagher Jr1* ,KomiAgboka2, Agbeko Kodjo Tounou2,DjimaKoffi3,Koffi Aquilas Agbevohia2,Tomfe€ı Richard Amouze2, Kossi Mawuko Adjevi2 &RodneyN. Nagoshi1 1USDA-ARS CMAVE, Insect Behavior and Biocontrol Research Unit, Gainesville, FL 32608, USA , 2Ecole Superieure d’Agronomie, UniversitedeLome, 01 BP 1515, Lome 1, Togo , and 3Africa Regional Postgraduate Programme in Insect Science, University of Ghana, Accra, Ghana Accepted: 29 November 2018 Key words: fall armyworm, monitoring, host strain markers, maize, Lepidoptera, Noctuidae, integrated pest management, IPM, rice, Leucania loreyi, COI gene, Tpi gene Abstract Fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), is a pest of grain and vegetable crops endemic to the Western Hemisphere that has recently become widespread in sub- Saharan Africa and has appeared in India. An important tool for monitoring S. frugiperda in the USA is pheromone trapping, which would be of value for use with African populations. Field experiments were conducted in Togo (West Africa) to compare capture of male fall armyworm using three com- mercially available pheromone lures and three trap designs. The objectives were to identify optimum trap 9 lure combinations with respect to sensitivity, specificity, and cost. Almost 400 moths were captured during the experiment. Differences were found in the number of S. frugiperda moths cap- tured in the various trap designs and with the three pheromone lures, and in the number of non-tar- get moths captured with each lure. The merits of each trap 9 lure combination are discussed with respect to use in Africa.