Introduction to Abstract Algebra and Vector Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Abstract Algebra and Vector Spaces Introduction to Abstract Algebra and Vector Spaces Vectors in Geometry A vector space is an algebraic structure that generalizes the geometrical concept of vector. The reader has hopefully been introduced to vectors in a previous math or physics course. We now review some of the basic properties of geometrical vectors that we desire to capture in the algebraic definition of a vector space. A geometric vector is an entity that has both a direction and magnitude (see Figure ). If we place a vector in the Cartesian plane with its tail at the origin, then the vector's direction and magnitude is completely determined by the location of its head in the plane, which can be represented with a point (x; y). This is considered one of the great achievements of the philosopher and mathematician Rene Descartes, who showed how a geometrical object, such as a vector, can be algebraically represented, in this case using a pair of numbers (x; y). Using the Cartesian representation of a vector, the following properties of vectors become more apparent. Addition and Subtraction Two vectors u = (x1; y1) and v = (x2; y2) can be added to form the new vector u+v = (x1 +x2; y1 +y2), and subtracted to form the new vector u−v = (x1 −x2; y1 −y2). Figure 1: A geometrical vector 1 Notice that vector addition is associative: u + (v + w) = (u + v) + w since the performed component-wise additions are all associative. It is also commutative: u + v = v + u. Zero Vector The vector 0 = (0; 0) represents the zero vector which has zero magnitude, and hence no direction. Additive Inverse Associated with each vector v = (x; y) is its additive inverse −v = (−x; −y), which has the same magnitude as v, but has the opposite direction. Moreover, v + (−v) = 0. Scaling Given real number r, every vector v = (x; y) can be scaled by r to form the new vector r · v = r(x; y) = (rx; ry). If r > 0, then r · v has the same direction as v, but its magnitude has been multiplied by a factor of r. If r = 0, then r · v = 0, where as r < 0 multiplies the magnitude of v by jrj, and r · v has the same direction as −v. Magnitude The magnitude of a vector v = (x; y) can be computed using the Pythagorean Theorem as jvj = px2 + y2. Angle Between Vectors If Θ(v) denotes the counterclockwise angle that v makes with the x-axis, then the angle between two vectors u and v is equal to jΘ(u) − Θ(v)j. Example 1. Demonstrate the above vector properties with vectors in the Cartesian plane. 2 Abelian Groups We now move from geometry to algebra. The simplest kind of algebraic structure is a set A, along with an operation that is closed under A, and that obeys a set of properties. For example, let A = I be the set of integers, and consider the addition operation +. This operation is closed under A since the addition of two integers results in another integer. Moreover, addition satisfies the following properties. Given arbitrary integers x, y, and z, then Associative x + (y + z) = (x + y) + z Commutative x + y = y + x Zero Element x + 0 = 0 + x = x Additive Inverse there exists an integer −x for which x + (−x) = 0 We can write this algebraic structure as a pair: (I; +), where the first component is the set, and the second is the operation that is defined and closed over the set. It turns out that (I; +) is not the only algebraic structure that satisfies the above four properties. For example (Q; +) and (R; +) also satisfy these properties, where Q is the set of rational numbers (i.e. fractions of the form p=q where p and q 6= 0 are integers), and R is the set of real numbers. In general, any algebraic structure that satisfies the above four properties is called an abelian group, while the above four properties referred to as the abelian-group axioms. Thus, when a mathematician says \such and such is an abelian group", she means that \such and such" is referring to a set, along with an addition operation closed over the set that is associative, commutative, allows for additive inverses, and for which the set has a zero element with respect to the addition. Once a class, such as abelian groups, of algebraic structures has been defined, it is the job the algebraist to study the logical implications of an algebraic structure that belongs in the class. For example, if an algebraic structure is an abelian group, then what other properties, if any, must it satisfy? Suppose an algebraist proves that all abelian groups have property P . Then she has not only proved that (I; +), (Q; +), and (R; +) have property P , but has also proved it for any other algebraic structure that meets the criteria for being an abelian group. 3 Example 2. Let R2 denote the set of ordered pairs (x; y), where x and y are real numbers. R2 is 2 referred to as the Cartesian plane. Verify that (R ; +) is an abelian group, where, for u = (x1; y1) and v = (x2; y2), u + v = (x1 + x2; y1 + y2). Example 3. Let (R−0; ·) be an algebraic structure, where R−0 is the set of real numbers, excluding 0, and · is the multiplication operation for real numbers. Verify that (R − 0; ·) is an abelian group. 4 Example 4. Let (F(R; R); +) be an algebraic structure, where F(R; R) is the set of functions f : R ! R having the real numbers as its domain and co-domain. and, given functions f; g 2 F(R; R), f +g is the function for which (f +g)(x) = f(x)+g(x), for all real numbers x. Prove that (F(R; R); +) is an abelian group. Example 5. Let (M2;2; ·) be an algebraic structure, where M2;2 is the set of 2 × 2 matrices having real-valued entries, and · represents matrix multiplication. Show that (M2;2; ·) is not an abelian group. However, show that (M2;2; +) is an abelian group, where + is matrix addition. 5 Vector Spaces An algebraic structure can have more than one operation. For example, the set of integers has both addition and multiplication operations which can be brought together to form the algebraic structure (I; +; ·). For this structure, the addition operation satisfies all the abelian-group axioms. Moreover, the multiplication operation is associative, commutative, and has 1 as its multiplicative identity. Finally, addition and multiplication, together, satisfy the distributive property x · (y + z) = x · y + x · z: It is these properties that depend on both operations that make the algebraic structure interesting to study. In this section we study a class of algebraic structures called vector space. Like integer arithmetic, a vector space consists of a set V and two operations that are closed over V. The first operation is addition, and it satisfies all the abelian-group axioms. In other words, if we ignore the second operation, then the algebraic structure (V; +) is an abelian group. Thus, every vector space is an abelian group. The second vector space operation is called the scaling operation, and is usually given the multi- plication symbol ·. This operation is described as follows. left input The left input is a real number r. right input The right input is a vector v 2 V. output The output is denoted r · v, or simply rv, and is a vector in V. The left input r has the effect of scaling the right input v. For example, if r = 2, then 2v is a vector that has the same \direction" as v, but has doubled in \magnitude" (here we place \direction" and \magnitude" in quotes, because we do not yet know what these terms mean in an abstract vector space). For this reason r is referred to as a scalar. With the terminology now in place, a vector space is an algebraic structure (V; +; ·), where (V; +) is an abelian group, and · is a scaling operation that satisfies the following properties. In what follows, r and s are arbitrary scalars, while u and v are arbitrary vectors. Moreover, e.g., r · v is expressed as rv. Unit Scalar 1v = v Associative r(sv) = (rs)v Distributive over V r(u + v) = ru + rv Distributive over R (r + s)v = rv + sv 6 These properties will henceforth be referred to as the scalar axioms. The scalar axioms together with the abelian-group axioms form what are called the vector-space axioms. Note that an element of a vector space is referred to as a vector. Example 6. We show that (R; +; ·), is a vector space, where R is the set of real numbers, and + and · are the usual addition and multiplication operations over R. Certainly, (R; +) is an abelian group since real-number addition is associative and commutative, 0 is the additive identity, and every real has an additive inverse. Moreover, · is a scaling operation, since its left input is a real, while its right input and output are both real (in this case the scalar set R is equal to the vector space set R). All that remains to show is that the scaling operation satisfies the scalar axioms. But notice that, since the scaling operation is just multiplication of two real numbers, these axioms are just the axioms of real-number multiplication, meaning that i) 1 is a multiplicative identy for R, and that ii) real-number multiplication is associative, commutative, and distributive. Example 7. Let (R2; +; ·) be an algebraic structure, where (R2; +) is the abelian group from Example 2, and · is the scaling operation defined as follows.
Recommended publications
  • On the Bicoset of a Bivector Space
    International J.Math. Combin. Vol.4 (2009), 01-08 On the Bicoset of a Bivector Space Agboola A.A.A.† and Akinola L.S.‡ † Department of Mathematics, University of Agriculture, Abeokuta, Nigeria ‡ Department of Mathematics and computer Science, Fountain University, Osogbo, Nigeria E-mail: [email protected], [email protected] Abstract: The study of bivector spaces was first intiated by Vasantha Kandasamy in [1]. The objective of this paper is to present the concept of bicoset of a bivector space and obtain some of its elementary properties. Key Words: bigroup, bivector space, bicoset, bisum, direct bisum, inner biproduct space, biprojection. AMS(2000): 20Kxx, 20L05. §1. Introduction and Preliminaries The study of bialgebraic structures is a new development in the field of abstract algebra. Some of the bialgebraic structures already developed and studied and now available in several literature include: bigroups, bisemi-groups, biloops, bigroupoids, birings, binear-rings, bisemi- rings, biseminear-rings, bivector spaces and a host of others. Since the concept of bialgebraic structure is pivoted on the union of two non-empty subsets of a given algebraic structure for example a group, the usual problem arising from the union of two substructures of such an algebraic structure which generally do not form any algebraic structure has been resolved. With this new concept, several interesting algebraic properties could be obtained which are not present in the parent algebraic structure. In [1], Vasantha Kandasamy initiated the study of bivector spaces. Further studies on bivector spaces were presented by Vasantha Kandasamy and others in [2], [4] and [5]. In the present work however, we look at the bicoset of a bivector space and obtain some of its elementary properties.
    [Show full text]
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • Algebraic Structure of Genetic Inheritance 109
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 34, Number 2, April 1997, Pages 107{130 S 0273-0979(97)00712-X ALGEBRAIC STRUCTURE OF GENETIC INHERITANCE MARY LYNN REED Abstract. In this paper we will explore the nonassociative algebraic struc- ture that naturally occurs as genetic information gets passed down through the generations. While modern understanding of genetic inheritance initiated with the theories of Charles Darwin, it was the Augustinian monk Gregor Mendel who began to uncover the mathematical nature of the subject. In fact, the symbolism Mendel used to describe his first results (e.g., see his 1866 pa- per Experiments in Plant-Hybridization [30]) is quite algebraically suggestive. Seventy four years later, I.M.H. Etherington introduced the formal language of abstract algebra to the study of genetics in his series of seminal papers [9], [10], [11]. In this paper we will discuss the concepts of genetics that suggest the underlying algebraic structure of inheritance, and we will give a brief overview of the algebras which arise in genetics and some of their basic properties and relationships. With the popularity of biologically motivated mathematics continuing to rise, we offer this survey article as another example of the breadth of mathematics that has biological significance. The most com- prehensive reference for the mathematical research done in this area (through 1980) is W¨orz-Busekros [36]. 1. Genetic motivation Before we discuss the mathematics of genetics, we need to acquaint ourselves with the necessary language from biology. A vague, but nevertheless informative, definition of a gene is simply a unit of hereditary information.
    [Show full text]
  • MGF 1106 Learning Objectives
    Learning Objectives L01 Set Concepts and Subsets (2.1, 2.2) 1. Indicate sets by the description method, roster method, and by using set builder notation. 2. Determine if a set is well defined. 3. Determine if a set is finite or infinite. 4. Determine if sets are equal, equivalent, or neither. 5. Find the cardinal number of a set. 6. Determine if a set is equal to the empty set. 7. Use the proper notation for the empty set. 8. Give an example of a universal set and list all of its subsets and all of its proper subsets. 9. Properly use notation for element, subset, and proper subset. 10. Determine if a number represents a cardinal number or an ordinal number. 11. Be able to determine the number of subsets and proper subsets that can be formed from a universal set without listing them. L02 Venn Diagrams and Set Operations (2.3, 2.4) 1. Determine if sets are disjoint. 2. Find the complement of a set 3. Find the intersection of two sets. 4. Find the union of two sets. 5. Find the difference of two sets. 6. Apply several set operations involved in a statement. 7. Determine sets from a Venn diagram. 8. Use the formula that yields the cardinal number of a union. 9. Construct a Venn diagram given two sets. 10. Construct a Venn diagram given three sets. L03 Equality of Sets; Applications of Sets (2.4, 2.5) 1. Determine if set statements are equal by using Venn diagrams or DeMorgan's laws.
    [Show full text]
  • Arxiv:0704.2561V2 [Math.QA] 27 Apr 2007 Nttto O Xeln Okn Odtos H Eoda Second the Conditions
    DUAL FEYNMAN TRANSFORM FOR MODULAR OPERADS J. CHUANG AND A. LAZAREV Abstract. We introduce and study the notion of a dual Feynman transform of a modular operad. This generalizes and gives a conceptual explanation of Kontsevich’s dual construction producing graph cohomology classes from a contractible differential graded Frobenius alge- bra. The dual Feynman transform of a modular operad is indeed linear dual to the Feynman transform introduced by Getzler and Kapranov when evaluated on vacuum graphs. In marked contrast to the Feynman transform, the dual notion admits an extremely simple presentation via generators and relations; this leads to an explicit and easy description of its algebras. We discuss a further generalization of the dual Feynman transform whose algebras are not neces- sarily contractible. This naturally gives rise to a two-colored graph complex analogous to the Boardman-Vogt topological tree complex. Contents Introduction 1 Notation and conventions 2 1. Main construction 4 2. Twisted modular operads and their algebras 8 3. Algebras over the dual Feynman transform 12 4. Stable graph complexes 13 4.1. Commutative case 14 4.2. Associative case 15 5. Examples 17 6. Moduli spaces of metric graphs 19 6.1. Commutative case 19 6.2. Associative case 21 7. BV-resolution of a modular operad 22 7.1. Basic construction and description of algebras 22 7.2. Stable BV-graph complexes 23 References 26 Introduction arXiv:0704.2561v2 [math.QA] 27 Apr 2007 The relationship between operadic algebras and various moduli spaces goes back to Kontse- vich’s seminal papers [19] and [20] where graph homology was also introduced.
    [Show full text]
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • Instructional Guide for Basic Mathematics 1, Grades 10 To
    REPORT RESUMES ED 016623 SE 003 950 INSTRUCTIONAL GUIDE FOR BASIC MATHEMATICS 1,GRADES 10 TO 12. BY- RICHMOND, RUTH KUSSMANN LOS ANGELES CITY SCHOOLS, CALIF. REPORT NUMBER X58 PUB DATE 66 EDRS PRICE MF -$0.25 HC-61.44 34P. DESCRIPTORS- *CURRICULUM DEVELOPMENT,*MATHEMATICS, *SECONDARY SCHOOL MATHEMATICS, *TEACHING GUIDES,ARITHMETIC, COURSE CONTENT, GRADE 10, GRADE 11, GRADE 12,GEOMETRY, LOW ABILITY STUDENTS, SLOW LEARNERS, STUDENTCHARACTERISTICS, LOS ANGELES, CALIFORNIA, THIS INSTRUCTIONAL GUIDE FORMATHEMATICS 1 OUTLINES CONTENT AND PROVIDES TEACHINGSUGGESTIONS FOR A FOUNDATION COURSE FOR THE SLOW LEARNER IN THESENIOR HIGH SCHOOL. CONSIDERATION HAS BEEN GIVEN IN THEPREPARATION OF THIS DOCUMENT TO THE STUDENT'S INTERESTLEVELS AND HIS ABILITY TO LEARN. THE GUIDE'S PURPOSE IS TOENABLE THE STUDENTS TO UNDERSTAND AND APPLY THE FUNDAMENTALMATHEMATICAL ALGORITHMS AND TO ACHIEVE SUCCESS ANDENJOYMENT IN WORKING WITH MATHEMATICS. THE CONTENT OF EACH UNITINCLUDES (1) DEVELOPMENT OF THE UNIT, (2)SUGGESTED TEACHING PROCEDURES, AND (3) STUDENT EVALUATION.THE MAJOR PORTION OF THE MATERIAL IS DEVOTED TO THE FUNDAMENTALOPERATIONS WITH WHOLE NUMBERS. IDENTIFYING AND CLASSIFYING ELEMENTARYGEOMETRIC FIGURES ARE ALSO INCLUDED. (RP) WELFARE U.S. DEPARTMENT OFHEALTH, EDUCATION & OFFICE OF EDUCATION RECEIVED FROM THE THIS DOCUMENT HAS BEENREPRODUCED EXACTLY AS POINTS OF VIEW OROPINIONS PERSON OR ORGANIZATIONORIGINATING IT. OF EDUCATION STATED DO NOT NECESSARILYREPRESENT OFFICIAL OFFICE POSITION OR POLICY. INSTRUCTIONAL GUIDE BASICMATHEMATICS I GRADES 10 to 12 LOS ANGELES CITY SCHOOLS Division of Instructional Services Curriculum Branch Publication No. X-58 1966 FOREWORD This Instructional Guide for Basic Mathematics 1 outlines content and provides teaching suggestions for a foundation course for the slow learner in the senior high school.
    [Show full text]
  • Bases for Infinite Dimensional Vector Spaces Math 513 Linear Algebra Supplement
    BASES FOR INFINITE DIMENSIONAL VECTOR SPACES MATH 513 LINEAR ALGEBRA SUPPLEMENT Professor Karen E. Smith We have proven that every finitely generated vector space has a basis. But what about vector spaces that are not finitely generated, such as the space of all continuous real valued functions on the interval [0; 1]? Does such a vector space have a basis? By definition, a basis for a vector space V is a linearly independent set which generates V . But we must be careful what we mean by linear combinations from an infinite set of vectors. The definition of a vector space gives us a rule for adding two vectors, but not for adding together infinitely many vectors. By successive additions, such as (v1 + v2) + v3, it makes sense to add any finite set of vectors, but in general, there is no way to ascribe meaning to an infinite sum of vectors in a vector space. Therefore, when we say that a vector space V is generated by or spanned by an infinite set of vectors fv1; v2;::: g, we mean that each vector v in V is a finite linear combination λi1 vi1 + ··· + λin vin of the vi's. Likewise, an infinite set of vectors fv1; v2;::: g is said to be linearly independent if the only finite linear combination of the vi's that is zero is the trivial linear combination. So a set fv1; v2; v3;:::; g is a basis for V if and only if every element of V can be be written in a unique way as a finite linear combination of elements from the set.
    [Show full text]
  • The Dot Product
    The Dot Product In this section, we will now concentrate on the vector operation called the dot product. The dot product of two vectors will produce a scalar instead of a vector as in the other operations that we examined in the previous section. The dot product is equal to the sum of the product of the horizontal components and the product of the vertical components. If v = a1 i + b1 j and w = a2 i + b2 j are vectors then their dot product is given by: v · w = a1 a2 + b1 b2 Properties of the Dot Product If u, v, and w are vectors and c is a scalar then: u · v = v · u u · (v + w) = u · v + u · w 0 · v = 0 v · v = || v || 2 (cu) · v = c(u · v) = u · (cv) Example 1: If v = 5i + 2j and w = 3i – 7j then find v · w. Solution: v · w = a1 a2 + b1 b2 v · w = (5)(3) + (2)(-7) v · w = 15 – 14 v · w = 1 Example 2: If u = –i + 3j, v = 7i – 4j and w = 2i + j then find (3u) · (v + w). Solution: Find 3u 3u = 3(–i + 3j) 3u = –3i + 9j Find v + w v + w = (7i – 4j) + (2i + j) v + w = (7 + 2) i + (–4 + 1) j v + w = 9i – 3j Example 2 (Continued): Find the dot product between (3u) and (v + w) (3u) · (v + w) = (–3i + 9j) · (9i – 3j) (3u) · (v + w) = (–3)(9) + (9)(-3) (3u) · (v + w) = –27 – 27 (3u) · (v + w) = –54 An alternate formula for the dot product is available by using the angle between the two vectors.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Review a Basis of a Vector Space 1
    Review • Vectors v1 , , v p are linearly dependent if x1 v1 + x2 v2 + + x pv p = 0, and not all the coefficients are zero. • The columns of A are linearly independent each column of A contains a pivot. 1 1 − 1 • Are the vectors 1 , 2 , 1 independent? 1 3 3 1 1 − 1 1 1 − 1 1 1 − 1 1 2 1 0 1 2 0 1 2 1 3 3 0 2 4 0 0 0 So: no, they are dependent! (Coeff’s x3 = 1 , x2 = − 2, x1 = 3) • Any set of 11 vectors in R10 is linearly dependent. A basis of a vector space Definition 1. A set of vectors { v1 , , v p } in V is a basis of V if • V = span{ v1 , , v p} , and • the vectors v1 , , v p are linearly independent. In other words, { v1 , , vp } in V is a basis of V if and only if every vector w in V can be uniquely expressed as w = c1 v1 + + cpvp. 1 0 0 Example 2. Let e = 0 , e = 1 , e = 0 . 1 2 3 0 0 1 3 Show that { e 1 , e 2 , e 3} is a basis of R . It is called the standard basis. Solution. 3 • Clearly, span{ e 1 , e 2 , e 3} = R . • { e 1 , e 2 , e 3} are independent, because 1 0 0 0 1 0 0 0 1 has a pivot in each column. Definition 3. V is said to have dimension p if it has a basis consisting of p vectors. Armin Straub 1 [email protected] This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.
    [Show full text]
  • Basics of Linear Algebra
    Basics of Linear Algebra Jos and Sophia Vectors ● Linear Algebra Definition: A list of numbers with a magnitude and a direction. ○ Magnitude: a = [4,3] |a| =sqrt(4^2+3^2)= 5 ○ Direction: angle vector points ● Computer Science Definition: A list of numbers. ○ Example: Heights = [60, 68, 72, 67] Dot Product of Vectors Formula: a · b = |a| × |b| × cos(θ) ● Definition: Multiplication of two vectors which results in a scalar value ● In the diagram: ○ |a| is the magnitude (length) of vector a ○ |b| is the magnitude of vector b ○ Θ is the angle between a and b Matrix ● Definition: ● Matrix elements: ● a)Matrix is an arrangement of numbers into rows and columns. ● b) A matrix is an m × n array of scalars from a given field F. The individual values in the matrix are called entries. ● Matrix dimensions: the number of rows and columns of the matrix, in that order. Multiplication of Matrices ● The multiplication of two matrices ● Result matrix dimensions ○ Notation: (Row, Column) ○ Columns of the 1st matrix must equal the rows of the 2nd matrix ○ Result matrix is equal to the number of (1, 2, 3) • (7, 9, 11) = 1×7 +2×9 + 3×11 rows in 1st matrix and the number of = 58 columns in the 2nd matrix ○ Ex. 3 x 4 ॱ 5 x 3 ■ Dot product does not work ○ Ex. 5 x 3 ॱ 3 x 4 ■ Dot product does work ■ Result: 5 x 4 Dot Product Application ● Application: Ray tracing program ○ Quickly create an image with lower quality ○ “Refinement rendering pass” occurs ■ Removes the jagged edges ○ Dot product used to calculate ■ Intersection between a ray and a sphere ■ Measure the length to the intersection points ● Application: Forward Propagation ○ Input matrix * weighted matrix = prediction matrix http://immersivemath.com/ila/ch03_dotprodu ct/ch03.html#fig_dp_ray_tracer Projections One important use of dot products is in projections.
    [Show full text]