The Kaskaskia/Absaroka Boundary in the Subsurface of Athens County, Ohio

Total Page:16

File Type:pdf, Size:1020Kb

The Kaskaskia/Absaroka Boundary in the Subsurface of Athens County, Ohio The Kaskaskia/Absaroka Boundary in the Subsurface of Athens County, Ohio A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Ryan P. Stobart December 2019 © 2019 Ryan P. Stobart. All Rights Reserved 2 This thesis titled The Kaskaskia/Absaroka Boundary in the Subsurface of Athens County, Ohio by RYAN P. STOBART has been approved for the Department of Geological Sciences and the College of Arts and Sciences by Gregory Nadon Associate Professor of Geological Sciences Florenz Plassmann Dean, College of Arts and Sciences 3 ABSTRACT STOBART, RYAN P., M.S., December 2019, Geological Sciences The Kaskaskia/Absaroka Boundary in the Subsurface of Athens County, Ohio Director of Thesis: Gregory Nadon The Kaskaskia/Absaroka boundary is an unconformable surface that separates the Lower Pennsylvanian Sharon Sandstone from the Mississippian Maxville Limestone or Logan Formation. Previous maps of the drainage pattern formed on the boundary lacked detailed spatial control or were of regional scale. This study examined 348 geophysical well logs from four townships in southwestern Athens County, which were used to create cross-sections, and isopach maps of the gross and net sandstone, the Maxville Limestone, and the total Mississippian interval. Correlation and isopach data show that thick sandstones present in the wells of the study interval were unambiguously Early Pennsylvanian incised valley deposits of the Sharon Sandstone that were deposited in a braided fluvial environment. The fluvial sandstones are interbedded with mudstones that have gamma-ray and porosity values that differ from the underlying marine Mississippian sediments, suggesting a possible base level change associated with eustatic sea level rise. The change from laterally continuous Mississipian marine strata to the incised fluvial valleys marks a shift in tectonic from dynamic to thrust loading. The location of the main channels of the drainage system formed on the older Mississippian strata was close to the boundary between the forebulge and backbulge regions of the Appalachian foreland basin. 4 DEDICATION This work is dedicated to my family and friends whom have shown unwavering support. 5 ACKNOWLEDGMENTS I would like to give my deepest thanks to my advisor, Dr. Gregory Nadon. His knowledge, guidance and support are truly what pushed me through to the end. Thank you to Cheri Sheets for making the days fun and enjoyable during the writing process. I would also like to thank those in the Ohio University Geological Sciences department who have supported me and given advice throughout my education. Thank you to the Ohio Geological Survey for providing the geophysical well logs which made this thesis a possibility. And lastly, thank you to my friends and family for your unconditional love and support. This would not have been possible without any of you. 6 TABLE OF CONTENTS Page Abstract .......................................................................................................................... 3 Dedication ...................................................................................................................... 4 Acknowledgments .......................................................................................................... 5 List of Figures ................................................................................................................ 7 Chapter 1: Introduction ................................................................................................... 9 Chapter 2: Previous Work ..............................................................................................12 2.1 Introduction .......................................................................................................12 2.2 Tectonics ...........................................................................................................12 2.3 Climate and Glacial Eustasy ...............................................................................16 2.4 Stratigraphy .......................................................................................................18 2.5 The Mississippian-Pennsylvanian Unconformity Incision Pattern .......................24 2.6 Geophysical Well Logs ......................................................................................26 Chapter 3: Methodology ................................................................................................31 3.1 Geophysical Well Log Analysis .........................................................................31 Chapter 4: Results..........................................................................................................40 4.1 Type Well - Aid Township, Lawrence County ...................................................40 4.2 Type Well - Alexander Township, Athens County .............................................41 4.3 Study Area Cross Sections .................................................................................45 4.4 Isopach Maps .....................................................................................................51 4.5 Topographic Maps .............................................................................................56 Chapter 5: Discussion ....................................................................................................60 5.1 Introduction .......................................................................................................60 5.2 Location of Valley Axis .....................................................................................60 5.3 Possible Amalgamation with the Black Hand Sandstone ....................................64 5.4 Controls on Fluvial Style ....................................................................................65 Chapter 6: Conclusions ..................................................................................................74 References .....................................................................................................................75 Appendix: Formation Tops ............................................................................................80 7 LIST OF FIGURES Page Figure 1.1: Study Area Location ...................................................................................11 Figure 2.1: Foreland Basin System ...............................................................................13 Figure 2.2: Interplay of Flexural Tectonics and Dynamic Subsidence ...........................15 Figure 2.3: Carboniferous Sea Level Change ................................................................17 Figure 2.4: Generalized Stratigraphic Section ...............................................................19 Figure 2.5: Matchen and Kammer Black Hand Sandstone .............................................21 Figure 2.6: Mississippian Units in Southern Ohio .........................................................23 Figure 2.7: Sloss Sequences ..........................................................................................25 Figure 2.8: Gamma Shape .............................................................................................30 Figure 3.1: Location of Wells Used in This Study .........................................................32 Figure 3.2: Type Well of Alexander Township .............................................................33 Figure 3.3: Type Well of Aid Township ........................................................................34 Figure 3.4: Carthage Cross Section Tract ......................................................................36 Figure 3.5: Carthage Cross Section ...............................................................................37 Figure 3.6: Net Sand Vs. Gross Sand ............................................................................ 39 Figure 4.1: Aid and Alexander Township Type Well Location ......................................43 Figure 4.2: Correlation of Aid and Alexander Township Type Wells ............................44 Figure 4.3: Study Area Cross Section Tract ..................................................................46 Figure 4.4: Study Area Cross Section ...........................................................................47 Figure 4.5: Black Hand Sandstone in Relation to the Sharon Sandstone ........................50 Figure 4.6: Mississippian Isopach Map .........................................................................52 Figure 4.7: Maxville Isopach Map ................................................................................53 Figure 4.8: Gross Sandstone Isopach Map ....................................................................54 Figure 4.9: Net Sandstone Isopach Map ........................................................................55 Figure 4.10: Inferred Drainage Map ..............................................................................57 Figure 4.11: Well Log Ground Elevation Topography Map ..........................................58 Figure 4.12: Modern USGS Topography map of Study Area ........................................59 Figure 5.1: Utley, Two River Systems ..........................................................................62 Figure 5.2: Forebulge Location and Valley Axis ...........................................................69 Figure 5.3: Utley Drainage System With Forebulge ......................................................71
Recommended publications
  • Geological Investigations in Ohio
    INFORMATION CIRCULAR NO. 21 GEOLOGICAL INVESTIGATIONS IN OHIO 1956 By Carolyn Farnsworth STATE OF OHIO C. William O'Neill, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION Milton Ronsheim, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dean L. L. Rummell Forrest G. Hall Dr. Myron T. Sturgeon A. W. Marion George Wenger DIVISION OF GEOLOGICAL SURVEY Ralph J. Bernhagen, Chief STATI OF OHIO DIPAlTMIMT 011 NATUlAL llSOUlCH DIVISION OF &EOLO&ICAL SURVEY INFORMATION CIRCULAR NO. 21 'GEOLOG·ICAL INVESTIGATIONS IN OHIO 1956 by CAROLYN FARNSWORTH COLUMBUS 1957 Blank Page CONTENTS Page Introduction 1 Project listing by author 2 Project listing by subject . 22 Economic geology 22 Aggregates . 22 Coal . • 22 Ground water 22 Iron .. 22 Oil and gas 22 Salt . 22 Sand and gravel 23 General .. 23 Geomorphology 23 Geophysics 23 Glacial geology 23 Mineralogy and petrology . 24 Clay .. 24 Coal . 24 Dolomite 24 Limestone. 24 Sandstone •• 24 Shale. 24 Till 25 Others 25 Paleontology. 25 Stratigraphy and sedimentation 26 Structural geology . 27 Miscellaneous . 27 Geographic distribution. 27 Statewide 27 Areal. \\ 28 County 29 Miscellaneous . 33 iii Blank Page I INTRODUCTION In September 1956, letters of inquiry and questionnaires were sent to all Ohio geologists on the mailing list of the Ohio Geological Survey, and to other persons who might be working on geological problems in Ohio. This publication has been compiled from the information contained on the returned forms. In most eases it is assumed that the projects listed herein will culminate in reports which will be available to the profession through scientific journals, government publications, or grad- uate school theses.
    [Show full text]
  • Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio
    SUBSURFACE FACIES ANALYSIS OF THE DEVONIAN BEREA SANDSTONE IN SOUTHEASTERN OHIO William T. Garnes A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2014 Committee: James Evans, Advisor Jeffrey Snyder Charles Onasch ii ABSTRACT James Evans, Advisor The Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit is clearly deltaic in outcrops in northeastern Ohio, its depositional setting is more problematic in southeastern Ohio where it is only found in the subsurface. The goal of this project was to search for evidence of a barrier island/inlet channel depositional environment for the Berea Sandstone to assess whether the Berea Sandstone was deposited under conditions in southeastern Ohio unique from northeastern Ohio. This project involved looking at cores from 5 wells: 3426 (Athens Co.), 3425 (Meigs Co.), 3253 (Athens Co.), 3252 (Athens Co.), and 3251 (Athens Co.) In cores, the Berea Sandstone ranges from 2 to 10 m (8-32 ft) thick, with an average thickness of 6.3 m (20.7 ft). Core descriptions involved hand specimens, thin section descriptions, and core photography. In addition to these 5 wells, the gamma ray logs from 13 wells were used to interpret the architecture and lithologies of the Berea Sandstone in Athens Co. and Meigs Co. as well as surrounding Vinton, Washington, and Morgan counties. Analysis from this study shows evidence of deltaic lobe progradation, abandonment, and re-working. Evidence of interdistributary bays with shallow sub-tidal environments, as well as large sand bodies, is also present.
    [Show full text]
  • Guide to the Geology of Northeastern Ohio
    SDMS US EPA REGION V -1 SOME IMAGES WITHIN THIS DOCUMENT MAY BE ILLEGIBLE DUE TO BAD SOURCE DOCUMENTS. GUIDE TO THE GEOLOGY of NORTHEASTERN OHIO Edited by P. O. BANKS & RODNEY M. FELDMANN 1970 Northern Ohio Geological Society ELYP.i.A PU&UC LIBRARt as, BEDROCK GEOLOGY OF NORTHEASTERN OHIO PENNSYLVANIAN SYSTEM MISSISSIPPIAN SYSTEM DEVONIAN SYSTEM \V&fe'£:i£:VS:#: CANTON viSlSWSSWM FIGURr I Geologic map of northeastern Ohio. Individual formations within each time unit are not dis- -guished, and glacial deposits have been omitted. Because the bedding planes are nearly ••.crizontal, the map patterns of the contacts closely resemble the topographic contours at those z evations. The older and deeper units are most extensively exposed where the major rivers rave cut into them, while the younger units are preserved in the intervening higher areas. CO «< in Dev. Mississippian r-c Penn. a> 3 CO CD BRADF. KINOERHOOK MERAMEC —1 OSAGE CHESTER POTTSVIUE ro to r-» c-> e-> e= e-i GO n « -n V) CO V* o ^_ ^ 0. = -^ eo CO 3 c= « ^> <C3 at ta B> ^ °» eu ra to a O9 eo ^ a* s 1= ca \ *** CO ^ CO to CM v» o' CO to CO 3 =3 13- *•» \ ¥\ A. FIGURE 1. Columnar section ol the major stratigraphic units in northeastern Ohio showing their relative positions in the standard geologic time scale. The Devonian-Mississippian boundary is not known with certainty to lie within the Cleveland Shale. The base of the Mississippian in the northern part of the state is transitional with the Bradford Series of the Devonian System and may lie within the Cleveland Shale (Weller er a/., 1948).
    [Show full text]
  • Geologic Cross Section
    Geologic Cross Section I–I′ Through the Appalachian Basin from the Eastern Margin of the Illinois Basin, Jefferson County, Kentucky, to the Valley and Ridge Province, Scott County, Virginia By Robert T. Ryder, Michael H. Trippi, and Christopher S. Swezey Pamphlet B to accompany Scientific Investigations Map 3343 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copy- righted items must be secured from the copyright owner. Suggested citation: Ryder, R.T., Trippi, M.H., and Swezey, C.S., 2015, Geologic cross section I–I′ through the Appalachian basin from the eastern margin of the Illinois basin, Jefferson County, Kentucky, to the Valley and Ridge province, Scott County, Virginia: U.S. Geological Survey Scientific Investigations Map 3343, 2 sheets and pamphlet A, 41 p.; pamphlet B, 102 p., http://dx.doi.org/10.3133/sim3343.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • Geology of the Northern Perth Basin, Western Australia
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/233726107 Geology of the northern Perth Basin, Western Australia. A field guide Technical Report · June 2005 CITATIONS READS 15 1,069 4 authors: Arthur John Mory David Haig Government of Western Australia University of Western Australia 91 PUBLICATIONS 743 CITATIONS 61 PUBLICATIONS 907 CITATIONS SEE PROFILE SEE PROFILE Stephen Mcloughlin Roger M. Hocking Swedish Museum of Natural History Geological Survey of Western Australia 143 PUBLICATIONS 3,298 CITATIONS 54 PUBLICATIONS 375 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Lower Permian bryozoans of Western Australia View project Late Palaeozoic palynology of Dronning Maud Land, Antarctica View project All content following this page was uploaded by Stephen Mcloughlin on 05 May 2017. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Department of Industry and Resources RECORD GEOLOGY OF THE NORTHERN PERTH 2005/9 BASIN, WESTERN AUSTRALIA — A FIELD GUIDE by A. J. Mory, D. W. Haig, S. McLoughlin, and R. M. Hocking Geological Survey of Western Australia GEOLOGICAL SURVEY OF WESTERN AUSTRALIA Record 2005/9 GEOLOGY OF THE NORTHERN PERTH BASIN, WESTERN AUSTRALIA — A FIELD GUIDE by A. J. Mory, D. W. Haig1, S. McLoughlin2, and R. M. Hocking 1 School of Earth and Geographical Sciences, The University of Western Australia 2 School of Natural Resource Sciences, Queensland University of Technology Perth 2005 MINISTER FOR STATE DEVELOPMENT Hon.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • Recent Information Maxville Lime.Stone
    .·-~ . f GEOLOGICAL SURVEY OF OHIO WILBER STOUT, State Geologist Fourth Series Information Circular No. 3 RECENT INFORMATION ON THE MAXVILLE LIME.STONE by RAYMONDE. LAMBORN COLUMBUS 1945 Reprinted 1961 HOOK I\(..• OHIO GEOL. SURVEY. LAKE ERIE SECTION LIBRARY CARD NO. ·7 STATE CF OHIO Michael V. DiSalle Governor DEPARTMENT CF NATURAL RESOURCES Herbert B. Eagon Director NATURAL RESOURCES CCMMISSION C. D. Blubaugh Joseph E. Hunt Herbert B. Eagon Roy M. Kottman Byron Frederick DemClB L. Sean Forrest G. Hl1ll Myron T. Sturgeon Willian• Hoyne DIVISION OF GEQ.OGICAL SURVEY Ralph j. Bernhagen Chief COLUMBUS 1945 Reprinted 1961 Heer ptg. Co., Cols., O. INTRODUCTION The Maxville has been an important source of limestone for more than 100 years in southern and east central Ohio where it was first utilized for mortar and for furnace flux. Probably for this rea~on outcrops of a limestone later shown to be Maxville in age were described by Briggs in 1838 who noted occurrences near Maxville, Perry County; on Three Mile Run near Logan in Hocking County; near Reeds Mills near Wellston, Jackson County; and at the Canter Quarry in Hamilton Township, Jack- son County.1 Further obser.vations of this limestone were made by E. B. Andrews of the Second Geological Survey of Ohio and his report was published in the Report of Progress in 1869. Andrews named the lime- stone the Maxville for its occurrence near Maxville, Hocking County, noted its patchy distribution on the outcrop, described its stratigraphic position as immediately overlying the Logan sandstones ana shales, and declared the limestone to be of sub-Carboniferous (Mississippian) age.
    [Show full text]
  • Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1
    Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1 THOMAS L. LEWIS, Department of Geological Sciences, Cleveland State University, Cleveland, OH 44115 ABSTRACT. Clastic sediments, derived from southeastern, eastern and northeastern sources, prograded west- ward into a shallow basin at the northwestern margin of the Appalachian Basin in Late Devonian and Early Mississippian time. The western and northwestern boundary of the basin was the submerged Cincinnati Arch. The marine clastic wedges provided a northwest paleoslope and a distal, gentle shelf-edge margin that controlled directional emplacement of coarse elastics. Rising sea levels coupled with differences in sedimen- tation rates and localized soft-sediment deformation within the basin help explain some features of the Bedford and Berea Formations. The presence of sand-filled mudcracks and flat-topped symmetrical ripple marks in the Berea Formation attest to very shallow water deposition and local subaerial exposure at the time of emplacement of part of the formation. Absence of thick, channel-form deposits eastward suggests loss of section during emergence. OHIO J. SCI. 88 (1): 23-39, 1988 INTRODUCTION The Bedford Formation (Newberry 1870) is the most The Ohio Shale, Bedford, and Berea Formations of lithologically varied formation of the group. It is com- northern Ohio are clastic units which record prograda- prised of gray and red mudshales, siltstone, and very tional and transgressional events during Late Devonian fine-grained sandstone. The Bedford Formation thins and Early Mississippian time. The sequence of sediments both to the east and west and reaches its maximum is characterized by (1) gray mudshale, clayshale, siltstone, thickness in the Cleveland area.
    [Show full text]
  • An Allocation of Undiscovered Oil and Gas Resources to Gauley River National Recreation Area and New River Gorge National River, West Virginia
    An Allocation of Undiscovered Oil and Gas Resources to Gauley River National Recreation Area and New River Gorge National River, West Virginia By Christopher J. Schenk, Timothy R. Klett, Ronald R. Charpentier, Troy A. Cook, Robert A. Crovelli, Richard M. Pollastro, and Robert C. Milici This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Open-File Report 03–396 U.S. Department of the Interior U.S. Geological Survey Contents Abstract.......................................................................................................................................................... 1 Introduction ................................................................................................................................................... 1 USGS Methodology for Resource Allocation........................................................................................... 1 Results ............................................................................................................................................................ 3 Additional Information ................................................................................................................................. 3 Gauley River National Recreation Area..........................................................................................
    [Show full text]
  • 31295018183201.Pdf (11.51Mb)
    DEPOSITION AND DIAGENESIS OF THE LOWER CRETACEOUS ANTLERS SANDSTONE ON THE YOUNG RANCH, NOLAN COUNTY, TEXAS by LEONARD WAYNE WOOD, B.S. A THESIS IN GEOSCIENCE Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Chairp^son of the Committee Accepted Dean of the Graduate School December, 2001 ACKNOWLEDGEMENTS I would like to express my appreciation to Dr. George B. Asquith for his constant guidance, assistance, and encouragement during my tenure at Tech. He has been a second father to me and a great teacher; his influence has truly shaped my life. I am also grateful to my graduate committee, Dr. Tom Lehman and Dr. Moira Ridley, for their assistance and review of my thesis. I would like to thank R.T. Winn, Jason Slayden, Cindy Welch, and Lee Wood (my father) for their assistance in the field. Thank you to the Young family for allowing me access and the opportunity to work on their beautiful ranch. I would also like to thank Mike Gower for his help in preparing thin sections, and his assistance with any other questions I had. His help was greatly appreciated. Thank you to Dr. Mark Crimson for his assistance in the SEM lab and to the Department of Biological Sciences at Texas Tech University for providing access to the Electron Microscopy Laboratory. I would like to dedicate this thesis to my parents and grandparents, the people that have influenced my life the most. I am glad they all stayed around long enough to see this.
    [Show full text]