Flower Head Development in the Asteraceae Family

Total Page:16

File Type:pdf, Size:1020Kb

Flower Head Development in the Asteraceae Family FLOWER HEAD DEVELOPMENT IN THE ASTERACEAE FAMILY Nicholas Andrew Zoulias Faculty of Life Sciences 2014 A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences Table of Contents ABSTRACT OF THESIS: ......................................................................................................................... 7 Declaration .......................................................................................................................................... 8 Copyright Statement ........................................................................................................................... 8 Research Contributions ....................................................................................................................... 9 List of Abbreviations ......................................................................................................................... 10 Acknowledgments ............................................................................................................................. 12 Chapter 1 ........................................................................................................................................... 13 Introduction ...................................................................................................................................... 13 1.1 The Asteraceae family ............................................................................................................. 14 1.1.1 Structure of the flower head............................................................................................ 15 1.2 Organ patterning ..................................................................................................................... 18 1.3 Auxin ....................................................................................................................................... 20 1.4 Polarised auxin transport ........................................................................................................ 21 1.4.1 PIN-FORMED auxin efflux transporters ........................................................................... 21 1.4.2 Long PIN-FORMED transporters....................................................................................... 24 1.4.3 PIN-FORMED cycling ........................................................................................................ 26 1.4.4 ATP-binding cassette auxin transporters ......................................................................... 27 1.4.5 Auxin influx transporters ................................................................................................. 29 1.4.6 Control of auxin distribution and auxin sensing .............................................................. 30 1.4.7 Auxin biosynthesis and flower initiation .......................................................................... 33 1.4.8 Floral organogenesis and pattern formation ................................................................... 33 1.4.9 Auxin maxima and minima ............................................................................................... 34 1.4.10 Auxin a morphogen? ...................................................................................................... 36 1.5 Flower development ............................................................................................................... 38 1.5.1 CYCLOIDEA ....................................................................................................................... 38 1.5.2 CYCLOIDEA-Like genes in model species .......................................................................... 40 1.5.3 Pseudanthia and CYCLOIDEA-Like .................................................................................... 41 1.5.4 RADIALIS ........................................................................................................................... 42 1.5.5 DIVARICATA ...................................................................................................................... 43 1.5.6 TCP genes and the flower head ....................................................................................... 45 1.6 LEAFY ....................................................................................................................................... 48 1.6.1 LEAFY and the ABC genes ................................................................................................. 50 1.6.2 LEAFY and auxin ............................................................................................................... 52 2 1.7 MADS-box genes and the flower head ................................................................................... 53 1.8 TERMINAL FLOWER1 ............................................................................................................... 53 1.9 Aims......................................................................................................................................... 55 Chapter 2 ........................................................................................................................................... 56 General Methods .............................................................................................................................. 56 2.1 Plant material and plant transformation ................................................................................ 57 2.1.1 Plant growth conditions ................................................................................................... 57 2.1.2 Exogenous auxin application............................................................................................ 57 2.1.3 Floral dipping method ...................................................................................................... 58 2.1.4 Virus induced gene silencing (VIGS) ................................................................................. 59 2.1.5 Plant transformation techniques-tissue culture method ................................................ 60 2.2 Bacterial growth conditions and transformation.................................................................... 61 2.2.1 E. coli transformation ....................................................................................................... 61 2.2.2 A. tumefaciens transformation ........................................................................................ 62 2.3 RNA, DNA and Cloning ............................................................................................................ 63 2.3.1 RNA and DNA extractions and cDNA synthesis ................................................................ 63 2.3.2 Degenerate Cloning of PIN1, LFY and PDS ....................................................................... 63 2.3.3 DR5::GUS Construct ......................................................................................................... 65 2.3.4 Colony PCR ....................................................................................................................... 65 2.3.5 DNA sequencing ............................................................................................................... 66 2.4 Expressional analysis ............................................................................................................... 66 2.4.1 Quantitiative RT-PCR ........................................................................................................ 66 2.4.2 Immunolocalisation ......................................................................................................... 67 2.4.3 In situ Hybridisation ......................................................................................................... 68 2.5 Histology and Scanning Electron Microscopy ......................................................................... 70 2.5.1 Beta-glucuronidase staining ............................................................................................. 70 2.5.2 Scanning Electron Microscopy ......................................................................................... 71 2.6 Software .................................................................................................................................. 71 Chapter 3 ........................................................................................................................................... 73 A Novel Morphogen-like Role of Auxin in Determining Capitulum Pattern Formation in Asteraceae .......................................................................................................................................................... 73 3.1 Abstract ................................................................................................................................... 74 3.2 Nature Letter ........................................................................................................................... 75 3.3 Method Summary ................................................................................................................... 84 3.4 Supplementary Data and Methods ......................................................................................... 86 3 Supplementary Figures ............................................................................................................. 86 Supplementary Tables .............................................................................................................
Recommended publications
  • Invasive Asteraceae Copy.Indd
    Family Asteraceae Family: Asteraceae Spotted Knapweed Centaurea biebersteinii DC. Synonyms Acosta maculosa auct. non Holub, Centaurea maculosa auct. non Lam. Related Species Russian Knapweed Acroptilon repens (L.) DC. Description Spotted knapweed is a biennial to short-lived perennial plant. Seedling cotyledons are ovate, with the first leaves lance-shaped, undivided, and hairless. (Young seedlings can appear grass-like.) Stems grow 1 to 4 feet tall, and are many-branched, with a single flower at the end of each branch. Rosette leaves are indented or divided Old XID Services photo by Richard about half-way to the midrib. Stem leaves are alternate, pinnately divided, Spotted knapweed flower. and get increasingly smaller toward the tip of each branch. Flower heads are urn-shaped, up to 1 inch wide, and composed of pink, purple, or sometimes white disk flowers. A key characteristic of spotted knap- weed is the dark comb-like fringe on the tips of the bracts, found just below the flower petals. These dark-tipped bracts give this plant its “spotted” appearance. Russian knapweed is a creeping perennial plant that is extensively branched, with solitary urn-shaped pink or purple flower heads at the end of each branch. Similar in appearance to spotted knapweed, Russian knapweed can be distinguished by its slightly smaller flower heads, flower head bracts covered in light hairs, with papery tips, and scaly dark brown or black rhizomes, which have a burnt appearance. Family: Asteraceae Spotted Knapweed Leaves and stems of both spotted and Russian knapweeds are covered in fine hairs, giving the plants a grayish cast.
    [Show full text]
  • Plant Taxonomy Table
    COMMON AND LATIN NAMES OF IMPORTANT PLANT TAXA LATIN NAME* COMMON NAME Abies Fir Acer Maple Acer negundo Box elder Aesculus Buckeye; Horse Chestnut Alnus Alder Ambrosia Ragweed Apiaceae [Umbelliferae] Carrot or parsley family Artemisia Sagebrush; sage; wormwood Asteraceae [Compositae] Aster or Sunflower Family Betula Birch Boraginaceae Borage family Brassicaceae [Cruciferae} Mustard family Caryophyllaceae Pinks Castanea Chestnut Compositae (Asteraceae) Aster or Sunflower family Cornus Dogwood Corylus Filbert; hazelnut Cruciferae (Brassicaceae) Mustard family Cupressaceae Junipers, cypresses, "cedars", others Cyperaceae Sedge family Ericaceae Heath family Fabaceae [Leguminosae] Pea family Fagus Beech Fraxinus Ash Gramineae (Poaceae) Grass family Juglans Walnut; butternut Labiatae (Lamiaceae) Mint family Larix Larch; tamarack Leguminosae (Fabaceae) Pea family Liliaceae Lily family Liriodendron Tulip tree or yellow poplar Nuphar Water lily Onagraceae Evening primrose family Papaveraceae Poppy family Picea Spruce Pinus Pine Plantago Plantain Poaceae [Gramineae] Grass family Polemonium Jacob's ladder Polygonaceae Buckwheat family Populus Poplar; cottonwood; aspen Potamogeton Pondweed Primulaceae Primrose family Quercus Oak Ranunculaceae Buttercup family Rosaceae Rose family Rhus sumac, incl. poison ivy, etc. Salix Willow Saxifragaceae Saxifrage family Scrophulariaceae Snapdragon family Sparganium Bur reed Thalictrum Meadow rue Tilia Linden or basswood Tsuga Hemlock Typha Cattail Ulmus Elm Umbelliferae (Apiaceae) Carrot or parsley family * Names of genera are always italicized; family names are given in Roman characters. All proper plant family name ends in -aceae; family names above that don't have this ending are old names, and the proper modern name is included in parentheses. .
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes.
    [Show full text]
  • Agavaceae Subf. Chlorogaloideae)
    Taylor, D.W. and D.J. Keil. 2018. Hooveria , a new genus liberated from Chlorogalum (Agavaceae subf. Chlorogaloideae). Phytoneuron 2018-67: 1–6. Published 1 October 2018. ISSN 2153 733X HOOVERIA , A NEW GENUS LIBERATED FROM CHLOROGALUM (AGAVACEAE SUBF. CHLOROGALOIDEAE) DEAN W. TAYLOR Redwood Drive Aptos, California 95003-2517 [email protected] DAVID J. KEIL Professor Emeritus Biological Sciences Department California Polytechnic State University San Luis Obispo, California 93407 [email protected] ABSTRACT Molecular phylogenetic analyses have indicated that Chlorogalum (sensu lato) (Agavaceae subf. Chlorogaloideae) comprises more than one lineage. A recently published study indicated that Chlorogalum is paraphyletic, with two well-supported clades that are successive sister groups to the remainder of the Chlorogaloideae. The first is composed of three vespertine-flowering species (Chlorogalum sensu stricto), and the second comprises two diurnally flowering species. Additional morphological and cytological evidence independently support recognition of two lineages. Hooveria , gen. nov. , is proposed to accommodate the diurnally flowering species of the second lineage. Three taxa are transferred from Chlorogalum to the new genus: Hooveria parviflora (S. Wats.) D.W. Taylor & D.J. Keil, comb. nov. , H. purpurea (Brandeg.) D.W. Taylor & D.J. Keil, comb. nov. , and H. purpurea var. reducta (Hoover) D.W. Taylor & D.J. Keil, comb. nov. A neotype is designated for Chlorogalum parviflorum S. Wats. Chlorogalum Kunth (Agavaceae subf. Chlorogaloideae) as treated traditionally is a genus of five species with nine terminal taxa (Jernstedt 2002; Callahan 2015a, b; Table 1). Chlorogalum is endemic to the California Floristic Province, extending from its northern limit in southern Coos County, Oregon (Callahan 2015b), southward to extreme northwestern Baja California (Rebman et al.
    [Show full text]
  • Flowers of Asteraceae
    Flowers of Asteraceae The 'flower' that you see is actually a head composed of many small florets. The head (capitulum) is an inflorescence and a number of capitula are often aggregated together to form a secondary inflorescence or synflorescence. The capitulum is surrounded on the outside by one or several layers of involucral bracts resembling the calyx of other flowers. These bracts are mostly green (herbaceous) but can also be brightly coloured like in everlastings (Helichrysum spp.) or can have a thin, dry, membranous texture (scarious). The involucral bracts are mostly free and arranged in one to many rows, overlapping like the tiles of a roof (imbricate). When in one row, they are often fused to different degrees. The florets in a head consist of one, two or rarely three out of six different kinds of florets. (1) The most obvious florets are the outer row of ray florets, resembling the petals of other flowering plants. The ray florets consist of laterally fused, elongated petals with three or four small upper lobes or teeth and are usually brightly coloured: yellow, blue, purple, pink, red or white and sometimes a combination of these colours. The ray florets are either female, which means they have a pistil, or they are neutral meaning that no sex organs are present or, if present, they are sterile. (2) A slight variation of these are the bilabiate ray florets. In these ray florets the outer, laterally fused petals are also elongated, but have three small upper lobes or teeth and smaller, laterally fused inner elongated petals with two upper lobes or teeth, almost like the flowers of the sage family (Lamiaceae).
    [Show full text]
  • Asteraceae – Aster Family
    ASTERACEAE – ASTER FAMILY Plant: herbs (annual or perennial), some shrubs, rarely vines or trees. Stem: Root: Often with tubers, rhizomes, stolons, or fleshy roots Leaves: mostly simple, some compound, alternate or opposite, rarely whorled. Flowers: flower head supported by an involucre (whorl of green bracts); each head composed of small flowers (composite) of flat ray-like (ligulate) flowers on the outside (ray flowers) and central tube-like flowers (disk flowers) – some species may have only one or the other. Calyx absent or modified into hairs, bristles, scales or a crown (pappus); 5 stamens (syngenesious -united by anthers); 5 united petals (sympetalous), receptacle may also have hairs or bristles. Both pappus and receptacle hairs/bristles may be used in ID. Fruit: achene (small, one-seeded, inferior ovule, 2 carpels, hard shell fruit) often with persisting crowned pappus which helps with seed dispersal. Other: Very large group, 1-2,000 genera, 20,000+ species. Dicotyledons Group WARNING – family descriptions are only a layman’s guide and should not be used as definitive ASTERACEAE – ASTER FAMILY Tall Blacktip Ragwort; Senecio atratus Greene Arrowleaf Ragwort; Senecio triangularis Hook. Common Groundsel [Old-Man-In-The-Spring]; Senecio vulgaris L. (Introduced) Starry Rosinweed; Silphium asteriscus L. [Wholeleaf] Rosinweed; Silphium integrifolium Michx. Compass Plant; Silphium laciniatum L. Cup Plant [Indian Cup]; Silphium perfoliatum L. Prairie-Dock [Prairie Rosenweed]; Silphium terebinthinaceum Jacq. var. terebinthinaceum Yellow-Flowered [Hairy; Large-Flowered] Leafcup; Smallanthus uvedalius (L.) Mack. ex Small Atlantic Goldenrod; Solidago arguta Aiton Blue-Stemmed [Wreath] Goldenrod; Solidago caesia L. Canadal [Tall] Goldenrod; Solidago canadensis L. and Solidago altissima L.
    [Show full text]
  • A Comparative Study of Cultivated Asters Richard G
    Plant Evaluation Notes ISSUE 36, 2013 A Comparative Study of Cultivated Asters Richard G. Hawke, Plant Evaluation Manager Jessie Vining Stevens Symphyotrichum oblongifolium ‘Raydon’s Favorite’ utumn is the time of asters. In days one of the largest and most evolutionarily sion, white. The ray florets surround the clus- suffused with the brilliant tones of specialized of plant families. The familial re- ter of disk florets; the number of rays varies senescing leaves, asters finally show semblance is evident among aster relatives from a few to hundreds in some double-flow- their true colors in gardens, both cultivated such as dahlias (Dahlia spp.), coneflowers ered cultivars. Each ray floret has one long, and natural, along roadsides, and in native (Echinacea spp.), sunflowers (Helianthus narrow ligule that is distinctly petallike in ap- places. Like clockwork, their starry flowers in spp.), Shasta daisies (Leucanthemum spp.), pearance, and acts much like the petal of a rich hues of blue, purple, pink, or white burst and zinnias (Zinnia spp.). Recently, changes in typical flower to attract pollinators to the forth to mark the change of seasons. A ubiq- the generic names of North American species plant. Ray florets come in varying shades of uitous nature often saddles asters with the from Aster to less melodious names such as pink, red, lavender, blue, violet, purple, and reputation of looking too wild, but their natu- Doellingeria, Eurybia, and Symphyotrichum white; the rays rather than the disks describe ral beauty and garden merit cannot be over- have complicated matters for gardeners. The the overall flower color. Another attribute of looked.
    [Show full text]
  • Five New Species of Taraxacum Section Celtica (Asteraceae) from North-West Europe
    British & Irish Botany 1(2): 167-184, 2019 Five new species of Taraxacum section Celtica (Asteraceae) from North-west Europe. A. J. Richards* Hexham, UK *Corresponding author: A.J. Richards, email: [email protected] This pdf constitutes the Version of Record published on 21st May 2019 Abstract Five new species of the mostly west European Taraxacum section Celtica A.J. Richards (Asteraceae) are described. Taraxacum amicorum A.J. Richards is only known from Somerset, England. Taraxacum atrocollinum A.J. Richards occurs in South-west England and Ireland. Taraxacum chrysoglossum A.J. Richards is described from Bute and is also recorded from the eastern Highlands, Scotland. Taraxacum elegantifrons A.J. Richards occurs on light calcareous soils in Ireland. Taraxacum chlorofrugale P. Oosterv. ex A.J. Richards from Germany, Netherlands, south England and Ireland is described formally for the first time. Keywords: Taraxacum amicorum; Taraxacum atrocollinum; Taraxacum chlorofrugale; Taraxacum chrysoglossum; Taraxacum elegantifrons; Britain; Ireland; Atlantic Europe. Introduction Taraxacum section Celtica A.J. Richards contains about 50 agamospecies. Most species have a distinctly Atlantic distribution, ranging from Portugal to Norway with the greatest concentration in western parts of the British Isles. Approximately half of the species (24) are endemic to Britain and/or Ireland. Very few species (e.g. T. nordstedtii Dahlst. and T. litorale Raunk.) are distributed as far east as Poland. Many of the British species are restricted to rather remote districts and are still being discovered as the Taraxacology of these regions becomes better known (e.g. Orkney, Richards & Ferguson-Smyth, 2016; central Ireland, Richards & Doogue, 2017). Since 2013, Taraxacum study meetings, organised through the Botanical Society of Britain and Ireland and each lasting several days, have contributed notably to the study of British and Irish Taraxaca; England, Scotland, Wales and Ireland have each hosted at least one of the six meetings.
    [Show full text]
  • Bulletin of the Natural History Museum
    Bulletin of _ The Natural History Bfit-RSH MU8&M PRIteifTBD QENERAl LIBRARY Botany Series VOLUME 23 NUMBER 2 25 NOVEMBER 1993 The Bulletin of The Natural History Museum (formerly: Bulletin of the British Museum (Natural History)), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology. The Botany Series is edited in the Museum's Department of Botany Keeper of Botany: Dr S. Blackmore Editor of Bulletin: Dr R. Huxley Assistant Editor: Mrs M.J. West Papers in the Bulletin are primarily the results of research carried out on the unique and ever- growing collections of the Museum, both by the scientific staff and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. All papers submitted for publication are subjected to external peer review for acceptance. A volume contains about 160 pages, made up by two numbers, published in the Spring and Autumn. Subscriptions may be placed for one or more of the series on an annual basis. Individual numbers and back numbers can be purchased and a Bulletin catalogue, by series, is available. Orders and enquiries should be sent to: Intercept Ltd. P.O. Box 716 Andover Hampshire SPIO lYG Telephone: (0264) 334748 Fax: (0264) 334058 WorW Lwr abbreviation: Bull. nat. Hist. Mus. Lond. (Bot.) © The Natural History Museum, 1993 Botany Series ISSN 0968-0446 Vol. 23, No. 2, pp. 55-177 The Natural History Museum Cromwell Road London SW7 5BD Issued 25 November 1993 Typeset by Ann Buchan (Typesetters), Middlesex Printed in Great Britain at The Alden Press.
    [Show full text]
  • Index to the Linnean Herbarium : with Indication of the Types of Species Marked by Carl Von Linné
    wm^mmm r'^ .M' 9'* ^T '.^^^H. *'-"•! .^.v^^-^^v wv^^U /<<^-^r'^ :««.r k-.''*a,-V» ;' California Academy of Sciences Library By action of the Board of Trustees of the Leland Stanford Junior University on June 14, 1974, this book has been placed on deposit with the California Academy of Sciences Library. EHHR ,;-**V Jt r V INDEX TO THE LINNEAN HERBARIUM, WITH INDICATION OF THE TYPES OF SPECIES MARKED BY CARL VON LINNE. BY BENJAMIN DAYDON JACKSON, Knight op the Royal Swedish Order of the Polar Star, Hon. Ph.D., & A.M., Upsal. ; General Secretary of the Linnean Society of London. Forming a Supplement to the Proceedings of the Society for the 124th Session, 1911-12. LONDON: PRINTED FOR THE LINNEAN SOCIETY, BURLINGTON HOUSE, PICCADILLY, W., BY TAYLOR AND TRANCIS, RED LION COURT, FLEET STREET. 1912 732377 CONTENTS. Page lutroduction 5 The Linnean Herbarium 7 Plan of Present Index 8 Earlier Enumerations, 1753-1767 8 List of Contributors to the Herbarium 9 Linne as a Collector 18 Signs used in the Herbarium 19 Numbers employed 20 Damage to Herbarium before 1783 21 Collateral Type-collections 21 Bibliography 22 Abbreviations and Signs used in Index 2o Index of specimens in the Linnean Herbarium .... 27 INTEODUCTION. In the autumn o£ 1906 a suggestion was made to the Council of the Linnean Society of London, that a Catalogue of the contents of the Linnean Herbarium, together with a series of photographic illustrations of selected types from it, would he an appropriate publication for the celebration of the 200th anniversary of the birth of Carl von Linne.
    [Show full text]
  • Special-Status Plant Survey Badger Street Bridge Replacement Project
    Special-Status Plant Survey for Badger Street Bridge Replacement Project Amador County, California California Department of Transportation District 10 City of Sutter Creek 10AMA – Badger Street Bridge (No. 26C0036) Over Sutter Creek Federal Aid Number: BRLS 5215 (011) 25 September 2013 Special-Status Plant Survey CONTENTS Badger Street Bridge Replacement 1.0 INTRODUCTION ......................................................................................................................... 1 1.1 Site Location .................................................................................................................................... 1 1.2 Existing Site Conditions .................................................................................................................. 3 1.2.1 Vegetation Communities ....................................................................................................... 3 1.2.2 Wetland Delineation .............................................................................................................. 5 1.2.3 Soils ....................................................................................................................................... 5 2.0 METHODS ..................................................................................................................................... 8 3.0 RESULTS AND DISCUSSION .................................................................................................... 9 3.1 Previously Documented Special-Status Plant Occurrences ............................................................
    [Show full text]
  • WO 2016/092376 Al 16 June 2016 (16.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/092376 Al 16 June 2016 (16.06.2016) W P O P C T (51) International Patent Classification: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 36/18 (2006.01) A61K 31/465 (2006.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, A23L 33/105 (2016.01) A61K 36/81 (2006.01) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, A61K 31/05 (2006.01) BO 11/02 (2006.01) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, A61K 31/352 (2006.01) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: PCT/IB20 15/002491 (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (22) International Filing Date: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 14 December 2015 (14. 12.2015) TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (25) Filing Language: English TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (26) Publication Language: English LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (30) Priority Data: SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 62/09 1,452 12 December 201 4 ( 12.12.20 14) US GW, KM, ML, MR, NE, SN, TD, TG).
    [Show full text]