Downloaded 10/05/21 10:16 AM UTC VOL

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/05/21 10:16 AM UTC VOL 42 BULLETIN AMERICAN METEOROLOGICAL SOCIETY Some Examples of Chinooks East of the Mountains in Colorado A. W. COOK AND A. G. TOPIL U. S. Weather Bureau, Denver, Colorado ABSTRACT The mechanics of chinooks as they occur in eastern Colorado were studied with the aid of upper-air data and cross sections of equivalent-potential temperature across the Rocky Mountain region. The conventional model of the chinook involving precipitation on the windward side of the range adjacent to the chinook area, is discarded in favor of a model that does not require the precipitation. A number of cases are studied. One complete example with all important charts and diagrams is presented to show the mechanics of the chinook as it occurs in the Colo- rado area. Some data on other examples are also given. INTRODUCTION 27, 1940 (FIG. 1) is an example of the extreme HE definition of chinook used in this paper rise that can occur during the night. In a short pe- is that applied by early settlers along the riod after midnight there was a rise of 25F°, the eastern base of the Rocky Mountains. temperature reaching 12° higher than the maxi- T mum of the previous afternoon. They used the term to apply to the warm, dry wind descending the eastern slopes of these mountains The maximum temperature in a chinook is pre- [17]. It is further restricted by usage of weather dicated by the potential temperature of the air de- forecasters in the Rocky Mountain area to refer scending the mountains; this may be different to cases where westerly winds are of sufficient from day to day according to advection of warmer strength to produce forced descent and adiabatic or cooler air at the level of the mountain crests and heating. passes, or by a greater velocity of upper winds The classical theory of the chinook is predicated stirring air down from an even higher level with upon the air rising on the windward slopes and greater potential temperature. There is a much cooling at the saturated adiabatic rate, then de- smaller diurnal range in temperature on a chinook scending on the leeside at the dry adiabatic rate. day (i.e., when the chinook blows all day) than In such a process the air arrives at the lee base of the mountains with an increase in temperature equal to the latent heat liberated during the con- densation while ascending the windward slopes. This theory is credited to Hann, who studied the foehn wind in northern Switzerland. That the foehn and chinook winds have much in common, there is no question. Several authors take more or less exception to portions of the original Hann theory [6] [7] [12] [13], principally in whether the ascending or precipitation phase is necessary, and what would cause warm air at high levels to descend and displace colder, more dense air at the surface. Hann later admitted that precipitation on the windward was not essential for a foehn [18]. SOME CHINOOK EFFECTS OBSERVED IN EASTERN COLORADO Chinooks in eastern Colorado can occur at any time, day or night. They are more pronounced at night because the normal temperature is lower FIG. 1. Thermograph trace showing a rapid rise in than in the daytime and the contrast between chi- temperature after midnight, produced by a chinook wind. nook conditions and normal conditions is greater. The temperature rose far above the maximum of the The thermograph trace at Denver for January 26- previous afternoon. Unauthenticated | Downloaded 10/05/21 10:16 AM UTC VOL. 33, No. 2, FEBRUARY, 1952 43 turbulence set up as the air spills over the mountain ranges. This is essentially a warm-frontal action but it will usually not show warm-front clouds and precipitation, because of subsidence in descending the mountain slope. Probably the simplest ex- planation of why the upper air descends the east slope is that the general pressure gradient in the lower cold air directs that air eastward, and it must be replaced by warmer air from the west. The second cause is subsidence. Air that de- scends along the mountain slope is warmed dynami- cally at the dry adiabatic rate. This should bring it to the base with the same potential temperature with which it started above the top of the range. Its previous history makes no difference, for the temperature above the mountain, as well as amount of compression heating, will be approximately the same whether the air came from a valley on the other side of the range or whether it has been at FIG. 2. Illustration of the extreme temperature drop the high level for several days and thousands of that can occur when a cold front from the north passes miles of travel. Observation shows the potential Denver at the same time that a chinook wind that has temperature at the bottom of the descent is not blown throughout the night ceases. quite as high as that at the level where the air started down; this discrepancy is probably due on an average day. There is often a rapid fall in principally to contact cooling and evaporation dur- temperature when the wind ceases, even for an ing descent, with mechanical mixing and radiation hour, at night, with an abrupt rise in temperature also contributing. The surface temperature dur- if the wind again reaches the surface. ing the chinook varies with the height from which The greatest temperature drop at the end of a the air is brought down. If upper winds are suffi- chinook occurs when it is coincident with the pas- ciently strong, they can bring down air from two sage of a cold front of polar air and the wind turns to five thousand feet above the main range of into the upslope direction. The magnitude of the mountains. closing temperature fall depends on the strength of the preceding chinook wind and the temperature contrast between the two air masses. The thermo- gram for Denver on January 17, 1940 (FIG. 2) shows an excellent example; in this case the tem- perature fell from 45°F to 17°F in the first hour and continued falling to 7°F below zero. The rise in temperature during a chinook may be attributed to three causes which are often con- current. The first, which is not essentially chinook effect but which is a component part of almost any type of warming, is replacement of a cold air mass by a warm air mass, i.e., by advection of warmer air. In many cases when a dense cold cP air mass moves out of Canada its western flank is pushed firmly against the wrestern mountain ranges. Weak disturbances often fail to dislodge this cold air mass and it remains until a strong pressure gradient de- velops with 40-60 mile per hour free-air westerly winds across southern Wyoming and northern FIG. 3. Six consecutive raobs taken at Denver during Colorado. These winds remove the cold air mass a chinook wind situation. All show advection of warm partly through momentum and hydrostatic forces air up to the 400-mb level. The last two show removal of and partly by eddy excavation due to mechanical the surface inversion by the chinook wTind. Unauthenticated | Downloaded 10/05/21 10:16 AM UTC 44 BULLETIN AMERICAN METEOROLOGICAL SOCIETY The third cause of a large rise in temperature during chinook conditions is the preventing or destroying of the normal night-time ground in- version. The daytime maximum temperature in a chinook may be only a little higher than might ordinarily occur with regular daytime heating, whereas if the chinook wind continues strongly throughout the night, a ground inversion does not form and the usual nocturnal fall in temperature (average about 25°) is not realized. If an in- version has already formed during the early part of the night and the temperature has fallen to near a normal minimum value, the break through of a chinook wind to the ground causes a very striking rise in temperature. The temperature reached under such night-time conditions often approaches ordinary daytime maxima. After the chinook has FIG. 4. Thermograph trace showing day-by-day warm- once broken through to the ground during the ing during the chinook due to advection of warm air, and night and continues to blow the next day, the ad- the warm night of the 20th-21st during which the tempera- ditional rise in temperature due to insolational ture scarcely dropped below 50°. heating is usually small compared to the insola- tional effect on normal days. Where a chinook 2100 MST on January 18, the cold air mass, hav- wind at the surface lets up for a short period dur- ing just moved in, was at its lowest temperature at ing the night, even for less than an hour, the tem- all levels. In the four following soundings this air perature rapidly drops several degrees only to rise became steadily warmer at all levels—an excellent sharply as soon as the wind breaks through again. example of the advection of warm air aloft coinci- dent with a chinook. The last two raobs show the EXAMPLES OF COLORADO CHINOOK SITUATIONS characteristic lack of a ground inversion and the FIGURE 3 shows six consecutive raobs at Denver near-adiabatic lapse rate below 12,000 feet MSL at 12-hour intervals during a chinook period. At once the chinook is well established. The thermo- FIG. 5. Surface map for a chinook, showing the packing of isobars across southern Wyoming and western Colorado, January 20, 1943, P.M. Unauthenticated | Downloaded 10/05/21 10:16 AM UTC VOL.
Recommended publications
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • 2013 Washington State Enhanced Hazard Mitigation Plan Severe Storm Hazard Profile
    Final - Hazard Profile – Severe Storm Severe Storm Frequency 50+ yrs 10-50 yrs 1-10 yrs Annually People <1,000 1,000-10,000 10,000-50,000 50,000+ Economy 1% GDP 1-2% GDP 2-3% GDP 3%+ GDP Environment <10% 10-15% 15%-20% 20%+ Property <$100M $100M-$500M $500M-$1B $1B+ Severe Storm Risk Level Hazard scale < Low to High > Frequency – Severe storms, which include any or a combination of: thunderstorms, hail, wind storms, lightning, or a tornado, happen annually in Washington. People – Looking at past history of injuries and deaths due to severe storms in Washington, the minimum threshold of a thousand injuries for this category is not met. Economy – According to the National Oceanic and Atmospheric Administration’s (NOAA) National Climatic Data Center, Washington has not experienced a severe weather event that totaled losses that met or exceeded the minimum dollar amount /percentage for this category.1 Environment – Severe storms do affect the environmental landscape of Washington, but their effect does not meet the minimum threshold for this category. Property – Severe storms can have a large impact on the property of the state, both residential and commercial. The December 2006 windstorm affected all 39 counties and the estimate for damage is still being tallied and is greater than $50 million. Total property damage from the greatest windstorm to hit Washington is estimated at $235 million (1962 dollars). This was the Columbus Day Storm of October 1962, which was the strongest non-tropical storm to ever hit the contiguous 48 states. Figure 5.7-1 and Figure 5.7-2 below show previous occurrences of tornado and hail events, respectively, from 1960 to 2012 as reported by the National Climatic Data Center.
    [Show full text]
  • Chinook Vol. 9 No. 3
    .+ Learning Weather • • • A resource study kit suitable for students grade seven and up, prepared by the Atmospheric Environment Service of Environment Canada Includes new revised poster·size cloud chart Decouvrons la meteO ... Pochettes destinees aux eleves du secondaire et du collegial, preparees par Ie service de I'environnement atmos heri ue d'Environnement Canada Incluant un tableau revise descriptif des nuages Learning Weather Decouvrons la meteo A resource study kit, contains: Pochette documentaire comprenant: 1. Mapping Weather 1. Cartographie de la meteo A series of maps with exercises. Teaches how Serie de cartes accompagnees d'exercices. Oecrit weather moves. Includes climatic data for 50 Cana­ les fluctuations du temps et fournit des donnees dian locations. climatologiques pour 50 localites canadiennes. 2. Knowing Weather 2. Apprenons a connaitre la meteo Booklet discusses weather events, weather facts Brochure traitant d'evenements, de faits et de legen· and folklore, measurement of weather and several des meteorologiques. Techniques de I'observation et student projects to study weather. de la prevision de la met eo. Projets scolaires sur la 3. Knowing Clouds meteorologie. A cloud chart to help students identify various cloud 3. Apprenons a connaitre les nuages formations. Tableau descriptif des nuages aidant les elilves a identifier differentes formations. Cat. No. EN56·5311983·E Each kit $4.95 Cat. N° EN56·5311983F Chaque pochette: 4,95 $ Order kits from: Commandez les pochettes au : CANADIAN GOVERNMENT PUBLISHING CENTRE CENTRE D'EDITION DU GOUVERNEMENT DU OTTAWA, CANADA CANADA, K1A OS9 OTTAWA (CANADA) K1A OS9 Order Form (please print) Bon de commande Veuillez m'ex pedier _ _ exemplaire(s) de la pochette Please send me _ _ copy(ies) of Learning Weather at $4.95 "Decouvrons la meteo" it 4.95 $ la co pie.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Downslope Winds Chinook Wall
    MET 4300 Lecture 21 Mountain Windstorms (CH17) Downslope Winds Chinook Wall --Hurricane force winds •Foehn in the European Alps (a general term for warm, dry downslope windstorms –Latin: west wind) •Bora in the Adriatic Sea SE of the Dinaric Alps (a general term for cold downslope windstorms—Greek: north wind) •Katabatic Winds: in high-latitude icefields in Alaska, Greenland and Antarctica (very cold winds) In US: •Chinook or Snow Eater in the east slope of the Rockies •Santa Ana in California: west slope of the San Bernardino, Santa Ana, and San Gabriel Mountains Downslope Winds in Western North America •Chinooks: can be extremely gusty (>100 kts), occur every year, mainly in late fall & winter. Chinooks extends from north to south along the plains of eastern Colorado from Fort Collins to Colorado Springs, including Denver and Boulder. The worst downslope winds are in Boulder. An example of Chinook Winds Jan 16-17, 1982 Chinook Wind Measurement at NCAR Boulder CO Chinooks are warm (or hot), strong and gusty, blowing from a fixed direction, generally away from the mountains Gusts may exceed 100 kts. Influence the plains of eastern CO, mainly Boulder. Gustiness (from 100mph to 10 mph within a minute) can cause a lot of roof damages, and psychological problems. Dynamics of Downslope Windstorms: Chinooks & Santa Ana are Dynamically-Driven Altocumulus Mountain Waves and Lenticularis Lenticular Clouds Dynamics: winds driven by strong pressure gradients that develop across mountain ranges; air rise on windward side and descend on the leeward
    [Show full text]
  • Climatology of Alpine North Foehn
    Scientific Report MeteoSwiss No. 100 Climatology of Alpine north foehn Cecilia Cetti, Matteo Buzzi and Michael Sprenger ISSN: 1422-1381 Scientific Report MeteoSwiss No. 100 Climatology of Alpine north foehn Cecilia Cetti, Matteo Buzzi and Michael Sprenger Recommended citation: Cetti C., Buzzi B. and Sprenger M.: 2015, Climatology of Alpine north foehn, Scientific Report Me- teoSwiss, 100, 76 pp. Editor: Federal Office of Meteorology and Climatology, MeteoSwiss, © 2015 MeteoSwiss Operation Center 1 CH-8058 Zürich-Flughafen T +41 58 460 91 11 www.meteoswiss.ch Climatology of Alpine north foehn 5 Abstract The foehn wind occurs in the presence of a strong synoptic-scale flow that develops across mountain ranges, such as the Alps. These particular wind events strongly influence air quality, air temperature and humidity. The characteristics of foehn are highly dependent on local topography, which makes it hard to predict. Accurate forecasts of foehn are very important to be predictet, so that the population and the infrastructure of a certain area can be protected in case severe windstorms develop. Although it might be generally thought that this phenomena is fully understood and classified, there are still many unknown aspects, especially concerning the foehn in the southern part of the Alps, called "north foehn". Nowadays, there is a lack of climatological studies on the north foehn that could help improve forecasts and warnings. Therefore, it is of extreme interest to expand the research about the climatology of the north foehn to the south Alpine region, especially in the canton of Ticino and the four south valleys of the canton of Grisons.
    [Show full text]
  • Battle of the Chinook Wind at Havre, Mont
    54 MONTHLY WEATHER REVIEW FEBRUARY1934 gations be carried out to determine the aniount of residual since it will, in general, be small in coriiparison to other air which should be left inside the pressure elements in uncertainties present. order to obtain R coiiipensat8ionpressure of about 600 nib. The mtliors desire to acknowledge the helpful sug- This work is now being done at the Weitt,lier Burenu and gestions of Dr. W. G. Brombacher, in charge of the the results will appear shortly. If this work gives satis- Aeronautic Instrument Section, United States Bureau of factory results, it is planned to recoinpensate the elements Standards, where these tests mere cnrried out. now in use and then to omit the temperature correctim BATTLE OF THE CHINOOK WIND AT HAVRE, MONT. By FRANKA. hhTH IWenther Bureau offire, Havre, Mont., January 1Y34] Appnrently Havre, Rlont., was on the battle front clown between zero and 19' F. Then at 6:55 p.m. of the between cold polar air and warm Pacific nir during most 10th the drift from the east gave way to a northerly wind of December 1933. Diiring the first week tlie weather and the full force of a west-southwest chinooli struck at was generally ikir and mild, and the ground bare of SIUJW. 7:40 p.m. Tlie velocities ranged from 20 to 33 miles per From the night of December 9 to Deceniher 12 a spell UI hour during the nest 3 hours with a temperature rise to cloudy weather with light-to-heavy snowfall prevailed. 41' by 8:15 p.m., a jump of 37Oin 1 hour and 15 minutes.
    [Show full text]
  • Chapter 7 – Atmospheric Circulations (Pp
    Chapter 7 - Title Chapter 7 – Atmospheric Circulations (pp. 165-195) Contents • scales of motion and turbulence • local winds • the General Circulation of the atmosphere • ocean currents Wind Examples Fig. 7.1: Scales of atmospheric motion. Microscale → mesoscale → synoptic scale. Scales of Motion • Microscale – e.g. chimney – Short lived ‘eddies’, chaotic motion – Timescale: minutes • Mesoscale – e.g. local winds, thunderstorms – Timescale mins/hr/days • Synoptic scale – e.g. weather maps – Timescale: days to weeks • Planetary scale – Entire earth Scales of Motion Table 7.1: Scales of atmospheric motion Turbulence • Eddies : internal friction generated as laminar (smooth, steady) flow becomes irregular and turbulent • Most weather disturbances involve turbulence • 3 kinds: – Mechanical turbulence – you, buildings, etc. – Thermal turbulence – due to warm air rising and cold air sinking caused by surface heating – Clear Air Turbulence (CAT) - due to wind shear, i.e. change in wind speed and/or direction Mechanical Turbulence • Mechanical turbulence – due to flow over or around objects (mountains, buildings, etc.) Mechanical Turbulence: Wave Clouds • Flow over a mountain, generating: – Wave clouds – Rotors, bad for planes and gliders! Fig. 7.2: Mechanical turbulence - Air flowing past a mountain range creates eddies hazardous to flying. Thermal Turbulence • Thermal turbulence - essentially rising thermals of air generated by surface heating • Thermal turbulence is maximum during max surface heating - mid afternoon Questions 1. A pilot enters the weather service office and wants to know what time of the day she can expect to encounter the least turbulent winds at 760 m above central Kansas. If you were the weather forecaster, what would you tell her? 2.
    [Show full text]
  • Characteristics and Evolution of Diurnal Foehn Events in the Dead Sea Valley
    Atmos. Chem. Phys., 18, 18169–18186, 2018 https://doi.org/10.5194/acp-18-18169-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Characteristics and evolution of diurnal foehn events in the Dead Sea valley Jutta Vüllers1, Georg J. Mayr2, Ulrich Corsmeier1, and Christoph Kottmeier1 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany 2Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria Correspondence: Jutta Vüllers ([email protected]) Received: 18 May 2018 – Discussion started: 9 August 2018 Revised: 7 November 2018 – Accepted: 5 December 2018 – Published: 21 December 2018 Abstract. This paper investigates frequently occurring foehn 1 Introduction in the Dead Sea valley. For the first time, sophisticated, high- resolution measurements were performed to investigate the In mountainous terrain the atmospheric boundary layer, and horizontal and vertical flow field. In up to 72 % of the days thus the living conditions in these regions, are governed by in summer, foehn was observed at the eastern slope of the processes of different scales. Under fair weather conditions, Judean Mountains around sunset. Furthermore, the results the atmospheric boundary layer (ABL) in a valley is often also revealed that in approximately 10 % of the cases the decoupled from the large-scale flow by a strong tempera- foehn detached from the slope and only affected elevated ture inversion (Whiteman, 2000). In this case mainly local layers of the valley atmosphere. Lidar measurements showed convection and thermally driven wind systems, which are that there are two main types of foehn.
    [Show full text]
  • Impact of Foehn Wind and Related Environmental Variables on the Incidence of Cardiac Events
    International Journal of Environmental Research and Public Health Article Impact of Foehn Wind and Related Environmental Variables on the Incidence of Cardiac Events Andrzej Maciejczak 1,2 , Agnieszka Guzik 3,* , And˙zelinaWolan-Nieroda 3, Marzena Wójcik 3 and Teresa Pop 3 1 Department of Neurosurgery, Saint-Luke Hospital, 33-100 Tarnów, Poland; [email protected] 2 Institute of Medical Sciences, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland 3 Institute of Health Sciences, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland; [email protected] (A.W.-N.); [email protected] (M.W.); [email protected] (T.P.) * Correspondence: [email protected]; Tel.: +48-17-872-1153; Fax: +48-17-872-19-30 Received: 23 February 2020; Accepted: 10 April 2020; Published: 12 April 2020 Abstract: In Poland there is no data related to the impact of halny wind and the related environmental variables on the incidence of cardiac events. We decided to investigate the relationship between this weather phenomenon, as well as the related environmental variables, and the incidence of cardiac events in the population of southern Poland, a region affected by this type of wind. We also decided to determine whether the environmental changes coincide with or predate the event examined. We analysed data related to 465 patients admitted to the cardiology ward in a large regional hospital during twelve months of 2011 due to acute myocardial infarction. All the patients in the study group lived in areas affected by halny wind and at the time of the event were staying in those areas. The frequency of admissions on halny days did not differ significantly from the admissions on the remaining days of the year (p = 0.496).
    [Show full text]
  • The Climate of the Matanuska Valley
    U.S. DEPARTMENT OF COMMERCE SINCLAIR WEEKS, Secretary WEATHER BUREAU F. W. REICHELDERFER, Chief TECHNICAL PAPER NO. 27 The Climate of the Matanuska Valley Prepared by ROBERT F. DALE CLIMATOLOGICAL SECTION CENTER. U. S. WEATHER BUREAU, ANCHORAGE, ALASKA WASHINGTON, D. C. MARCH 1956 For sale by the Superintendent of Document!!, U. S. Government Printing Office, Washington 25, D. C. • Price 25 cents PREFACE This study was made possible only through the unselfish service of the copperative weather observers listed in table 1 and the Weather Bureau and Soil Conservation officials who conceived and implemented the network in 1941. Special mention should be given Max Sherrod at Matanuska No. 12, and Irving Newville (deceased) at Matanuska No. 2, both original colonists and charter observers with more than 10 years of cooperative weather observing to their credit. Among the many individuals who have furnished information and assistance in the preparation of this study should be mentioned Don L. Irwin Director of the Alaska Agricultural Experiment Station; Dr. Curtis H. Dear­ born, Horticulturist and present weather observer at the Matanuska Agri­ cultural Experiment Station; Glen Jefferson, Regional Director, and Mac A. Emerson, Assistant Regional Director, U. S. Weather Bureau; and Alvida H. Nordling, my assistant in the Anchorage Climatological Section. RoBERT F. DALE. FEBRUARY 1955. III CONTENTS Page Preface____________________________________________________________________ III 1. Introduction____________________________________________________________
    [Show full text]
  • State of the Climate in 2015
    STATE OF THE CLIMATE IN 2015 Special Supplement to the Bulletin of the American Meteorological Society Vol. 97, No. 8, August 2016 STATE OF THE CLIMATE IN 2015 Editors Jessica Blunden Derek S. Arndt Chapter Editors Howard J. Diamond Jeremy T. Mathis Jacqueline A. Richter-Menge A. Johannes Dolman Ademe Mekonnen Ahira Sánchez-Lugo Robert J. H. Dunn A. Rost Parsons Carl J. Schreck III Dale F. Hurst James A. Renwick Sharon Stammerjohn Gregory C. Johnson Kate M. Willett Technical Editors Kristin Gilbert Tom Maycock Susan Osborne Mara Sprain AMERICAN METEOROLOGICAL SOCIETY COVER CREDITS: FRONT: Reproduced by courtesy of Jillian Pelto Art/University of Maine Alumnus, Studio Art and Earth Science — Landscape of Change © 2015 by the artist. BACK: Reproduced by courtesy of Jillian Pelto Art/University of Maine Alumnus, Studio Art and Earth Science — Salmon Population Decline © 2015 by the artist. Landscape of Change uses data about sea level rise, glacier volume decline, increasing global temperatures, and the increas- ing use of fossil fuels. These data lines compose a landscape shaped by the changing climate, a world in which we are now living. (Data sources available at www.jillpelto.com/landscape-of-change; 2015.) Salmon Population Decline uses population data about the Coho species in the Puget Sound, Washington. Seeing the rivers and reservoirs in western Washington looking so barren was frightening; the snowpack in the mountains and on the glaciers supplies a lot of the water for this region, and the additional lack of precipitation has greatly depleted the state’s hydrosphere. Consequently, the water level in the rivers the salmon spawn in is very low, and not cold enough for them.
    [Show full text]