Downloaded 10/05/21 03:15 PM UTC 20.2 METEOROLOGICAL MONOGRAPHS VOLUME 59

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/05/21 03:15 PM UTC 20.2 METEOROLOGICAL MONOGRAPHS VOLUME 59 CHAPTER 20 S M I T H 20.1 Chapter 20 100 Years of Progress on Mountain Meteorology Research RONALD B. SMITH Yale University, New Haven, Connecticut ABSTRACT Mountains significantly influence weather and climate on Earth, including disturbed surface winds; altered distribution of precipitation; gravity waves reaching the upper atmosphere; and modified global patterns of storms, fronts, jet streams, and climate. All of these impacts arise because Earth’s mountains penetrate deeply into the atmosphere. This penetration can be quantified by comparing mountain heights to several atmo- spheric reference heights such as density scale height, water vapor scale height, airflow blocking height, and the height of natural atmospheric layers. The geometry of Earth’s terrain can be analyzed quantitatively using statistical, matrix, and spectral methods. In this review, we summarize how our understanding of orographic effects has progressed over 100 years using the equations for atmospheric dynamics and thermodynamics, numerical modeling, and many clever in situ and remote sensing methods. We explore how mountains disturb the surface winds on our planet, including mountaintop winds, severe downslope winds, barrier jets, gap jets, wakes, thermally generated winds, and cold pools. We consider the variety of physical mechanisms by which mountains modify precipitation patterns in different climate zones. We discuss the vertical propagation of mountain waves through the troposphere into the stratosphere, mesosphere, and thermosphere. Finally, we look at how mountains distort the global-scale westerly winds that circle the poles and how varying ice sheets and mountain uplift and erosion over geologic time may have contributed to climate change. 1. Introduction to the field of mountain The influence of mountains on weather has been dis- meteorology cussed for at least 2000 years. In about 340 BC, Aristotle speculated about the role of mountain heights in de- Mountain meteorology is the study of how mountains termining the altitude of clouds (Frisinger 1972). In influence the atmosphere. This subject has drawn curi- 1647, Blaise Pascal measured the decrease in atmo- ous investigators to it from the earliest days of the spheric pressure with altitude along a mountain slope to physical, geophysical, and geographical sciences. Some prove that air has weight. Even with this long history, the investigators are attracted to the subject by their love of observational tools of meteorology were poorly de- mountain adventure: skiing, hiking, and climbing. Some veloped in the early twentieth century. One hundred appreciate the beauty of mountain scenery and fast- years ago, we had only a few weather balloons, analog changing patterns of mountain clouds, winds, and recording instruments, and permanent mountaintop weather. Some are drawn by the excitement of flying weather stations (e.g., Mt. Washington, New Hamp- over mountains in gliders or aircraft. Many enjoy the shire, and Sonnblick, Austria). Now, as we begin the challenging physics and mathematics of the unsolved twenty-first century, many powerful observational tools mountain airflow problems. Most important are the are in use: instrumented aircraft, satellite passive visible practical applications of mountain meteorology, such as and infrared imagery, active lidar and radar remote predicting damaging winds; forest fires; clear air turbu- sensing, and even water isotope analysis. Accordingly, lence; air pollution; wind, solar, and hydropower; water our knowledge has increased manyfold. resources; and patterns of regional and global climate. In the last 60 years, many small and a few large co- ordinated field projects have provided a valuable ob- servational database for mountain meteorology. Some Corresponding author: Ronald B. Smith, [email protected] examples are given in Table 20-1. These national and DOI: 10.1175/AMSMONOGRAPHS-D-18-0022.1 Ó 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses). Unauthenticated | Downloaded 10/05/21 03:15 PM UTC 20.2 METEOROLOGICAL MONOGRAPHS VOLUME 59 TABLE 20-1. Some mountain meteorology field projects. Project Acronym Year Location Reference Sierra Wave Project 1951/52/55 California Grubisic´ and Lewis (2004) Colorado Lee Wave Experiment 1970 Colorado Lilly and Kennedy (1973) Alpine Experiment ALPEX 1982 Alps Kuettner and O’Neill (1981) Hawaiian Rainband Project HaRP 1989 Hawaii Austin et al. (1996) Taiwan Mesoscale Experiment TAMEX 1989 Taiwan Kuo and Chen (1990) Pyrenees Experiment PYREX 1990 Pyrenees Bougeault et al. (1997) Southern Alps Experiment SALPEX 1993/95 New Zealand Wratt et al. (1996) California Landfalling Jets Experiment CALJET 1997/98 California Neiman et al. (2002) Mesoscale Alpine Project MAP 1999 Alps Bougeault et al. (2001) Improvement of Microphysical IMPRoVE 2001 Washington State Garvert et al. (2007) Parameterization Terrain-Induced Rotor Experiment T-REX 2006 California Grubisic´ et al. (2008) Cumulus Photogrammetric In Situ and CuPIDO 2006 Arizona Damiani et al. (2008) Doppler Observations Convective and Orographically Induced COPS 2007 France and Germany Wulfmeyer et al. (2011) Precipitation Study Persistent Cold-Air Pool Study PCAPS 2010/11 Utah Lareau et al. (2013) Dominica Experiment DOMEX 2011 Dominica Smith et al. (2012) Deep Gravity Wave Project DEEPWAVE 2014 New Zealand Fritts et al. (2016) Olympic Mountains Experiment OLYMPEX 2015/16 Washington State Houze et al. (2017) international projects broadened and connected the at- and fluid dynamics of how mountains influence weather mospheric science community. and climate. In section 4, the impact of mountains on Equally important to the history of mountain meteo- surface winds is reviewed, including mountaintop winds, rology was the rapid development of numerical simu- downslope winds, barrier jets, gap jets, wakes, thermally lations of geophysical fluid flows, including microscale, driven slope winds, and cold pools. In section 5, oro- mesoscale, and global weather and climate models. (e.g., graphic precipitation is summarized. In section 6,we Durran 2010). Starting in the 1970s, numerical models describe the generation of mountain waves that propa- with steadily increasing resolution and accuracy have gate deep into the upper atmosphere. In section 7,we provided a powerful tool for sensitivity and hypothesis consider the global effects of mountains on climate over testing regarding mountain influences. Earth’s history. Stimulated by these exciting field experiments and advances in numerical modeling, scientists in this field have met annually to discuss new discoveries. These TABLE 20-2. Book-length references on mountain meteorology. meetings were organized in alternate years by the Reference Title American Meteorological Society’s Committee on Mountain Meteorology and the European International Smith (1979) The influence of mountains on the atmosphere Conference on Alpine Meteorology (ICAM). Hide and White (1980) Orographic Effects in Planetary The literature on mountain meteorology is extensive. Flows A guide to the major publications is given in Table 20-2. Whiteman and Dreiseitl Alpine meteorology: Translations of In this list are only ‘‘book-length’’ publications with a (1984) classic contributions by A. broad scope. Other special review articles will be cited in Wagner, E. Ekhart, and F. Defant Price (1986) Mountains and Man: A Study of the individual sections. The books in Table 20-2 provide Process and Environment a deeper account of mountain meteorology than we can Blumen (1990) Atmospheric Processes over give in this short article. As they span nearly 40 years, Complex Terrain they also give a sense of how the subject has advanced Baines (1995) Topographic Effects in Stratified through time. Flows Ruddiman (1997) Tectonic Uplift and Climate Change The current article is divided into seven main sections. Whiteman (2000) Mountain Meteorology: The second section ‘‘How high is a mountain?’’ dis- Fundamentals and Applications cusses the physical properties of the atmosphere that Barry (2008) Mountain Weather and Climate control the influence of mountains. The third section Chow et al. (2013) Mountain Weather Research and summarizes the mathematical description of terrain Forecasting: Recent Progress and Current Challenges geometry. The following four sections treat the physics Unauthenticated | Downloaded 10/05/21 03:15 PM UTC CHAPTER 20 S M I T H 20.3 2. Atmospheric reference heights: How high is a TABLE 20-3. Atmospheric reference heights. mountain? Name Typical value (km) Variation Mountains are usually ranked by their peak heights. Earth radius 6371 Fixed Citizens take pride in their nation’s highest peaks. Climbers Density scale height 8.5 Nearly fixed rightly brag about the highest peak they have ‘‘bagged.’’ Flow lifting height 0.5–3 Widely variable This rank order of mountains, with Mt. Everest (8848 m) at Tropopause 8–15 Variable Trade wind inversion 2–4 Variable the top, dominates our thinking about mountains. Daytime inversion 1–4 Variable In this chapter, however, we judge mountain height Water vapor scale height 2–3 Variable differently: not by comparison with other mountains, LCL 0.5–4 Variable but with reference to various height scales in Earth’s Freezing level 0–5 Widely variable atmosphere (Table 20-3). This simple exercise in ‘‘rel- Equilibrium line 0–5 Widely variable Tree line 0–5 Widely variable ativism’’ will carry us a long way toward
Recommended publications
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • Awio20 Fmee 251219 Tropical Cyclone Center / Rsmc La Reunion / Meteo-France
    AWIO20 FMEE 251219 TROPICAL CYCLONE CENTER / RSMC LA REUNION / METEO-FRANCE BULLETIN FOR CYCLONIC ACTIVITY AND SIGNIFICANT TROPICAL WEATHER IN THE SOUTHWEST INDIAN OCEAN DATE: 2020/12/25 AT 1200 UTC PART 1: WARNING SUMMARY: Bulletins WTIO22 FMEE n°008/4 and WTIO30 FMEE n°8/4/20202021 issued at 06 UTC on Moderate Tropical Storm CHALANE. Next warnings will be issued at 12 UTC. PART 2 : TROPICAL WEATHER DISCUSSION: The basin remains in a Monsoon Trough (MT) pattern, axed along 10°S. At the western edge, the tropical storm CHALANE is now evolving autonomously with respect to the MT. East of 70°E, in addition to the Area of Disturbed Weather which has been followed for several days but which is in the Indonesian zone, a new area of enhanced low levels vorticity is monitored within the MT southeast of the Chagos archipelago. Moderate tropical storm CHALANE north of the Mascarene Islands: Position at 100 UTC: 16.1°S / 55.3°E Maximum wind over 10 minutes: 35 kt Estimated central pressure: 997 hPa Forward motion: West-Southwestwards at 8 kt For more information, please refer to bulletins WTIO22 and WTIO30 issued at 06Z and followings. Area of Disturbed Weather near the North-Eastern boarder of the basin : An area of vorticity is still present in the Indonesian area around 9S/94E according to the BOM's Tropical Cyclone Outlook for the Western Region (IDW10800). The latest ASCAT swaths show that the surface wind circulation is no longer closed. The minimum is under the influence of a strong easterly shear.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • The Life Cycle of Upper-Level Troughs and Ridges: a Novel Detection Method, Climatologies and Lagrangian Characteristics
    Weather Clim. Dynam., 1, 459–479, 2020 https://doi.org/10.5194/wcd-1-459-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. The life cycle of upper-level troughs and ridges: a novel detection method, climatologies and Lagrangian characteristics Sebastian Schemm, Stefan Rüdisühli, and Michael Sprenger Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland Correspondence: Sebastian Schemm ([email protected]) Received: 12 March 2020 – Discussion started: 3 April 2020 Revised: 4 August 2020 – Accepted: 26 August 2020 – Published: 10 September 2020 Abstract. A novel method is introduced to identify and track diagnostics such as E vectors. During La Niña, the situa- the life cycle of upper-level troughs and ridges. The aim is tion is essentially reversed. The orientation of troughs and to close the existing gap between methods that detect the ridges also depends on the jet position. For example, dur- initiation phase of upper-level Rossby wave development ing midwinter over the Pacific, when the subtropical jet is and methods that detect Rossby wave breaking and decay- strongest and located farthest equatorward, cyclonically ori- ing waves. The presented method quantifies the horizontal ented troughs and ridges dominate the climatology. Finally, trough and ridge orientation and identifies the correspond- the identified troughs and ridges are used as starting points ing trough and ridge axes. These allow us to study the dy- for 24 h backward parcel trajectories, and a discussion of the namics of pre- and post-trough–ridge regions separately. The distribution of pressure, potential temperature and potential method is based on the curvature of the geopotential height vorticity changes along the trajectories is provided to give in- at a given isobaric surface and is computationally efficient.
    [Show full text]
  • The Effects of Diabatic Heating on Upper
    THE EFFECTS OF DIABATIC HEATING ON UPPER- TROPOSPHERIC ANTICYCLOGENESIS by Ross A. Lazear A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN - MADISON 2007 i Abstract The role of diabatic heating in the development and maintenance of persistent, upper- tropospheric, large-scale anticyclonic anomalies in the subtropics (subtropical gyres) and middle latitudes (blocking highs) is investigated from the perspective of potential vorticity (PV) non-conservation. The low PV within blocking anticyclones is related to condensational heating within strengthening upstream synoptic-scale systems. Additionally, the associated convective outflow from tropical cyclones (TCs) is shown to build upper- tropospheric, subtropical anticyclones. Not only do both of these large-scale flow phenomena have an impact on the structure and dynamics of neighboring weather systems, and consequently the day-to-day weather, the very persistence of these anticyclones means that they have a profound influence on the seasonal climate of the regions in which they exist. A blocking index based on the meridional reversal of potential temperature on the dynamic tropopause is used to identify cases of wintertime blocking in the North Atlantic from 2000-2007. Two specific cases of blocking are analyzed, one event from February 1983, and another identified using the index, from January 2007. Parallel numerical simulations of these blocking events, differing only in one simulation’s neglect of the effects of latent heating of condensation (a “fake dry” run), illustrate the importance of latent heating in the amplification and wave-breaking of both blocking events.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • The Interactions Between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred During the Summer Season
    502 MONTHLY WEATHER REVIEW VOLUME 126 NOTES AND CORRESPONDENCE The Interactions between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred during the Summer Season ANTHONY R. LUPO AND PHILLIP J. SMITH Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 20 September 1996 and 2 May 1997 ABSTRACT Using the Goddard Laboratory for Atmospheres Goddard Earth Observing System 5-yr analyses and the Zwack±Okossi equation as the diagnostic tool, the horizontal distribution of the dynamic and thermodynamic forcing processes contributing to the maintenance of a Northern Hemisphere midlatitude blocking anticyclone that occurred during the summer season were examined. During the development of this blocking anticyclone, vorticity advection, supported by temperature advection, forced 500-hPa height rises at the block center. Vorticity advection and vorticity tilting were also consistent contributors to height rises during the entire life cycle. Boundary layer friction, vertical advection of vorticity, and ageostrophic vorticity tendencies (during decay) consistently opposed block development. Additionally, an analysis of this blocking event also showed that upstream precursor surface cyclones were not only important in block development but in block maintenance as well. In partitioning the basic data ®elds into their planetary-scale (P) and synoptic-scale (S) components, 500-hPa height tendencies forced by processes on each scale, as well as by interactions (I) between each scale, were also calculated. Over the lifetime of this blocking event, the S and P processes were most prominent in the blocked region. During the formation of this block, the I component was the largest and most consistent contributor to height rises at the center point.
    [Show full text]
  • Climatology of Alpine North Foehn
    Scientific Report MeteoSwiss No. 100 Climatology of Alpine north foehn Cecilia Cetti, Matteo Buzzi and Michael Sprenger ISSN: 1422-1381 Scientific Report MeteoSwiss No. 100 Climatology of Alpine north foehn Cecilia Cetti, Matteo Buzzi and Michael Sprenger Recommended citation: Cetti C., Buzzi B. and Sprenger M.: 2015, Climatology of Alpine north foehn, Scientific Report Me- teoSwiss, 100, 76 pp. Editor: Federal Office of Meteorology and Climatology, MeteoSwiss, © 2015 MeteoSwiss Operation Center 1 CH-8058 Zürich-Flughafen T +41 58 460 91 11 www.meteoswiss.ch Climatology of Alpine north foehn 5 Abstract The foehn wind occurs in the presence of a strong synoptic-scale flow that develops across mountain ranges, such as the Alps. These particular wind events strongly influence air quality, air temperature and humidity. The characteristics of foehn are highly dependent on local topography, which makes it hard to predict. Accurate forecasts of foehn are very important to be predictet, so that the population and the infrastructure of a certain area can be protected in case severe windstorms develop. Although it might be generally thought that this phenomena is fully understood and classified, there are still many unknown aspects, especially concerning the foehn in the southern part of the Alps, called "north foehn". Nowadays, there is a lack of climatological studies on the north foehn that could help improve forecasts and warnings. Therefore, it is of extreme interest to expand the research about the climatology of the north foehn to the south Alpine region, especially in the canton of Ticino and the four south valleys of the canton of Grisons.
    [Show full text]
  • P1.11 RIDGE ROLLERS: MESOSCALE DISTURBANCES on the PERIPHERY of CUTOFF ANTICYCLONES Thomas J. Galarneau, Jr.* and Lance F. Bosar
    Severe Local Storms Special Symposium 29 January–2 February 2006, Atlanta, GA P1.11 RIDGE ROLLERS: MESOSCALE DISTURBANCES ON THE PERIPHERY OF CUTOFF ANTICYCLONES Thomas J. Galarneau, Jr.* and Lance F. Bosart Department of Earth and Atmospheric Sciences University at Albany / State University of New York Albany, NY 12222 1. INTRODUCTION: surface weather in general and convection in particular is strongly conditioned by the Warm season continental anticyclones are atmospheric stability in the lower and middle frequently associated with heat waves and troposphere and the thermodynamic structure of droughts (e.g., Namias 1982, 1991; Livezey 1980; the PBL in the anticyclone environment. Changnon et al. 1996). A less appreciated aspect of continental anticyclones is that mesoscale 2. DATA AND METHODS: disturbances evident on the dynamic tropopause (DT, defined as the 1.5 potential vorticity unit Analyses and diagnostic calculations (PVU) surface), known as “ridge rollers” (RRs), are prepared in this manuscript were derived from the often observed to circumnavigate the periphery of 32 km North American Regional Reanalysis these anticyclones (e.g., Bosart et al. 1998, (NARR; Mesinger et al. 2005) for the US case and 1999). RRs often originate as fractures from the the 1.0° Global Forecast System (GFS) analyses equatorward ends of northeast-to-southwest for the Australian case. The time-longitude oriented PV tails, and move westward along the diagram was derived from the 2.5° National equatorward periphery of continental Centers for Environmental Prediction and National anticyclones. As these RRs move poleward and Center for Atmospheric Research (NCEP/NCAR) then eastward around the upstream and poleward Reanalysis (Kalnay et al.
    [Show full text]
  • Texas Hurricane History
    Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 19 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 22 The Great Galveston Hurricane (1900) 27 Hurricanes of the Early Twentieth Century 29 Corpus Christi’s Devastating Hurricane (1919) 35 San Antonio’s Great Flood – 1921 37 Hurricanes of the Late Twentieth Century 45 Hurricanes of the Early Twenty-First Century 65 Acknowledgments 71 Bibliography 72 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands.
    [Show full text]
  • 1.11 the Influence of Meteorological Phenomena on Midwest Pm2.5 Concentrations: a Case Study Analysis
    1.11 THE INFLUENCE OF METEOROLOGICAL PHENOMENA ON MIDWEST PM2.5 CONCENTRATIONS: A CASE STUDY ANALYSIS David E. Strohm,* Timothy S. Dye, Clinton P. MacDonald Sonoma Technology, Inc., Petaluma, CA 1. INTRODUCTION 2. PLANETARY-SCALE WEATHER Fine particulate matter (PM2.5) forecasting has Planetary-scale weather features strongly influence become an increasingly important part of air quality regional and local weather. Figure 1 shows the 500-mb public outreach programs designed to inform the public height pattern on September 10, 2003 and illustrates the about air quality conditions, protect public health, and planetary-scale weather features important to the encourage the public to reduce activities that contribute Midwest PM2.5 episode. The figure shows two high- to air pollution. Starting in January 2003, current- and amplitude troughs and a high-amplitude ridge (HAR) in next-day forecasts for PM2.5 were issued for cities place over North America and the North Atlantic. The throughout the United States, including a number of high-amplitude ridge also had an upper-level low- cities in the Midwest: Columbus, Cleveland, and pressure trough to its south (signified by a trough in the Cincinnati, Ohio; Chicago, Illinois; and Detroit, Michigan. 590-dm height contour south of the ridge). This pattern, Through daily forecasts, it became clear that certain called a rex block, persisted for several days because atmospheric phenomena and their impact on PM2.5 the upper-level flow split the high-low couplet. concentrations needed more analysis to better understand the atmospheric mechanics that influence PM2.5 episodes in the Midwest. As a result, a case study of meteorological and air quality conditions was performed for the period of September 9 through September 15, 2003.
    [Show full text]