Implementing a Complex Ethernet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1) What Is the Name of an Ethernet Cable That Contains Two
1) What is the name of an Ethernet cable that contains two electrical conductors ? A coaxial cable 2) What are the names of the two common conditions that degrade the signals on c opper-based cables? Crosstal and attenuation 3) Which topology requires the use of terminators? Bus 4) Which of the following topologies is implemented only logically, not physical ly? Ring 5) How many wire pairs are actually used on a typical UTP Ethernet network? Two 6) What is the name of the process of building a frame around network layer info rmation? Data encapsulation 7) Which of the connectors on a network interface adapter transmits data in para llel? The System bus connector 8) Which two of the following hardware resources do network interface adapters a lways require? I/O port address and IRQ 9) What is the name of the process by which a network interface adapter determin es when it should transmit its data over the network? Media Access Control 10) Which bus type is preferred for a NIC that will be connected to a Fast Ether net network? PCI 11) A passive hub does not do which of the following? Transmit management information using SNMP 12) To connect two Ethernet hubs together, you must do which of the following? Connect the uplink port in one hub to a standard port on the other 13) Which term describes a port in a Token Ring MAU that is not part of the ring ? Intelligent 14) A hub that functions as a repeater inhibits the effect of____________? Attenuation 15) You can use which of the following to connect two Ethernet computers togethe r using UTP -
Mikrodenetleyicili Endüstriyel Seri Protokol Çözümleyici Sisteminin Programi
YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 İÇİNDEKİLER Sayfa KISALTMA LİSTESİ ................................................................................................................ v ŞEKİL LİSTESİ ...................................................................................................................... viii ÇİZELGE LİSTESİ .................................................................................................................... x ÖNSÖZ ...................................................................................................................................... xi ÖZET ........................................................................................................................................ xii ABSTRACT ............................................................................................................................ xiii 1. GİRİŞ ...................................................................................................................... -
An Analysis of IEEE 802.16 and Wimax Multicast Delivery
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2007-09 An analysis of IEEE 802.16 and WiMAX multicast delivery Staub, Patrick A. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/3203 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AN ANALYSIS OF IEEE 802.16 AND WIMAX MULTICAST DELIVERY by Patrick A. Staub September, 2007 Thesis Advisor: Bert Lundy Second Reader: George Dinolt Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2007 Master’s Thesis 4. TITLE AND SUBTITLE An Analysis of IEEE 802.16 and WiMAX 5. FUNDING NUMBERS Multicast Delivery 6. AUTHOR(S) Patrick A. Staub 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. -
System Performance of Wireless Sensor Network Using Lora…
Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.016922 Article System Performance of Wireless Sensor Network Using LoRa–Zigbee Hybrid Communication Van-Truong Truong1, Anand Nayyar2,* and Showkat Ahmad Lone3 1Faculty of Electrical and Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam 2Graduate School, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Information Technology, Duy Tan University, Da Nang, Vietnam 3Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah Campus, KSA *Corresponding Author: Anand Nayyar. Email: [email protected] Received: 15 January 2021; Accepted: 17 February 2021 Abstract: Wireless sensor network (WSN) is considered as the fastest growing technology pattern in recent years because of its applicability in var- ied domains. Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway. Ensuring communications in heterogeneous WSNs, is a critical issue that needs to be studied. In this research paper, we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communi- cation. Specifically, two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway. The overall system integrates many different sensors in terms of types, communication protocols, and accuracy, which can be used in many applications in realistic environments such as on land, under water, or in the air. In addition to this, a synchronous man- agement software on ThingSpeak Web server and Blynk app is designed. -
Gigabit Ethernet
Ethernet Technologies and Gigabit Ethernet Professor John Gorgone Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 1 Topics • Origins of Ethernet • Ethernet 10 MBS • Fast Ethernet 100 MBS • Gigabit Ethernet 1000 MBS • Comparison Tables • ATM VS Gigabit Ethernet •Ethernet8SummaryCopyright 1998, John T. Gorgone, All Rights Reserved 2 Origins • Original Idea sprang from Abramson’s Aloha Network--University of Hawaii • CSMA/CD Thesis Developed by Robert Metcalfe----(1972) • Experimental Ethernet developed at Xerox Palo Alto Research Center---1973 • Xerox’s Alto Computers -- First Ethernet Ethernet8systemsCopyright 1998, John T. Gorgone, All Rights Reserved 3 DIX STANDARD • Digital, Intel, and Xerox combined to developed the DIX Ethernet Standard • 1980 -- DIX Standard presented to the IEEE • 1980 -- IEEE creates the 802 committee to create acceptable Ethernet Standard Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 4 Ethernet Grows • Open Standard allows Hardware and Software Developers to create numerous products based on Ethernet • Large number of Vendors keeps Prices low and Quality High • Compatibility Problems Rare Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 5 What is Ethernet? • A standard for LANs • The standard covers two layers of the ISO model – Physical layer – Data link layer Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 6 What is Ethernet? • Transmission speed of 10 Mbps • Originally, only baseband • In 1986, broadband was introduced • Half duplex and full duplex technology • Bus topology Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 7 Components of Ethernet • Physical Medium • Medium Access Control • Ethernet Frame Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 8 CableCable DesignationsDesignations 10 BASE T SPEED TRANSMISSION MAX TYPE LENGTH Ethernet8 Copyright 1998, John T. -
13 Embedded Communication Protocols
13 Embedded Communication Protocols Distributed Embedded Systems Philip Koopman October 12, 2015 © Copyright 2000-2015, Philip Koopman Where Are We Now? Where we’ve been: •Design • Distributed system intro • Reviews & process • Testing Where we’re going today: • Intro to embedded networking – If you want to be distributed, you need to have a network! Where we’re going next: • CAN (a representative current network protocol) • Scheduling •… 2 Preview “Serial Bus” = “Embedded Network” = “Multiplexed Wire” ~= “Muxing” = “Bus” Getting Bits onto the wire • Physical interface • Bit encoding Classes of protocols • General operation • Tradeoffs (there is no one “best” protocol) • Wired vs. wireless “High Speed Bus” 3 Linear Network Topology BUS • Good fit to long skinny systems – elevators, assembly lines, etc... • Flexible - many protocol options • Break in the cable splits the bus • May be a poor choice for fiber optics due to problems with splitting/merging • Was prevalent for early desktop systems • Is used for most embedded control networks 4 Star Network Topologies Star • Can emulate bus functions – Easy to detect and isolate failures – Broken wire only affects one node – Good for fiber optics – Requires more wiring; common for Star current desktop systems • Broken hub is catastrophic • Gives a centralized location if needed – Can be good for isolating nodes that generate too much traffic Star topologies increasing in popularity • Bus topology has startup problems in some fault scenarios • Safety critical control networks moving -
IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008)
IEEE Standard for Ethernet IEEE Computer Society Sponsored by the LAN/MAN Standards Committee IEEE 3 Park Avenue IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008) 28 December 2012 IEEE Std 802.3™-2012 (Revision of IEEE Std 802.3-2008) IEEE Standard for Ethernet Sponsor LAN/MAN Standards Committee of the IEEE Computer Society Approved 30 August 2012 IEEE-SA Standard Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 100 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted-pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted-pair PHY types. Keywords: 10BASE; 100BASE; 1000BASE; 10GBASE; 40GBASE; 100GBASE; 10 Gigabit Ethernet; 40 Gigabit Ethernet; 100 Gigabit Ethernet; attachment unit interface; AUI; Auto Negotiation; Backplane Ethernet; data processing; DTE Power via the MDI; EPON; Ethernet; Ethernet in the First Mile; Ethernet passive optical network; Fast Ethernet; Gigabit Ethernet; GMII; information exchange; IEEE 802.3; local area network; management; medium dependent interface; media independent interface; MDI; MIB; MII; PHY; physical coding sublayer; Physical Layer; physical medium attachment; PMA; Power over Ethernet; repeater; type field; VLAN TAG; XGMII The Institute of Electrical and Electronics Engineers, Inc. -
PCI20EX PCI Express (Pcie)
PCI20EX PCI Express (PCIe) Bus ARCNET® Network Interface Modules INSTALLATION GUIDE INTRODUCTION The PCI20EX series of ARCNET network interface modules (NIMs) links PCI Express (PCIe) bus compatible computers with the ARCNET local area network (LAN). Since most PC motherboards have migrated from the legacy PCI and PCI-X Bus, a PCI Express style NIM is required. The PCI20EX series is compliant to the PCI Express Card Electromechanical Specification Revision 2.0 and both standard height and low-profile brackets are provided. The PCI Express interface allows for jumperless configuration and Plug and Play operation. The module operates with either an NDIS driver or a null stack driver in a Windows® environment. The PCI20EX incorporates the COM20022 ARCNET controller chip with enhanced features over the earlier generation ARCNET chips. New features include command chaining, sequential access to internal RAM, duplicate node ID detection and variable data rates up to 10 Mbps. Bus contention problems are minimized since the module’s interrupt and I/O base address are assigned through Plug and Play. The PCI20EX exploits the new features of the COM20022 which includes 10 Mbps communications utilizing the various EIA-485 transceiver options. Each PCI20EX module has two LEDs on the board for monitoring network operation and bus access to the module. It is equipped with an 8 position, general purpose DIP switch typically used to assign the ARCNET node address. Ultimately, the node address is configured via software so the DIP switch can also indicate user-defined functions such as data rate, cable interface, or master/slave status of the system. -
Computer Networking in Nuclear Medicine
CONTINUING EDUCATION Computer Networking In Nuclear Medicine Michael K. O'Connor Department of Radiology, The Mayo Clinic, Rochester, Minnesota to the possibility of not only connecting computer systems Objective: The purpose of this article is to provide a com from different vendors, but also connecting these systems to prehensive description of computer networks and how they a standard PC, Macintosh and other workstations in a de can improve the efficiency of a nuclear medicine department. partment (I). It should also be possible to utilize many other Methods: This paper discusses various types of networks, network resources such as printers and plotters with the defines specific network terminology and discusses the im nuclear medicine computer systems. This article reviews the plementation of a computer network in a nuclear medicine technology of computer networking and describes the ad department. vantages and disadvantages of such a network currently in Results: A computer network can serve as a vital component of a nuclear medicine department, reducing the time ex use at Mayo Clinic. pended on menial tasks while allowing retrieval and transfer WHAT IS A NETWORK? ral of information. Conclusions: A computer network can revolutionize a stan A network is a way of connecting several computers to dard nuclear medicine department. However, the complexity gether so that they all have access to files, programs, printers and size of an individual department will determine if net and other services (collectively called resources). In com working will be cost-effective. puter jargon, such a collection of computers all located Key Words: Computer network, LAN, WAN, Ethernet, within a few thousand feet of each other is called a local area ARCnet, Token-Ring. -
Nomadic Communications
Nomadic Communications Renato Lo Cigno ANS Group – [email protected] Francesco Gringoli [email protected] http://disi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications Copyright Quest’opera è protetta dalla licenza: Creative Commons Attribuzione-Non commerciale-Non opere derivate 2.5 Italia License Per i dettagli, consultare http://creativecommons.org/licenses/by-nc-nd/2.5/it/ What do you find on the web site • Exam Rules • Exam Details ... should be on ESSE3, but ... • Generic (useful) information • Teaching Material: normally posted at least the day before the lesson • Additional Material and links • Laboratories groups, rules, description and hints • News, Bulletin, How to find and meet me and Francesco, etc. • ... The web site is work in progress (well as of today working badly, but improving) and updated frequently(that’s at least my intention) Please don’t blame ME if you did’t read the last news J Program • Why “Nomadic” – Mobile vs. nomadic – Cellular vs. HotSpot – Local wireless communications • Some rehearsal – Access Control Protocols – Protocols and architectures – Services and primitives – IEEE 802 project – Nomadic communications positioning Program • WLAN – 802.11 Standard – 802.11 MAC – 802.11b/g/a/h/n/ac PHY – QoS and Differentiation enhancement: 802.11e – Mesh networks: 802.11s & other protocols – Other extensions: 802.11f/p/ad/ad/... Program • Ad-Hoc Networks – Stand-Alone WLANs – Routing and multi-hop in Ad-Hoc networks • Vehicular Networks Problems and scenarios – Specific issues -
ARCNET E.Pdf
ARCNETâ. The universal, realtime capable fieldbus solution Take the lead with ARCNET ! AUG - ARCNET user group e. V. AUG - ARCNET user group e. V. CONTENTS 1 ARCNET, the universal, realtime capable Fieldbus Solution ____3 2 History________________________________ _________________ 4 3 Characteristics of modern Fieldbusses _____________________ 4 3.1 Topology ____________________________________________________ 5 3.1.1 Bus __________________________________________________________ 5 3.1.2 Star __________________________________________________________ 5 3.1.3 Tree__________________________________________________________ 6 3.2 Bus Access Management _______________________________________ 7 3.3 Transmission Protocol__________________________________________ 8 3.4 Transmission Integrity __________________________________________ 8 3.5 Physical Interface _____________________________________________ 8 3.6 Implementations ______________________________________________ 9 4 ARCNET________________________________ _______________ 10 4.1 Topology ___________________________________________________ 10 4.2 Bus Access Management ______________________________________ 10 4.3 Protocol Components _________________________________________ 10 4.4 Network Access______________________________________________ 13 4.4.1 Passing on the Token____________________________________________ 13 4.4.2 Data Transfer _________________________________________________ 13 4.4.3 Broadcast Message_____________________________________________ 13 4.5 Configuration Mechanisms -
Gigabit Ethernet Pocket Guide
GbE.PocketG.fm Page 1 Friday, March 3, 2006 9:43 AM Carrier Class Ethernet, Metro Ethernet tester, Metro Ethernet testing, Metro Ethernet installation, Metro Ethernet maintenance, Metro Ethernet commissioning, Carrier Class Ethernet tester, Carrier Class Ethernet testing, Carrier Class Ethernet installation, Carrier Class Ethernet maintenance, Gigabit Ethernet tester, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet protocols, 1000BASE-T tester, 1000BASE-LX test, 1000BASE-SX test, 1000BASE-T testing, 1000BASE-LX testing Trend’s Gigabit EthernetPocket Guide AuroraTango Gigabit Ethernet Multi-technology Personal Test Assistant Platform for simple, fast and effective testing of Gigabit Ethernet, ADSL, OSI model 802.3 model SHDSL, and ISDN. Aurora Tango 7 Application Upper layers Gigabit Ethernet has an exceptional 6 Presentation Reconciliation range of features Upper ensuring reliable delivery of end-to-end 5 Session layers services over Metropolitan networks MII Media independent based on Gigabit Ethernet. 4 It includes a full range of tests and Transport measurements, such as RFC-2544, PCS top ten addresses, real-time Ethernet 3 Network LLC (802.2) statistics, multilayer BERT, etc. Two PMA Gigaport transceivers allow terminate, 2 Data Link MAC (803.3) loopback and monitor connections to Autonegotiation networks, plus a 10/100/1000BASE-T Physical cable port for legacy testing. 1 PHY (802.3) dependent Media MDI A PDA provides an intuitive graphical menu