THE ECHINODERM Newslet=T'er
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sedimentology, Taphonomy, and Palaeoecology of a Laminated
Palaeogeography, Palaeoclimatology, Palaeoecology 243 (2007) 92–117 www.elsevier.com/locate/palaeo Sedimentology, taphonomy, and palaeoecology of a laminated plattenkalk from the Kimmeridgian of the northern Franconian Alb (southern Germany) ⁎ Franz Theodor Fürsich a, , Winfried Werner b, Simon Schneider b, Matthias Mäuser c a Institut für Paläontologie, Universität Würzburg, Pleicherwall 1, 97070 Würzburg, Germany LMU b Bayerische Staatssammlung für Paläontologie und Geologie and GeoBio-Center , Richard-Wagner-Str. 10, D-80333 München, Germany c Naturkunde-Museum Bamberg, Fleischstr. 2, D-96047 Bamberg, Germany Received 8 February 2006; received in revised form 3 July 2006; accepted 7 July 2006 Abstract At Wattendorf in the northern Franconian Alb, southern Germany, centimetre- to decimetre-thick packages of finely laminated limestones (plattenkalk) occur intercalated between well bedded graded grainstones and rudstones that blanket a relief produced by now dolomitized microbialite-sponge reefs. These beds reach their greatest thickness in depressions between topographic highs and thin towards, and finally disappear on, the crests. The early Late Kimmeridgian graded packstone–bindstone alternations represent the earliest plattenkalk occurrence in southern Germany. The undisturbed lamination of the sediment strongly points to oxygen-free conditions on the seafloor and within the sediment, inimical to higher forms of life. The plattenkalk contains a diverse biota of benthic and nektonic organisms. Excavation of a 13 cm thick plattenkalk unit across an area of 80 m2 produced 3500 fossils, which, with the exception of the bivalve Aulacomyella, exhibit a random stratigraphic distribution. Two-thirds of the individuals had a benthic mode of life attached to hard substrate. This seems to contradict the evidence of oxygen-free conditions on the sea floor, such as undisturbed lamination, presence of articulated skeletons, and preservation of soft parts. -
Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement. -
Catalogue Customer-Product
AQUATIC DESIGN CENTRE 26 Zennor Trade Park Balham ¦ London ¦ SW12 0PS Shop Enquiries Tel: 020 7580 6764 Email: [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY In Stock Yes/No Marine Invertebrates and Corals Anemones Common name Scientific name Atlantic Anemone Condylactis gigantea Atlantic Anemone - Pink Condylactis gigantea Beadlet Anemone - Red Actinea equina Y Bubble Anemone - Coloured Entacmaea quadricolor Y Bubble Anemone - Common Entacmaea quadricolor Bubble Anemone - Red Entacmaea quadricolor Caribbean Anemone Condylactis spp. Y Carpet Anemone - Coloured Stichodactyla haddoni Carpet Anemone - Common Stichodactyla haddoni Carpet Anemone - Hard Blue Stichodactyla haddoni Carpet Anemone - Hard Common Stichodactyla haddoni Carpet Anemone - Hard Green Stichodactyla haddoni Carpet Anemone - Hard Red Stichodactyla haddoni Carpet Anemone - Hard White Stichodactyla haddoni Carpet Anemone - Mini Maxi Stichodactyla tapetum Carpet Anemone - Soft Blue Stichodactyla gigantea Carpet Anemone - Soft Common Stichodactyla gigantea Carpet Anemone - Soft Green Stichodactyla gigantea Carpet Anemone - Soft Purple Stichodactyla gigantea Carpet Anemone - Soft Red Stichodactyla gigantea Carpet Anemone - Soft White Stichodactyla gigantea Carpet Anemone - Soft Yellow Stichodactyla gigantea Carpet Anemone - Striped Stichodactyla haddoni Carpet Anemone - White Stichodactyla haddoni Curly Q Anemone Bartholomea annulata Flower Anemone - White/Green/Red Epicystis crucifer Malu Anemone - Common Heteractis crispa Malu Anemone - Pink Heteractis -
The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates. -
Functional Anatomy and Mode of Life of the Latest Jurassic Crinoid Saccocoma
Functional anatomy and mode of life of the latest Jurassic crinoid Saccocoma MICHAŁ BRODACKI Brodacki, M. 2006. Functional anatomy and mode of life of the latest Jurassic crinoid Saccocoma. Acta Palaeontologica Polonica 51 (2): 261–270. Loose elements of the roveacrinid Saccocoma from the Tithonian red Rogoża Coquina, Rogoźnik, Pieniny Klippen Belt, Poland, are used to test the contradictory opinions on the mode of life of Saccocoma. The investigated elements belong to three morphological groups, which represent at least two separate species: S. tenella, S. vernioryi, and a third form, whose brachials resemble those of S. vernioryi but are equipped with wings of different shape. The geometry of brachials’ articu− lar surfaces reveals that the arms of Saccocoma were relatively inflexible in their proximal part and left the cup at an angle of no more than 45°, then spread gradually to the sides. There is no evidence that the wings were permanently oriented in either horizontal or vertical position, as proposed by two different benthic life−style hypotheses. The first secundibrachial was probably more similar to the first primibrachial than to the third secundibrachial, in contrast to the traditional assump− tion. The winged parts of the arms were too close to the cup and presumably too stiff to propel the animal in the water effi− ciently. Swimming was probably achieved by movements of the distal, finely branched parts of the arms. The non− horizontal attitude of the winged parts of the arms is also not entirely consistent with the assumption that they functioned as a parachute. Moreover, the wings added some weight and thus increased the energy costs associated with swimming. -
In Situ Observations Increase the Diversity Records of Rocky-Reef Inhabiting Echinoderms Along the South West Coast of India
Indian Journal of Geo Marine Sciences Vol. 48 (10), October 2019, pp. 1528-1533 In situ observations increase the diversity records of Rocky-reef inhabiting Echinoderms along the South West Coast of India Surendar Chandrasekar1*, Singarayan Lazarus2, Rethnaraj Chandran3, Jayasingh Chellama Nisha3, Gigi Chandra Rajan4 and Chowdula Satyanarayana1 1Marine Biology Regional Centre, Zoological Survey of India, Chennai 600 028, Tamil Nadu, India 2Institute for Environmental Research and Social Education, No.150, Nesamony Nagar, Nagercoil 629001, Tamil Nadu, India 3GoK-Coral Transplantation/Restoration Project, Zoological Survey of India - Field Station, Jamnagar 361 001, Gujrat, India 4Department of Zoology, All Saints College, Trivandrum 695 008, Kerala, India *[Email: [email protected]] Received 19 January 2018; revised 23 April 2018 Diversity of Echinoderms was studied in situ in rocky reefs areas of the south west coast of India from Goa (Lat. N 15°21.071’; Long. E 073°47.069’) to Kanyakumari (Lat. N 08°06.570’; Long. E 077°18.120’) via Karnataka and Kerala. The underwater visual census to assess the biodiversity was carried out by SCUBA diving. This study reveals 11 new records to Goa, 7 to Karnataka, 5 to Kerala and 7 to the west coast of Tamil Nadu. A total of 15 species representing 12 genera, 10 families, 8 orders and 5 Classes were recorded namely Holothuria atra, H. difficilis, H. leucospilota, Actinopyga mauritiana, Linckia laevigata, Temnopleurus toreumaticus, Salmacis bicolor, Echinothrix diadema, Stomopneustes variolaris, Macrophiothrix nereidina, Tropiometra carinata, Linckia multifora, Fromia milleporella and Ophiocoma scolopendrina. Among these, the last three are new records to the west coast of India. -
Echinodermata) and Their Permian-Triassic Origin
Molecular Phylogenetics and Evolution 66 (2013) 161-181 Contents lists available at SciVerse ScienceDirect FHYLÖGENETICS a. EVOLUTION Molecular Phylogenetics and Evolution ELSEVIER journal homepage:www.elsevier.com/locate/ympev Fixed, free, and fixed: The fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian-Triassic origin Greg W. Rouse3*, Lars S. Jermiinb,c, Nerida G. Wilson d, Igor Eeckhaut0, Deborah Lanterbecq0, Tatsuo 0 jif, Craig M. Youngg, Teena Browning11, Paula Cisternas1, Lauren E. Helgen-1, Michelle Stuckeyb, Charles G. Messing k aScripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA b CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia c School of Biological Sciences, The University of Sydney, NSW 2006, Australia dThe Australian Museum, 6 College Street, Sydney, NSW 2010, Australia e Laboratoire de Biologie des Organismes Marins et Biomimétisme, University of Mons, 6 Avenue du champ de Mars, Life Sciences Building, 7000 Mons, Belgium fNagoya University Museum, Nagoya University, Nagoya 464-8601, Japan s Oregon Institute of Marine Biology, PO Box 5389, Charleston, OR 97420, USA h Department of Climate Change, PO Box 854, Canberra, ACT 2601, Australia 1Schools of Biological and Medical Sciences, FI 3, The University of Sydney, NSW 2006, Sydney, Australia * Department of Entomology, NHB E513, MRC105, Smithsonian Institution, NMNH, P.O. Box 37012, Washington, DC 20013-7012, USA k Oceanographic Center, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL 33004, USA ARTICLE INFO ABSTRACT Añicle history: Although the status of Crinoidea (sea lilies and featherstars) as sister group to all other living echino- Received 6 April 2012 derms is well-established, relationships among crinoids, particularly extant forms, are debated. -
Helsingin Akvaariokeskus Lista Päivitetty 3.8.2018 Tilaus Tulee
Helsingin Akvaariokeskus lista päivitetty 3.8.2018 Tilaus tulee täältä parin viikon välein. Nouto elävillä ehdottomasti toimituspäivänä Pyydä hintatiedot spostitse [email protected] muista AINA mainita listan nimi (DeJong) sekä koodi, jonka hinnan haluat tietää * Saatavilla satunnaisesti ** Harvoin saatavilla *** Hyvin harvinaisia, saatavilla vain pyynnöstä MAC MAC Certified Species CUL Kasvatetut korallit ! Hyvin herkkiä kuljetukselle H Käsinpyydetyt ilman myrkkyä T.R. Viljellyt C Lajien mukana tulee cites paperit Asno Liike Number Latin name Stock 000022 H Acanthurus bahianus 4 000042 H Acanthurus bariene 1 000051 H Acanthurus chirurgus 10 000052 H Acanthurus chirurgus 10 000063 H* Acanthurus tristis 1 000072 H Acanthurus coeruleus 5 000073 H Acanthurus coeruleus 2 000082 H* Acanthurus dussumieri 1 000091 H Acanthurus nigricans 1 000092 H Acanthurus nigricans 3 000093 H Acanthurus nigricans 4 000111 H* Acanthurus guttatus 2 000122 H Acanthurus japonicus 10 000123 H Acanthurus japonicus 1 000152 H Acanthurus leucocheilus 2 000162 H Acanthurus lineatus 8 000163 H Acanthurus lineatus 1 000172 H Acanthurus mata 1 000173 H Acanthurus mata 1 000181 H* Acanthurus maculiceps 1 000223 H Acanthurus nigrofuscus 4 000241 H* Acanthurus leucosternon (hybrid) 1 000242 H* Acanthurus leucosternon (hybrid) 1 000251 H Acanthurus olivaceus 6 000271 H Acanthurus Chronixis 2 000291 H Acanthurus tennentii 1 000293 H Acanthurus tennentii 1 000304 H Acanthurus thompsoni 1 000312 H Acanthurus triostegus 18 000313 H Acanthurus triostegus 4 000331 -
Reproductive Cycle of E Cycle of Mellita Quinquiesperf
Reproductive cycle of Mellita quinquiesperforata (Leske) (Echinodermata, Echinoidea) in two contrasting beach environments Yara A. G. Tavares & Carlos A. Borzone Centro de Estudos do Mar, Universidade Federal do Paraná. Avenida Beira Mar, Caixa Postal 50002, 832555-000 Pontal do Paraná, Paraná, Brasil. E-mail: [email protected]; [email protected] ABSTRACT. The reproductive cycle of the irregular echinoid Mellita quinquiesperforata (Leske, 1778) was studied in populations from two sand beaches with different morphodynamic conditions in Parana coast, from February 1992 through July 1994. Gametogenesis was described by histological and gonad index methods and the differ- ences between both populations were observed in the extension of nutrient storage and spawning period. Both populations exhibited a main reproductive period during spring/summer and a nutrient storage period during autumn/winter months. The spawning period at the intermediate-dissipative beach was shorter than at the reflective beach. Meanwhile, a nutrient storage stage was more extensive in the latter. Gonad index varied between both sexes and it was influenced by population characteristics. Different strategies in allocation of resources between maintenance and reproduction effort (oocyte size) confirm the high adaptive plasticity developed by this species to live in contrasting beach environments. KEY WORDS. Reproductive plasticity; sand dollar; sandy beach. RESUMO. Reprodução de Mellita quinquiesperforata (Leske) (Echinodermatamata, Echinoidea) em dois ecossistemas praiais contrastantes. O ciclo reprodutivo do equinóide irregular Mellita quinquiesperforata (Leske, 1778) foi estudado em populações de duas praias com diferentes condições morfodinâmicas na costa paranaense, de fevereiro de 1992 a julho de 1994. A gametogênese foi descrita pela análise histológica das gônadas e pela variação do índice gonadal. -
Spineless Spineless Rachael Kemp and Jonathan E
Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world. -
An Invitation to Monitor Georgia's Coastal Wetlands
An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources). -
Relative Biodiversity Trends of the Cenozoic Caribbean Region
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2003 Relative biodiversity trends of the Cenozoic Caribbean Region : investigations of possible causes and issues of scale using a biostratigraphic database of corals, echinoids, bivalves, and gastropods William Gray Dean Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Dean, William Gray, "Relative biodiversity trends of the Cenozoic Caribbean Region : investigations of possible causes and issues of scale using a biostratigraphic database of corals, echinoids, bivalves, and gastropods. " PhD diss., University of Tennessee, 2003. https://trace.tennessee.edu/utk_graddiss/5124 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by William Gray Dean entitled "Relative biodiversity trends of the Cenozoic Caribbean Region : investigations of possible causes and issues of scale using a biostratigraphic database of corals, echinoids, bivalves, and gastropods." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for