Melting of Snowflakes Below Freezing Level in the Atmosphere

Total Page:16

File Type:pdf, Size:1020Kb

Melting of Snowflakes Below Freezing Level in the Atmosphere 10 Journal of the Meteorological Society of Japan Vol. 59, No. 1 Melting of Snowflakes below Freezing Level in the Atmosphere By Takayo Matsuo and Yoshio Sasyo Meteorological Research Institute, Yatabe-cho, Tsukuba-gun, Ibaraki-ken, 305, Japan (Manuscript received 16 June 1980, in revised form 30 September 1980) Abstract A theoretical and observational approach was made to elucidate the phenomena of melting of snowflakes below freezing level in the atmosphere. A main purpose of the theoretical approach was to examine the effect of relative humidity of air on snowflake melting that has never referred so far. It is based on the consideration that latent heat accompanied with sublimation or condensation of water vapor from or on snowflake surface exerts a significant influence on the melting rate of snowflakes in addition to heat transfer due to heat diffusion from the ambient air to snowflakes. In the theoretical calculations, we used an empirical formula of the melting rate of snowflakes proposed previously by Matsuo and Sasyo (1981) as the basic equation. Snow- flake diameter, liquid water content, and fall velocity as a function of distance below freezing level were obtained by the calculations using parameters such as relative humidity of air, snowflake sizes, and densities. In saturated air below freezing level, snowflakes commenced melting from just below freezing level and snowflakes with equivalent diameter 1-5 mm in raindrops completed melting within several hundred meters. The width of the melting layer thus formed in- creased with increasing sizes and densities of snowflakes contained. In subsaturated air below freezing level, on the other hand, melting of snowflakes did not take place as far as a considerable distance below freezing level because of cooling of snowflakes by sub- limation of water vapor. The width of the non-melting layer thus formed increased nearly linearly as relative humidity decreased; for example, it was about 120 m for relative humidity of 90%, and 700 m for RH=50%. Under the non-melting layer, snowflakes commenced melting because of increase in heat transfer from the ambient air due to increase in air temperature and water vapor density. The width of the melting layer decreased as the layer became dryer. Fall velocity of snowflakes decreased slightly in the non-melting layer and increased rapidly in the melting layer with increasing distance below freezing level. In the observations, simultaneous measurements were carried out for snowflake water content, fall velocity, mass, and cross-sectional area. The observational results showed that fall velocity and liquid water content of snowflakes as a function of their mass were dependent on surface air temperature above 0 * and relative humidity. Especially at high surface air temperature (*1*), fall velocities were almost constant with respect to their masses and some of them in small mass range were higher than those in larger mass range. This finding shows a different tendency from the results observed by Magono (1953) and Langleben (1954). These observational results were interpreted well by the present theoretical calculations. problem of snowflake melting below freezing 1. Introduction level and that there was an intimate relation In the routine weather forecasts, the predic- between the types of precipitation and air tion of types of precipitation on the ground is temperature which precipitation experienced in one of the most important problems. From falling (Sugiyama (1946), Nakazawa and Noto statistical analyses of temperature profiles in the (1971), and Handbook of Weather Forecasting in atmosphere, it was found that the types of the Tokai District. 1974, vol. 1, p. 64). precipitation were closely connected with the In radar meteorology, the problem of melting February 1981 T. Matsuo and Y. Sasyo 11 is also of importance for studies of bright band sectional areas, and water content of snowflakes formation. Most studies of bright band forma- were also measured together with their masses. tion (e.g., Austin and Bemis (1950), Wexler Simultaneous measurements of snowflake fall (1955)) showed that bright band was formed as velocity, cross-sectional area, and mass were a result of various physical processes accom- made in a vertical tunnel which is 50 * 50cm2 panied by snowflake melting. in cross-section and 170 cm in depth. An In spite of the importance of the problem, apparatus used here was described in detail by the study of snowflake melting below freezing Sasyo and Matsuo (1980). The tunnel was level remains at the stage of qualitative inter- darkened inside and set outdoor. Two photo- pretation because of the practical difficulties of couplers, which consist of light emitting diodes the observation and the experiment. A key to and photo-detectors, were placed at different quantitative understanding of the snowflake melt- height with a known interval in the tunnel. The ing is a knowledge of the melting rate of snow- upper photocoupler generated a pulse signal flakes below freezing level. For that purpose, when a falling snowflake shut out light-beam the assessment of physical factors affecting the emmited by diodes and instantly sended it to a melting rate should be made by careful laboratory degital voltmeter equipped with a function of and field studies. The authors, Matsuo and Sasyo time interval measurement, and so did the lower (1981), carried out the melting experiment of one. The degital voltmeter received two signals snowflakes and formulated the melting rate using from two photocouplers for one falling of a physical factors assessed in the experiment. snowflake. The fall velocity could be calculated In this paper, we will make a numerical simu- from a difference in arrival time of two pulse lation of melting of snowflakes below freezing signals. Cross-section of falling snowflakes was level using the empirical formula of the melting photographed from the bottom of the tunnel by rate proposed by the present authors and discuss a motor driven camera with a stroboflash linked the physical factors influencing snowflake melt- electrically with a photocoupler. After the ing below freezing level. In particular, we will snowflake failed on a heated glass plate at the pay attention to the effect of relative humidity bottom of the tunnel, the mass was determined of air which has never described so far. We will by a method of a filter paper dusted with a then support the appropriateness of the simu- water-soluble dye. Cross-sectional areas were lation with a few quantitative observational determined from the cross-sections enlarged on results. photographic papers. Sometimes, snowflake cross- sectional area and fall velocity were missed to be 2. Measurements of fall velocity and liquid measured because of inapposite functioning of the water content of snowflakes apparatus caused by simultaneous falling of two The snowfall observations were carried out in or more snowflakes into the tunnel. January 1978 and February 1979 at Nagaoka, Water content of snowflakes was measured by Niigata prefecture in Japan. Nagaoka is famous a method used by Nakamura (1960). Falling for a snowy country in Japan and is a suitable snowflakes were collected on a filter paper dusted place for studies of snowflake melting because with a water-soluble dye. Liquid water in melt- in the winter monsoon season, Nagaoka is often ing snowflakes was first absorbed by the filter situated in a melting layer. During the periods paper and spotted on it. The trace was out- of the observation, there were about twenty snow- lined by a pencil. Then the ice remaining on the falls and sleet was often found in those snow- paper was melted by warming the paper. The falls. From eye observation, it was found that trace became larger by addition of water pro- most of snowflakes observed in snowfalls con- duced by melting. Liquid water content was sisted mainly of ice crystals of spacial dendrite. deduced from the ratio of the outer trace to the This is suitable in comparing with the observa- inner one. tional results and those present calculated results Autographic records of surface air tempera- which will be obtained using the empirical ture and relative humidity during the observation formula of the melting rate proposed for snow- periods were of use in analysing these data. flakes consisting mainly of ice crystals of spatial dendrite. 3. Numerical simulations of snowflake melting below freezing level Fall velocities of snowflakes were measured simultaneously with their masses and cross- We proposed previously an empirical formula 12 Journal of the Meteorological Society of Japan Vol. 59, No. 1 of the melting rate of snowflakes assuming have any substantial contribution on the melting spherical symmetry of snowflakes (Matsuo and rate of snowflakes. Sasyo (1981)). The rate of decrease in snowflake The assumptions (1) and (2) were used already radius R by melting, which we define as the when the equation (1) was formulated in the melting rate in this paper, could be given by experiment. (3) Temperature of snowflakes remains the freezing point during the melting period. (4) No breaking-up and coalescense of snow- where Lf is latent heat of fusion, Pi initial density flakes do not take place below freezing level. of snowflakes, K thermal conductivity of air, d T (5) Melting is completed when radius of a temperature difference between the environment melting snowflake becomes the equivalent radius and the snowflake, Lv latent heat of vaporization of a raindrop to which the snowflake melts. or condensation of water, an adjustable parame- (6) Lapse rate of air temperature in the ter which was empirically evaluated as 1.75, D atmosphere r is 6*Km-1 and relative humidity molecular diffusion of water vapor in air,* of air RH is constant below freezing level. between water vapor density differenceof the (7) Fall velocity of melting snowflakes is environment and equilibrium water vapor density treated as follows.
Recommended publications
  • Aviation Weather Services (AC 00-45H)
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Aviation Weather Services Date: 1/8/18 AC No: 00-45H Initiated by: AFS-400 Change: 1 1 PURPOSE OF THIS ADVISORY CIRCULAR (AC). This AC explains U.S. aviation weather products and services. It provides details when necessary for interpretation and to aid usage. This publication supplements its companion manual, AC 00-6, Aviation Weather, which documents weather theory and its application to aviation. The objective of this AC is to bring the pilot and operator up-to-date on new and evolving weather information and capabilities to help plan a safe and efficient flight, while also describing the traditional weather products that remain. 2 PRINCIPAL CHANGES. This change adds guidance and information on Graphical Forecast for Aviation (GFA), Localized Aviation Model Output Statistics (MOS) Program (LAMP), Terminal Convective Forecast (TCF), Polar Orbiting Environment Satellites (POES), Low-Level Wind Shear Alerting System (LLWAS), and Flight Path Tool graphics. It also updates guidance and information on Direct User Access Terminal Service (DUATS II), Telephone Information Briefing Service (TIBS), and Terminal Doppler Weather Radar (TDWR). This change removes information regarding Area Forecasts (FA) for the Continental United States (CONUS). 1/8/18 AC 00-45H CHG 1 PAGE CONTROL CHART Remove Pages Dated Insert Pages Dated Pages iii thru xii 11/14/16 Pages iii thru xiii 1/8/18 Pages 1-8 and 1-9 11/14/16 Page 1-8 1/8/18 Page 3-57 11/14/16 Pages 3-57 thru
    [Show full text]
  • On the Use of Radiosondes in Freezing Precipitation
    MARCH 2018 W AUGH AND SCHUUR 459 On the Use of Radiosondes in Freezing Precipitation SEAN WAUGH NOAA/OAR/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma TERRY J. SCHUUR Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma (Manuscript received 13 April 2017, in final form 4 January 2018) ABSTRACT Radiosonde observations are used the world over to provide critical upper-air observations of the lower atmosphere. These observations are susceptible to errors that must be mitigated or avoided when identified. One source of error not previously addressed is radiosonde icing in winter storms, which can affect forecasts, warning operations, and model initialization. Under certain conditions, ice can form on the radiosonde, leading to decreased response times and incorrect readings. Evidence of radiosonde icing is presented for a winter storm event in Norman, Oklahoma, on 24 November 2013. A special sounding that included a particle imager probe and a GoPro camera was flown into the system producing ice pellets. While the iced-over temperature sensor showed no evidence of an elevated melting layer (ML), complementary Particle Size, Image, and Velocity (PASIV) probe and polarimetric radar observations provide clear evidence that an ML was indeed present. Radiosonde icing can occur while passing through a layer of supercooled drops, such as frequently found in a subfreezing layer that often lies below the ML in winter storms. Events that have warmer/deeper MLs would likely melt any ice present off the radiosonde, minimizing radiosonde icing and allowing the ML to be detected.
    [Show full text]
  • Detecting the Melting Layer with a Micro Rain Radar Using a Neural
    https://doi.org/10.5194/amt-2019-248 Preprint. Discussion started: 23 September 2019 c Author(s) 2019. CC BY 4.0 License. Detecting the Melting Layer with a Micro Rain Radar Using a Neural Network Approach Maren Brast1 and Piet Markmann1 1METEK Meteorologische Messtechnik GmbH, Fritz-Straßmann-Str. 4, 25337 Elmshorn, Germany Correspondence: Piet Markmann ([email protected]) Abstract. A new method using the Micro Rain Radar (MRR) to determine the melting layer height is presented. The MRR is a small vertically pointing frequency modulated continuous wave radar which measures Doppler spectra of precipitation. From these Doppler spectra, various variables such as Doppler velocity or spectral width can be derived. The melting layer is visible through a higher reflectivity and an acceleration of the falling particles, among others. These characteristics are fed to a neural 5 network to determine the melting layer height. For the training of the neural network, the melting layer height is determined manually. The neural network is trained and tested using data from two sites covering all seasons. For most cases, it is well able to detect the correct melting layer height. Sensitivity studies show that the neural network is able to handle different settings of the MRR. Comparisons to radiosonde data and cloud radar data show a good agreement in melting layer heights. 10 1 Introduction The bright band in radar meteorology shows the location of the layer where solid precipitation melts into rain in a complex process. Near the freezing level, aggregation leads to larger ice particles. When melting begins, the particles are coated by liquid water, appearing as very large raindrops, until all ice is melted and the particles collapse into raindrops.
    [Show full text]
  • In the Troposphere, the Temperature Decreases with Altitude
    Indian Journal of Geo-Marine Sciences Vol. 44(7), July 2015, pp. 1071-1095 Study of TRMM estimated freezing level height in the 36N – 36S region Rajasri Sen Jaiswal *, Sonia R Fredrick, M Rasheed, V S Neela & Leena Zaveri Centre for Study on Rainfall and Radio wave Propagation, Sona College of Technology, Salem-636005, India [E-mail: [email protected] ] Received 21 April 2014; revised 14 October 2014 In this paper the freezing level height (HFL), a very important parameter in cloud physics has been studied in the latitudinal belt 36N-36S, during the period 1999-2002 and 2007-2008. Present study shows that the latitude is the major controlling factor of the HFL, rather than LH or temperature. Further, it is seen that the HFL depends on season. The study also reveals that the HFL responds in a different manner over the continental and the oceanic sites. Functional relationship between the HFL and latitude shows seasonal dependence. It also presents the range of the HFL, its maximum and minimum values and the months of occurrence of the maxima/minima over few selected locations, including India. [Keywords: Freezing level height, latitude, temperature, latent heat] Introduction In the troposphere, the temperature decreases percentage of liquid precipitation8. This is shown with altitude. The height at which the temperature for both mid latitude and Arctic region. Freezing falls to 0°C is known as 0°C isotherm height, or level height is a very important parameter in freezing level1. The freezing level during rainy climatology. During the precipitation process, condition is known as the rain height.
    [Show full text]
  • NOAA Technical Memorandum NWS WR-215 WEATHERTOOLS Tom
    NOAA Technical Memorandum NWS WR-215 WEATHERTOOLS Tom Egger National Weather Service Weather Service Forecast Office Boise, Idaho " . f. October 1991 u.s. DEPARTMENT OF I National Oceanic and National Weather COMMERCE Atmospheric Administration I Service 75 A Study of the Low Level Jet Stream of the San Joaquin Valley. Ronald A. Willis and NOAA TECHNICAL MEMORANDA Philip Williams, Jr., May 1972. (COM 72 10707) ..~ _ Hot~ National Weather Service, Western Region Subseries 76 Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Donald M. Gales, July 1972. (COM 72 11140) Th National Weather Service (NWS) Western Region (WR) Subseries provides an informal 77 A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., me~ium for the documen?ttion and qui.ck ~isseminntion of results not. appropriate, or not .yet July 1972. (COM 72 11136) . lv for formal publication. The senes ts used to report on work m progress, to describe 78 Forecasting Precipitation at Bakersfield, Cahforma, Usmg Pressure Grnd1ent Vectors. Earl ~~~h0ica1 procedures and practices! or. to relate progre_ss to. a limited. audience. These Technical T. Riddiough, July 1972. (COM 72 11146) Memoranda will report on investtgatlons ~evoted pru_nanly _to !egional and local problems of 79 Climate of Stockton, California. Robert C. Nelson, July 1972. (COM 72 10920) interest mainly to personnel, and hence wdl not be Widely dtstrtbuted. 80 Estimation of Number of Days Above or Below Selected Temperatures. Clarence M. Sakamoto, October 1972. (COM 72 10021) Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Western Region Technical 81 An Aid for Forecasting Summer Maximum Temperatures at Seattle, Washington.
    [Show full text]
  • Models and Characteristics of Freezing Rain and Freezing Drizzle for Aircraft Icing Applications
    DOT/FAA/AR-09/45 Models and Characteristics of Air Traffic Organization NextGen & Operations Planning Freezing Rain and Freezing Office of Research and Technology Development Drizzle for Aircraft Icing Washington, DC 20591 Applications Richard K. Jeck January 2010 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.act.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-09/45 4. Title and Subtitle 5. Report Date MODELS AND CHARACTERISTICS OF FREEZING RAIN AND FREEZING January 2010 DRIZZLE FOR AIRCRAFT ICING APPLICATIONS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Richard K. Jeck 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Federal Aviation Administration William J. Hughes Technical Center Airport and Aircraft Safety R&D Group Flight Safety Team 11.
    [Show full text]
  • V12.6 Radar Legends (When from Internet)
    Weather Legends in FOREFLIGHT MOBILE 17th Edition Covers ForeFlight Mobile v12.6 Radar Legends (when from Internet) Snowy/Icy Precipitation Mixed Precipitation Rain Echo top (in 100’s of feet) ex: 24,900’ Storm Track Estimated position in 20, 40 and 60 minutes ForeFlight Mobile Legends v12.6 and later! 2 Rain - Radar Intensity (dBZ) vs. Color Based on RGB values assigned to dBZ range(s) dBZ Internet Color1 ADS-B Color2,4 SiriusXM Color3 5 none shown 10 none shown 15 20 25 30 35 40 45 50 55 60 65 70 75 95 1. Colors are interpolated between levels when rendered on an image. 2. ADS-B (FIS-B) NEXRAD radar is displayed with 6 intensity ranges. 3. Some dBZ intensity/color divisions do not fall exactly on 5 dBZ lines, so are shown as close as possible to specification. ForeFlight Mobile Legends v12.6 and later! 3 Mixed Rain/Snow - Radar Intensity (dBZ) vs. Color Based on RGB values assigned to dBZ range(s) dBZ Internet Color1 ADS-B Color2,3,5 SiriusXM Color4 5 none shown 10 none shown 15 20 25 30 35 40 45 50 55 60 65 70 75 1. Colors are interpolated between levels when rendered on an image. 2. ADS-B (ie: FIS-B) NEXRAD radar is displayed with 6 intensity ranges. 3. FIS-B NEXRAD doesn't include precipitation type, so "Mixed" is displayed at the same reflectivity colors as rain. See AIM Chapter 7: http://tfmlearning.fly.faa.gov/ publications/atpubs/aim/chap7/aim0701.html 4. Some dBZ intensity/color divisions do not fall exactly on 5 dBZ lines, so are shown as close as possible to specification.
    [Show full text]
  • General Aviation Pilot's Guide to Preflight Weather
    Federal Aviation Administration General Aviation Pilot’s Guide to Preflight Weather Planning, Weather Self-Briefings, and Weather Decision Making General Aviation Pilot’s Guide Preflight Planning, Weather Self-Briefings, and Weather Decision Making Foreword…………………………………………………………… ii Introduction……………………………………………………… 1 I Preflight Weather Planning…………………………………… 2 Perceive – Understanding Weather Information…………………..... 2 Process – Analyzing Weather Information ………………..………... 7 Perform – Making A Weather Plan.…………………………………... 11 II In-flight Weather Decision-Making…………………………… 14 Perceive – In-flight Weather Information…………………….......... 14 Process – (Honestly) Evaluating In-flight Conditions…………….. 16 Perform – Putting It All Together…………………………………… 20 III Post-Flight Weather Review…………………………………... 22 IV Resources………………………………………………………… 23 Appendix 1 – Weather Products & Providers Chart……………... 24 Appendix 2 – Items for Standard Briefing…………………………. 25 Appendix 3 – Automated Weather Systems (definitions)………... 26 Appendix 4 – Developing Personal Weather Minimums. ……….. 27 Appendix 5 –Aviation Weather Analysis Worksheets…..…………. 31 Appendix 6 –Weather Analysis Checklists (VFR)…………………. 32 Appendix 7 – Weather Analysis Checklists (IFR)………………….. 34 Appendix 8 – Estimating In-flight Visibility & Cloud Clearance…….. 36 Preflight Guide v. 1.1 Foreword This guide is intended to help general aviation (GA) pilots, especially those with relatively little weather-flying experience, develop skills in obtaining appropriate weather information, interpreting
    [Show full text]
  • Student Study Notes – Canadian PPL Aviation Ground School: Weather & Meteorology
    Student Study Notes – Canadian PPL Aviation Ground School: Weather & Meteorology This version of my “Weather & Meteorology” study notes is from January 1st, 2017. I’ll update this document any time I find the need to make any changes, and as I continue to progress through additional training. I am sharing these study notes for anyone else who is taking their PPL in Canada. These aren’t intended as a replacement for proper training. I’m only sharing these notes as a supplement covering many of the key points that I decided that I really needed to memorize while going through my own PPL studies. The info in these notes comes from a large number of different sources: The Transport Canada Flight Training Manual, Transport Canada’s Aeronautical Information Manual (AIM), various flight schools and instructors (in multiple provinces), and numerous other books and online sources. These notes are not always in any particular order, although I tried to keep similar topics together in many cases. Please note that while I have made every effort to ensure that all of the information in these notes is accurate, based on the sources from which I learned, you should verify everything here against what you’ve learned in your own study programs. I (Jonathan Clark) shall not assume any liability for errors or omissions in these notes, and your official pilot training should always supersede any information presented herein. As the Canadian PPL curriculum is updated occasionally, I recommend that if you want to be 100% certain that everything in this set of study notes is correct, you should print a copy and ask your instructor to review these notes with you.
    [Show full text]
  • 1 Comparison of Lower-Tropospheric Temperature Climatologies And
    Comparison of Lower-Tropospheric Temperature Climatologies and Trends at Low and High Elevation Radiosonde Sites Dian J. Seidel and Melissa Free Air Resources Laboratory (R/ARL) National Oceanic and Atmospheric Administration 1315 East West Highway Silver Spring, Maryland, USA [email protected] phone: 301-713-0295 ext. 126 fax: 301-713-0119 Submitted to Climatic Change Special Issue on Climate Change at High Elevation Sites November 27, 2001 Revised: June 17, 2002 1 2 Abstract Observations of rapid retreat of tropical mountain glaciers over the past two decades seem superficially at odds with observations of little or no warming of the tropical lower troposphere during this period. To better understand the nature of temperature and atmospheric freezing level variability in mountain regions, on seasonal to multidecadal time scales, this paper examines long-term surface and upper-air temperature observations from a global network of 26 pairs of radiosonde stations. Temperature data from high and low elevation stations are compared at four levels: the surface, the elevation of the mountain station surface, 1 km above the mountain station, and 2 km above the mountain station. Climatological temperature differences between mountain and low elevation sites show diurnal and seasonal structure, as well as latitudinal and elevational differences. Atmospheric freezing-level heights tend to decrease with increasing latitude, although maximum heights are found well north of the equator, over the Tibetan Plateau. Correlations of interannual anomalies of temperature between paired high and low elevation sites are relatively high at 1 or 2 km above the mountain station. But at the elevation of the station, or at the two surface elevations, correlations are lower, indicating decoupling of the boundary layer air from the free troposphere.
    [Show full text]
  • A Matter of Wet-Bulb Temperature
    Examensarbete vid institutionen för geovetenskaper ISSN 1650-6553 Nr 48 Snow or rain? - A matter of wet-bulb temperature Arvid Olsen Abstract Accurate precipitation-type forecasts are essential in many areas of our modern society and therefore there is a need to develop proper working methods for this purpose. Focus of this work has been to study important physical processes decisive in deciding both the temperature of the precipitation particles, hence affecting their phase, and the surrounding air. Two major latent heating effects have been emphasized, melting effect and cooling by evaporation/sublimation. Melting of the snow flakes subtracts heat from the surroundings and hence acts as a cooling agent. Phase transformation from solid/liquid into the gas phase also needs heat which here results in a cooling tendency. These two mechanisms may sometimes have a crucial influence for deciding the correct precipitation-type. The melting effect is discussed in a paper about a snow event in Tennessee in USA, and another paper describing an event in Japan showing the influence of the evaporation/sublimation process. In the latter case the wet-bulb temperature, Tiw as a physical correct discriminator between snow and rain is obtained. A numerical weather prediction model (HIRLAM) is being used to study different condensation schemes during three weather situations occurring in Sweden. These are Rasch/Kristjánsson condensation scheme, Sundqvist original condensation scheme and a modification of the latter scheme. In the modified Sundqvist condensation scheme the Tiw has been implemented as a limit temperature between snow and rain. The results are showing differences between the two main schemes concerning the total precipitation (both snow and rain).
    [Show full text]
  • Detection of the Freezing Level with Polarimetric Weather Radar
    https://doi.org/10.5194/amt-2020-375 Preprint. Discussion started: 28 September 2020 c Author(s) 2020. CC BY 4.0 License. Detection of the freezing level with polarimetric weather radar Daniel Sanchez-Rivas1,* and Miguel A Rico-Ramirez1,* 1Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom Correspondence: Daniel Sanchez-Rivas ([email protected]) Abstract. Accurate estimation of the Freezing Level (FL) is essential in radar rainfall estimation to mitigate the bright band enhancement, to classify hydrometeors, to correct for rain-attenuation and to calibrate radar measurements. Here we present a novel and robust FL estimation algorithm that can be applied to either Vertical Profiles (VPs) or Quasi-Vertical Profiles (QVPs) built from operational polarimetric weather radar scans. The algorithm depends only on data collected by the radar itself, 5 and it is based on the detection of strong gradients within the profiles and relies on the combination of several polarimetric variables. The VPs and QVPs of Z showed a good similarity in the profiles (r 0.7) even though the QVPs are built from H ≈ low-elevation angles. The algorithm is applied to one year of rainfall events and validated using measured FLs from radiosonde data. The results demonstrated that combining the profiles of ZH , ρHV and the gradient of the velocity V showed the best FL estimation performance when using VPs, whereas combining the profiles of ZH , ρHV and ZDR showed the best FL estimation 10 performance when using QVPs. The VP computed from the gradient of the velocity showed to be extremely valuable in the FL estimation when using VPs.
    [Show full text]